1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/6/10.1118/1.4800806
1.
1. A. Rahmim and H. Zaidi, “PET versus SPECT: Strengths, limitations and challenges,” Nucl. Med. Commun. 29(3), 193207 (2008).
http://dx.doi.org/10.1097/MNM.0b013e3282f3a515
2.
2. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” J. Nucl. Med. 48(6), 932945 (2007).
http://dx.doi.org/10.2967/jnumed.106.035774
3.
3. O. G. Rousset, A. Rahmim, A. Alavi, and H. Zaidi, “Partial volume correction strategies in PET,” PET Clin. 2, 235249 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.10.005
4.
4. J. C. Mazziotta, M. E. Phelps, D. Plummer, and D. E. Kuhl, “Quantitation in positron emission computed tomography: 5. Physical-anatomical effects,” J. Comput. Assist. Tomogr. 5(5), 734743 (1981).
http://dx.doi.org/10.1097/00004728-198110000-00029
5.
5. R. M. Kessler, J. R. Ellis, and M. Eden, “Analysis of emission tomographic scan data: Limitations imposed by resolution and background,” J. Comput. Assist. Tomogr. 8(3), 514522 (1984).
http://dx.doi.org/10.1097/00004728-198406000-00028
6.
6. O. G. Rousset, Y. Ma, and A. C. Evans, “Correction for partial volume effects in PET: Principle and validation,” J. Nucl. Med. 39(5), 904911 (1998).
7.
7. Y. Du, B. M. W. Tsui, and E. C. Frey, “Partial volume effect compensation for quantitative brain SPECT imaging,” IEEE Trans. Med. Imaging 24(8), 969976 (2005).
http://dx.doi.org/10.1109/TMI.2005.850547
8.
8. C. Labbe, J. C. Froment, A. Kennedy, J. Ashburner, and L. Cinotti, “Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging,” Alzheimer Dis. Assoc. Disord. 10(3), 141170 (1996).
http://dx.doi.org/10.1097/00002093-199601030-00005
9.
9. J. A. Aston, V. J. Cunningham, M. C. Asselin, A. Hammers, A. C. Evans, and R. N. Gunn, “Positron emission tomography partial volume correction: Estimation and algorithms,” J. Cereb. Blood Flow Metab. 22(8), 10191034 (2002).
http://dx.doi.org/10.1097/00004647-200208000-00014
10.
10. T. O. Videen, J. S. Perlmutter, M. A. Mintun, and M. E. Raichle, “Regional correction of positron emission tomography data for the effects of cerebral atrophy,” J. Cereb. Blood Flow Metab. 8(5), 662670 (1988).
http://dx.doi.org/10.1038/jcbfm.1988.113
11.
11. H. W. Muller-Gartner, J. M. Links, J. L. Prince, R. N. Bryan, E. McVeigh, J. P. Leal, C. Davatzikos, and J. J. Frost, “Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects,” J. Cereb. Blood Flow Metab. 12(4), 571583 (1992).
http://dx.doi.org/10.1038/jcbfm.1992.81
12.
12. O. G. Rousset, Y. Ma, D. F. Wong, and A. C. Evans, in Quantitative Functional Imaging with Positron Emission Tomography, edited by R. Carson, M. E. Daube-Witherspoon, and P. Herscovitch (Academic, San Diego, 1998), Vol. 1, pp. 6775.
13.
13. C. C. Meltzer, J. K. Zubieta, J. M. Links, P. Brakeman, M. J. Stumpf, and J. J. Frost, “MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution,” J. Cereb. Blood Flow Metab. 16(4), 650658 (1996).
http://dx.doi.org/10.1097/00004647-199607000-00016
14.
14. A. Le Pogam, M. Hatt, P. Descourt, N. Boussion, C. Tsoumpas, F. E. Turkheimer, C. Prunier-Aesch, J. L. Baulieu, D. Guilloteau, and D. Visvikis, “Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography,” Med. Phys. 38(9), 49204933 (2011).
http://dx.doi.org/10.1118/1.3608907
15.
15. M. Shidahara, C. Tsoumpas, A. Hammers, N. Boussion, D. Visvikis, T. Suhara, I. Kanno, and F. E. Turkheimer, “Functional and structural synergy for resolution recovery and partial volume correction in brain PET,” Neuroimage 44(2), 340348 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2008.09.012
16.
16. N. Boussion, M. Hatt, F. Lamare, Y. Bizais, A. Turzo, C. Cheze-Le Rest, and D. Visvikis, “A multiresolution image based approach for correction of partial volume effects in emission tomography,” Phys. Med. Biol. 51, 18571876 (2006).
http://dx.doi.org/10.1088/0031-9155/51/7/016
17.
17. B. K. Teo, Y. Seo, S. L. Bacharach, J. A. Carrasquillo, S. K. Libutti, H. Shukla, B. H. Hasegawa, R. A. Hawkins, and B. L. Franc, “Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data,” J. Nucl. Med. 48(5), 802810 (2007).
18.
18. A. S. Kirov, J. Z. Piao, and C. R. Schmidtlein, “Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology,” Phys. Med. Biol. 53(10), 25772591 (2008).
http://dx.doi.org/10.1088/0031-9155/53/10/009
19.
19. N. Boussion, C. C. Le Rest, M. Hatt, and D. Visvikis, “Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging,” Anglais 36(7), 10641075 (2009).
http://dx.doi.org/10.1007/s00259-009-1065-5
20.
20. B. Bai, Q. Z. Li, and R. M. Leahy, “Magnetic resonance-guided positron emission tomography image reconstruction,” Semin. Nucl. Med. 43(1), 3044 (2013).
http://dx.doi.org/10.1053/j.semnuclmed.2012.08.006
21.
21. D. W. Townsend, “Dual-modality imaging: Combining anatomy and function,” J. Nucl. Med. 49(6), 938955 (2008).
http://dx.doi.org/10.2967/jnumed.108.051276
22.
22. O. Mawlawi and D. W. Townsend, “Multimodality imaging: An update on PET/CT technology,” Anglais 36, 1529 (2009).
http://dx.doi.org/10.1007/s00259-008-1016-6
23.
23. G. Delso, S. Furst, B. Jakoby, R. Ladebeck, C. Ganter, S. G. Nekolla, M. Schwaiger, and S. I. Ziegler, “Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner,” J. Nucl. Med. 52(12), 19141922 (2011).
http://dx.doi.org/10.2967/jnumed.111.092726
24.
24. M. D. Seemann, “Whole-body PET/MRI: The future in oncological imaging,” Technol. Cancer Res. Treat. 4(5), 577582 (2005).
25.
25. H. F. Wehrl, A. W. Sauter, M. S. Judenhofer, and B. J. Pichler, “Combined PET/MR imaging—Technology and applications,” Technol. Cancer Res. Treat. 9(1), 520 (2010).
26.
26. B. Lipinski, H. Herzog, E. Rota Kops, W. Oberschelp, and H. W. Muller-Gartner, “Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information,” IEEE Trans. Med. Imaging 16(2), 129136 (1997).
http://dx.doi.org/10.1109/42.563658
27.
27. C. Comtat, P. E. Kinahan, J. A. Fessler, T. Beyer, D. W. Townsend, M. Defrise, and C. Michel, “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Phys. Med. Biol. 47(1), 120 (2002).
http://dx.doi.org/10.1088/0031-9155/47/1/301
28.
28. J. Nuyts, K. Baete, D. Beque, and P. Dupont, “Comparison between MAP and postprocessed ML for image reconstruction in emission tomography when anatomical knowledge is available,” IEEE Trans. Med. Imaging 24(5), 667675 (2005).
http://dx.doi.org/10.1109/TMI.2005.846850
29.
29. J. E. Bowsher, V. E. Johnson, T. G. Turkington, R. J. Jaszczak, C. R. Floyd, and R. E. Coleman, “Bayesian reconstruction and use of anatomical a priori information for emission tomography,” IEEE Trans. Med. Imaging 15(5), 673686 (1996).
http://dx.doi.org/10.1109/42.538945
30.
30. A. Rangajaran, I.-T. Hsiao, and G. Gindi, “A Bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction,” J. Math Imaging Vis. 12, 199217 (2000).
http://dx.doi.org/10.1023/A:1008314015446
31.
31. J. Nuyts, “The use of mutual information and joint entropy for anatomical priors in emission tomography,” IEEE Nucl. Sci. Symp. Conf. Rec. 6, 41494154 (2007).
http://dx.doi.org/10.1109/NSSMIC.2007.4437034
32.
32. S. Somayajula, C. Panagiotou, A. Rangarajan, Q. Z. Li, S. R. Arridge, and R. M. Leahy, “PET image reconstruction using information theoretic anatomical priors,” IEEE Trans. Med. Imaging 30(3), 537549 (2011).
http://dx.doi.org/10.1109/TMI.2010.2076827
33.
33. J. Tang and A. Rahmim, “Bayesian PET image reconstruction incorporating anato-functional joint entropy,” Phys. Med. Biol. 54, 70637075 (2009).
http://dx.doi.org/10.1088/0031-9155/54/23/002
34.
34. J. Tang, H. Kuwabara, D. F. Wong, and A. Rahmim, “Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy,” Phys. Med. Biol. 55(15), 4261 (2010).
http://dx.doi.org/10.1088/0031-9155/55/15/005
35.
35. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113122 (1982).
http://dx.doi.org/10.1109/TMI.1982.4307558
36.
36. K. Lange and R. Carson, “EM reconstruction algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8(2), 306316 (1984).
37.
37. R. M. Leahy and J. Y. Qi, “Statistical approaches in quantitative positron emission tomography,” Stat. Comput. 10(2), 147165 (2000).
http://dx.doi.org/10.1023/A:1008946426658
38.
38. T. J. Hebert and R. Leahy, “Fast methods for including attenuation in the EM algorithm,” IEEE Trans. Nucl. Sci. 37(2), 754758 (1990).
http://dx.doi.org/10.1109/23.106710
39.
39. R. Manavaki, A. J. Reader, C. Keller, J. Missimer, and R. J. Walledge, “Scatter modeling for 3-d PET list-mode EM reconstruction,” in Nuclear Science Symposium Conference Record, 2002 (IEEE, 2002), Vol. 1863, pp. 18631868.
40.
40. M. Tamal, A. J. Reader, P. J. Markiewicz, P. J. Julyan, and D. L. Hastings, “Noise properties of four strategies for incorporation of scatter and attenuation information in PET reconstruction using the EM-ML algorithm,” IEEE Trans. Nucl. Sci. 53(5), 27782786 (2006).
http://dx.doi.org/10.1109/TNS.2006.880973
41.
41. J. Qi and R. H. Huesman, “List mode reconstruction for PET with motion compensation: A simulation study,” in Proceedings of IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, 7–10 July 2002 (2002), pp. 413416.
42.
42. R. E. Carson, W. C. Barker, J.-S. Liow, and C. A. Johnson, “Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT,” in IEEE Nuclear Science Symposium Conference Record, Portland, OR, USA, 19–25 October 2003 (2003), pp. 32813285.
43.
43. A. Rahmim, P. Bloomfield, S. Houle, M. Lenox, C. Michel, K. R. Buckley, T. J. Ruth, and V. Sossi, “Motion compensation in histogram-mode and list-mode EM reconstructions: Beyond the event-driven approach,” IEEE Trans. Nucl. Sci. 51, 25882596 (2004).
http://dx.doi.org/10.1109/TNS.2004.835763
44.
44. A. Rahmim, J. C. Cheng, K. Dinelle, M. Shilov, W. P. Segars, O. G. Rousset, B. M. Tsui, D. F. Wong, and V. Sossi, “System matrix modelling of externally tracked motion,” Nucl. Med. Commun. 29(6), 574581 (2008).
http://dx.doi.org/10.1097/MNM.0b013e3282f5d2de
45.
45. A. Rahmim, K. Dinelle, J. C. Cheng, M. A. Shilov, W. P. Segars, S. C. Lidstone, S. Blinder, O. G. Rousset, H. Vajihollahi, B. M. Tsui, D. F. Wong, and V. Sossi, “Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events,” IEEE Trans. Med. Imaging 27(8), 10181033 (2008).
http://dx.doi.org/10.1109/TMI.2008.917248
46.
46. J. Qi, “Calculation of the sensitivity image in list-mode reconstruction for PET,” IEEE Trans. Nucl. Sci. 53(5), 27462751 (2006).
http://dx.doi.org/10.1109/TNS.2006.882298
47.
47. J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar, “High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner,” Phys. Med. Biol. 43(4), 10011013 (1998).
http://dx.doi.org/10.1088/0031-9155/43/4/027
48.
48. J. Qi, R. M. Leahy, H. Chinghan, T. H. Farquhar, and S. R. Cherry, “Fully 3D Bayesian image reconstruction for the ECAT EXACT HR+,” IEEE Trans. Nucl. Sci. 45(3), 10961103 (1998).
http://dx.doi.org/10.1109/23.681985
49.
49. C. Cloquet, F. C. Sureau, M. Defrise, G. Van Simaeys, N. Trotta, and S. Goldman, “Non-Gaussian space-variant resolution modelling for list-mode reconstruction,” Phys. Med. Biol. 55(17), 50455066 (2010).
http://dx.doi.org/10.1088/0031-9155/55/17/011
50.
50. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University Press, Cambridge, UK, 2012).
51.
51. S. Cho, Q. Li, S. Ahn, B. Bai, and R. M. Leahy, “Iterative image reconstruction using inverse Fourier rebinning for fully 3-D PET,” IEEE Trans. Med. Imaging 26(5), 745756 (2007).
http://dx.doi.org/10.1109/TMI.2006.887378
52.
52. R. H. Huesman, E. M. Salmeron, and J. R. Baker, “Compensation for crystal penetration in high-resolution positron tomography,” IEEE Trans. Nucl. Sci. 36(1), 11001107 (1989).
http://dx.doi.org/10.1109/23.34612
53.
53. Z. G. Liang, “Detector response restoration in image-reconstruction of high-resolution positron emission tomography,” IEEE Trans. Med. Imaging 13(2), 314321 (1994).
http://dx.doi.org/10.1109/42.293924
54.
54. H. Barrett and K. Myers, Foundations of Image Science (Wiley Interscience, 2004).
55.
55. P. Antich, R. Parkey, S. Seliounine, N. Slavine, E. Tsyganov, and A. Zinchenko, “Application of expectation maximization algorithms for image resolution improvement in a small animal PET system,” IEEE Trans. Nucl. Sci. 52(3), 684690 (2005).
http://dx.doi.org/10.1109/TNS.2005.851479
56.
56. M. S. Tohme and J. Qi, “Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements,” Phys. Med. Biol. 54(12), 37093725 (2009).
http://dx.doi.org/10.1088/0031-9155/54/12/007
57.
57. K. Thielemans, E. Asma, S. Ahn, R. M. Manjeshwar, T. Deller, S. G. Ross, C. W. Stearns, and A. Ganin, “Impact of PSF modelling on the convergence rate and edge behaviour of EM images in PET,” in Nuclear Science Symposium Conference Record (NSS/MIC), 2010 (IEEE, 2010), pp. 32673272.
58.
58. G. Wang and J. Qi, “Acceleration of the direct reconstruction of linear parametric images using nested algorithms,” Phys. Med. Biol. 55(5), 15051517 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/016
59.
59. J. C. Matthews, G. I. Angelis, F. A. Kotasidis, P. J. Markiewicz, and A. J. Reader, “Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximisation,” in Nuclear Science Symposium Conference Record (NSS/MIC), 2010 (IEEE, 2010), pp. 24352441.
60.
60. F. C. Sureau, A. J. Reader, C. Comtat, C. Leroy, M.-J. Ribeiro, I. Buvat, and R. Trebossen, “Impact of image-space resolution modeling for studies with the high-resolution research tomograph,” J. Nucl. Med. 49(6), 10001008 (2008).
http://dx.doi.org/10.2967/jnumed.107.045351
61.
61. F. A. Kotasidis, J. C. Matthews, G. I. Angelis, P. J. Noonan, A. Jackson, P. Price, W. R. Lionheart, and A. J. Reader, “Single scan parameterization of space-variant point spread functions in image space via a printed array: The impact for two PET/CT scanners,” Phys. Med. Biol. 56(10), 29172942 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/003
62.
62. E. Rapisarda, V. Bettinardi, K. Thielemans, and M. C. Gilardi, “Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET,” Phys. Med. Biol. 55(14), 41314151 (2010).
http://dx.doi.org/10.1088/0031-9155/55/14/012
63.
63. A. M. Alessio, C. W. Stearns, T. Shan, S. G. Ross, S. Kohlmyer, A. Ganin, and P. E. Kinahan, “Application and evaluation of a measured spatially variant system model for PET image reconstruction,” IEEE Trans. Med. Imaging 29(3), 938949 (2010).
http://dx.doi.org/10.1109/TMI.2010.2040188
64.
64. A. Rahmim, J. Tang, M. R. Ay, and F. Bengel, “4D respiratory motion-corrected Rb-82 myocardial perfusion PET imaging,” IEEE Nucl. Sci. Symp. Conf. Rec. 33123316 (2010).
http://dx.doi.org/10.1109/NSSMIC.2010.5874417
65.
65. A. J. Reader, S. Ally, F. Bakatselos, R. Manavaki, R. J. Walledge, A. P. Jeavons, P. J. Julyan, S. Zhao, D. L. Hastings, and J. Zweit, “One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays,” IEEE Trans. Nucl. Sci. 49(3), 693699 (2002).
http://dx.doi.org/10.1109/TNS.2002.1039550
66.
66. A. J. Reader, P. J. Julyan, H. Williams, D. L. Hastings, and J. Zweit, “EM algorithm system modeling by image-space techniques for PET reconstruction,” IEEE Trans. Nucl. Sci. 50(5), 13921397 (2003).
http://dx.doi.org/10.1109/TNS.2003.817327
67.
67. A. Rahmim, M. Lenox, C. Michel, A. J. Reader, and V. Sossi, “Space-variant and anisotropic resolution modeling in list-mode EM reconstruction,” IEEE Nucl. Sci. Symp. Conf. Rec. 5, 30743077 (2003).
http://dx.doi.org/10.1109/NSSMIC.2003.1352547
68.
68. J. A. van Staden, H. du Raan, M. G. Loetter, A. van Aswegen, and C. P. Herbst, “Production of radioactive quality assurance phantoms using a standard inkjet printer,” Phys. Med. Biol. 52(15), N329N337 (2007).
http://dx.doi.org/10.1088/0031-9155/52/15/N02
69.
69. V. Sossi, M. L. Camborde, G. Tropini, D. Newport, A. Rahmim, D. J. Doudet, and T. J. Ruth, “The influence of measurement uncertainties on the evaluation of the distribution volume ratio and binding potential in rat studies on a microPET R4: A phantom study,” Phys. Med. Biol. 50(12), 28592869 (2005).
http://dx.doi.org/10.1088/0031-9155/50/12/009
70.
70. A. M. Alessio, P. E. Kinahan, and T. K. Lewellen, “Modeling and incorporation of system response functions in 3-D whole body PET,” IEEE Trans. Med. Imaging 25(7), 828837 (2006).
http://dx.doi.org/10.1109/TMI.2006.873222
71.
71. V. Y. Panin, F. Kehren, H. Rothfuss, D. Hu, C. Michel, and M. E. Casey, “PET reconstruction with system matrix derived from point source measurements,” IEEE Trans. Nucl. Sci. 53(1), 152159 (2006).
http://dx.doi.org/10.1109/TNS.2005.862979
72.
72. V. Y. Panin, F. Kehren, C. Michel, and M. Casey, “Fully 3-D PET reconstruction with system matrix derived from point source measurements,” IEEE Trans. Med. Imaging 25(7), 907921 (2006).
http://dx.doi.org/10.1109/TMI.2006.876171
73.
73. R. Lecomte, D. Schmitt, and G. Lamoureux, “Geometry study of a high resolution PET detection system using small detectors,” IEEE Trans. Nucl. Sci. 31(1), 556561 (1984).
http://dx.doi.org/10.1109/TNS.1984.4333318
74.
74. D. Schmitt, B. Karuta, C. Carrier, and R. Lecomte, “Fast point spread function computation from aperture functions in high-resolution positron emission tomography,” IEEE Trans. Med. Imaging 7(1), 212 (1988).
http://dx.doi.org/10.1109/42.3923
75.
75. B. Karuta and R. Lecomte, “Effect of detector weighting functions on the point spread function of high-resolution pet tomographs—A simulation study,” IEEE Trans. Med. Imaging 11(3), 379385 (1992).
http://dx.doi.org/10.1109/42.158942
76.
76. V. Selivanov, Y. Picard, J. Cadorette, S. Rodrigue, and R. Lecomte, “Detector response models for statistical iterative image reconstruction in high resolution PET,” IEEE Trans. Nucl. Sci. 47, 11681175 (2000).
http://dx.doi.org/10.1109/23.856565
77.
77. T. J. Holmes and D. C. Ficke, “Analysis of positron-emission tomography scintillation-detectors with wedge faces and inter-crystal septa,” IEEE Trans. Nucl. Sci. 32(1), 826830 (1985).
http://dx.doi.org/10.1109/TNS.1985.4336949
78.
78. D. Strul, R. B. Slates, M. Dahlbom, S. R. Cherry, and P. K. Marsden, “An improved analytical detector response function model for multilayer small-diameter PET scanners,” Phys. Med. Biol. 48(8), 979994 (2003).
http://dx.doi.org/10.1088/0031-9155/48/8/302
79.
79. A. Rahmim, J. Tang, M. A. Lodge, S. Lashkari, M. R. Ay, R. Lautamaki, B. M. Tsui, and F. M. Bengel, “Analytic system matrix resolution modeling in PET: An application to Rb-82 cardiac imaging,” Phys. Med. Biol. 53(21), 59475965 (2008).
http://dx.doi.org/10.1088/0031-9155/53/21/004
80.
80. R. H. Huesman, G. J. Klein, W. W. Moses, Q. Jinyi, B. W. Reutter, and P. R. G. Virador, “List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling,” IEEE Trans. Med. Imaging 19(5), 532537 (2000).
http://dx.doi.org/10.1109/42.870263
81.
81. S. Moehrs, M. Defrise, N. Belcari, A. Del Guerra, A. Bartoli, S. Fabbri, and G. Zanetti, “Multi-ray-based system matrix generation for 3D PET reconstruction,” Phys. Med. Biol. 53(23), 69256945 (2008).
http://dx.doi.org/10.1088/0031-9155/53/23/018
82.
82. E. U. Mumcuoglu, R. M. Leahy, S. R. Cherry, and E. Hoffman, “Accurate geometric and physical response modelling for statistical image reconstruction in high resolution PET,” in Conference Record IEEE Nuclear Science Symposium (1996), pp. 15691573.
83.
83. M. Defrise, P. E. Kinahan, D. W. Townsend, C. Michel, M. Sibomana, and D. F. Newport, “Exact and approximate rebinning algorithms for 3-D PET data,” IEEE Trans. Med. Imaging 16(2), 145158 (1997).
http://dx.doi.org/10.1109/42.563660
84.
84. L. Le Meunier, P. J. Slomka, D. Dey, A. Ramesh, L. E. J. Thomson, S. W. Hayes, J. D. Friedman, V. Cheng, G. Germano, and D. S. Berman, “Enhanced definition PET for cardiac imaging,” J. Nucl. Cardiol. 17(3), 414426 (2010).
http://dx.doi.org/10.1007/s12350-010-9193-7
85.
85. L. Le Meunier, P. J. Slomka, D. Dey, A. Ramesh, L. E. J. Thomson, S. W. Hayes, J. D. Friedman, V. Cheng, G. Germano, and D. S. Berman, “Motion frozen F-18-FDG cardiac PET,” J. Nucl. Cardiol. 18(2), 259266 (2011).
http://dx.doi.org/10.1007/s12350-010-9322-3
86.
86. T. Frese, N. C. Rouze, C. A. Bouman, K. Sauer, and G. D. Hutchins, “Quantitative comparison of FBP, EM, and Bayesian reconstruction algorithms for the IndyPET scanner,” IEEE Trans. Med. Imaging 22(2), 258276 (2003).
http://dx.doi.org/10.1109/TMI.2002.808353
87.
87. K. Lee, P. E. Kinahan, J. A. Fessler, R. S. Miyaoka, M. Janes, and T. K. Lewellen, “Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner,” Phys. Med. Biol. 49(19), 45634578 (2004).
http://dx.doi.org/10.1088/0031-9155/49/19/008
88.
88. J. Zhou and J. Qi, “Fast and efficient fully 3D PET image reconstruction using sparse system matrix factorization with GPU acceleration,” Phys. Med. Biol. 56(20), 67396757 (2011).
http://dx.doi.org/10.1088/0031-9155/56/20/015
89.
89. A. Ruangma, B. Bai, J. S. Lewis, X. Sun, M. J. Welch, R. Leahy, and R. Laforest, “Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides,” Nucl. Med. Biol. 33(2), 217226 (2006).
http://dx.doi.org/10.1016/j.nucmedbio.2005.11.001
90.
90. A. F. Bielajew and D. W. O. Rogers, “Presta—The parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods B 18(2), 165181 (1987).
http://dx.doi.org/10.1016/S0168-583X(86)80027-1
91.
91. M. R. Palmer and G. L. Brownell, “Annihilation density distribution calculations for medically important positron emitters,” IEEE Trans. Med. Imaging 11(3), 373378 (1992).
http://dx.doi.org/10.1109/42.158941
92.
92. S. E. Derenzo, “Mathematical Removal of Positron Range Blurring in High Resolution Tomography,” IEEE Trans. Nucl. Sci. 33(1), 565569 (1986).
http://dx.doi.org/10.1109/TNS.1986.4337166
93.
93. M. R. Palmer, Z. Xuping, and J. A. Parker, “Modeling and simulation of positron range effects for high resolution PET imaging,” IEEE Trans. Nucl. Sci. 52(5), 13911395 (2005).
http://dx.doi.org/10.1109/TNS.2005.858264
94.
94. R. L. Harrison, M. S. Kaplan, S. D. Vannoy, and T. K. Lewellen, “Positron range and coincidence non-collinearity in SimSET,” IEEE Nucl. Sci. Conf. Rec. 12651268 (1999).
http://dx.doi.org/10.1109/NSSMIC.1999.842787
95.
95. C. S. Levin and E. J. Hoffman, “Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution,” Phys. Med. Biol. 44(3), 781799 (1999).
http://dx.doi.org/10.1088/0031-9155/44/3/019
96.
96. B. Bai, A. Ruangma, R. Laforest, Y. C. Tai, and R. M. Leahy, “Positron range modeling for statistical PET image reconstruction,” in Nuclear Science Symposium Conference Record, 2003 (IEEE, 2003), Vol. 2504, pp. 25012505.
97.
97. A. Rahmim, J. Tang, M. A. Lodge, S. Lashkari, M. R. Ay, and F. M. Bengel, “Resolution modeled PET image reconstruction incorporating space-variance of positron range: Rubidium-82 cardiac PET imaging,” IEEE Nucl. Sci. Symp. Conf. Rec. 36433650 (2008).
http://dx.doi.org/10.1109/NSSMIC.2008.4774108
98.
98. A. Alessio and L. MacDonald, “Spatially variant positron range modeling derived from CT for PET image reconstruction,” in IEEE NSS/MIC Conference Proceedings, 2008.
99.
99. L. Katz and A. S. Penfold, “Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption,” Rev. Mod. Phys. 24(1), 2844 (1952).
http://dx.doi.org/10.1103/RevModPhys.24.28
100.
100. L. Fu and J. Qi, “A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range,” Med. Phys. 37(2), 704713 (2010).
http://dx.doi.org/10.1118/1.3284980
101.
101. B. Bai, R. Laforest, A. M. Smith, and R. M. Leahy, “Evaluation of MAP image reconstruction with positron range modeling for 3D PET,” in Nuclear Science Symposium Conference Record, 2005 (IEEE, 2005), pp. 26862689.
102.
102. A. Tahari, P. E. Bravo, A. Rahmim, F. M. Bengel, and Z. Szabo, “Initial human experience with Rubidium-82 Renal PET/CT Imaging,” Journal of Medical Imaging and Radiation Oncology (accepted for publication) (2013).
103.
103. A. Rahmim, J.-C. Cheng, and V. Sossi, “Improved noise propagation in statistical image reconstruction with resolution modeling,” in Nuclear Science Symposium Conference Record, 2005 (IEEE, 2005), pp. 25762578.
104.
104. J. Qi, “A unified noise analysis for iterative image estimation,” Phys. Med. Biol. 48, 35053519 (2003).
http://dx.doi.org/10.1088/0031-9155/48/21/004
105.
105. S. Tong, A. M. Alessio, and P. E. Kinahan, “Noise and signal properties in PSF-based fully 3D PET image reconstruction: An experimental evaluation,” Phys. Med. Biol. 55(5), 14531473 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/013
106.
106. S. A. Blinder, K. Dinelle, and V. Sossi, “Scanning rats on the high resolution research tomograph (HRRT): A comparison study with a dedicated micro-PET,” Med. Phys. 39(8), 50735083 (2012).
http://dx.doi.org/10.1118/1.4736802
107.
107. T.-S. Lee, R. Lautamaki, T. Higuchi, F. Bengel, and B. M. W. Tsui, “Task-based human observer study for evaluation and optimization of 3D & 4D image reconstruction methods for gated myocardial perfusion SPECT,” J. Nucl. Med. 50(Suppl. 2), 524 (2009).
108.
108. T.-S. Lee, F. Bengel, and B. M. W. Tsui, “Task-based human observer study for evaluation of 4D MAP-RBI-EM method for gated myocardial perfusion SPECT,” J. Nucl. Med. 49(Suppl. 1), 153P (2008).
109.
109. R. F. Wagner and D. G. Brown, “Unified SNR analysis of medical imaging-systems,” Phys. Med. Biol. 30(6), 489518 (1985).
http://dx.doi.org/10.1088/0031-9155/30/6/001
110.
110. D. W. Wilson, Ph.D. dissertation, University of North Carolina at Chapel Hill, 1994.
111.
111. E. C. Frey and B. M. W. Tsui, Collimator-Detector Response Compensation in SPECT (Springer Science + Business Media, Inc., New York, NY, 2006).
112.
112. D. J. Kadrmas, M. E. Casey, N. F. Black, J. J. Hamill, V. Y. Panin, and M. Conti, “Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes,” IEEE Trans. Med. Imaging 28(4), 523534 (2009).
http://dx.doi.org/10.1109/TMI.2008.2006520
113.
113. D. J. Kadrmas, M. E. Casey, M. Conti, B. W. Jakoby, C. Lois, and D. W. Townsend, “Impact of time-of-flight on PET tumor detection,” J. Nucl. Med. 50(8), 13151323 (2009).
http://dx.doi.org/10.2967/jnumed.109.063016
114.
114. H. C. Gifford, P. E. Kinahan, C. Lartizien, and M. A. King, “Evaluation of multiclass model observers in PET LROC studies,” IEEE Trans. Nucl. Sci. 54(1), 116123 (2007).
http://dx.doi.org/10.1109/TNS.2006.889163
115.
115. J. Schaefferkoetter, M. Casey, D. Townsend, and G. El Fakhri, “Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study,” Phys. Med. Biol. 58, 14651478 (2013).
http://dx.doi.org/10.1088/0031-9155/58/5/1465
116.
116. G. Akamatsu, K. Ishikawa, K. Mitsumoto, T. Taniguchi, N. Ohya, S. Baba, K. Abe, and M. Sasaki, “Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters,” J. Nucl. Med. 53(11), 17161722 (2012).
http://dx.doi.org/10.2967/jnumed.112.103861
117.
117. B. Bai and P. D. Esser, “The effect of edge artifacts on quantification of positron emission tomography,” in Nuclear Science Symposium Conference Record (NSS/MIC), 2010 (IEEE, 2010), pp. 22632266.
118.
118. D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228238 (1987).
http://dx.doi.org/10.1109/TMI.1987.4307831
119.
119. S. Tong, A. M. Alessio, K. Thielemans, C. Stearns, S. Ross, and P. E. Kinahan, “Properties and mitigation of edge artifacts in PSF-based PET reconstruction,” IEEE Trans. Nucl. Sci. 58(5), 22642275 (2011).
http://dx.doi.org/10.1109/TNS.2011.2164579
120.
120. D. G. Politte and D. L. Snyder, “The use of constraints to eliminate artifacts in maximum-likelihood image estimation for emission tomography,” IEEE Trans. Nucl. Sci. 35(1), 608610 (1988).
http://dx.doi.org/10.1109/23.12796
121.
121. D. L. Snyder and M. I. Miller, “The use of sieves to stabilize images produced with the EM algorithm for emission tomography,” IEEE Trans. Nucl. Sci. 32(5), 38643872 (1985).
http://dx.doi.org/10.1109/TNS.1985.4334521
122.
122. C. C. Watson, “Estimating effective model kernel widths for PSF reconstruction in PET,” in 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (Nss/Mic) (2011), pp. 23682374.
123.
123. R. B. Innis, V. J. Cunningham, J. Delforge, M. Fujita, A. Gjedde, R. N. Gunn, J. Holden, S. Houle, S. C. Huang, M. Ichise, H. Iida, H. Ito, Y. Kimura, R. A. Koeppe, G. M. Knudsen, J. Knuuti, A. A. Lammertsma, M. Laruelle, J. Logan, R. P. Maguire, M. A. Mintun, E. D. Morris, R. Parsey, J. C. Price, M. Slifstein, V. Sossi, T. Suhara, J. R. Votaw, D. F. Wong, and R. E. Carson, “Consensus nomenclature for in vivo imaging of reversibly binding radioligands,” J. Cereb. Blood Flow Metab. 27(9), 15331539 (2007).
http://dx.doi.org/10.1038/sj.jcbfm.9600493
124.
124. J. S. Kim, J. S. Lee, K. C. Im, S. J. Kim, S. Y. Kim, D. S. Lee, and D. H. Moon, “Performance measurement of the microPET focus 120 scanner,” J. Nucl. Med. 48(9), 15271535 (2007).
http://dx.doi.org/10.2967/jnumed.107.040550
125.
125. L. W. Locke, S. S. Berr, and B. K. Kundu, “Image-derived input function from cardiac gated maximum a posteriori reconstructed PET images in mice,” Mol. Imaging Biol. 13(2), 342347 (2011).
http://dx.doi.org/10.1007/s11307-010-0347-4
126.
126.A. Pecking, D. Bellet, and J. Alberini, “Immuno-SPET/CT and immuno-PET/CT: A step ahead to translational imaging,” Clin. Exp. Metastasis 29, 847852 (2012).
http://dx.doi.org/10.1007/s10585-012-9501-5
127.
127.A. Rahmim and J. Tang, “Impact of resolution modeling on detectability: analysis in terms of noise-equivalent quanta,” Proceedings of the Society of Nuclear Medicine & Molecular Imaging Annual Meeting, Vancouver, June 8–12, 2013.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/6/10.1118/1.4800806
Loading
/content/aapm/journal/medphys/40/6/10.1118/1.4800806
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/6/10.1118/1.4800806
2013-05-06
2014-08-27

Abstract

In this paper, the authors review the field of resolution modeling in positron emission tomography (PET) image reconstruction, also referred to as point-spread-function modeling. The review includes theoretical analysis of the resolution modeling framework as well as an overview of various approaches in the literature. It also discusses potential advantages gained via this approach, as discussed with reference to various metrics and tasks, including lesion detection observer studies. Furthermore, attention is paid to issues arising from this approach including the pervasive problem of edge artifacts, as well as explanation and potential remedies for this phenomenon. Furthermore, the authors emphasize limitations encountered in the context of quantitative PET imaging, wherein increased intervoxel correlations due to resolution modeling can lead to significant loss of precision (reproducibility) for small regions of interest, which can be a considerable pitfall depending on the task of interest.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/6/1.4800806.html;jsessionid=67030b7radru.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/6/10.1118/1.4800806&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/6/10.1118/1.4800806
10.1118/1.4800806
SEARCH_EXPAND_ITEM