1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/6/10.1118/1.4803461
1.
1. S. Tanimoto et al., “A novel approach for quantitative analysis of intracoronary optical coherence tomography: High inter-observer agreement with computer-assisted contour detection,” Cathet. Cardiovasc. Interv. 72, 228235 (2008).
http://dx.doi.org/10.1002/ccd.21482
2.
2. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A comprehensive review clinical and research applications,” JACC: Cardiovasc. Interv. 2, 10351046 (2009).
http://dx.doi.org/10.1016/j.jcin.2009.06.019
3.
3. D. Karnabatidis, K. Katsanos, I. Paraskevopoulos, A. Diamantopoulos, S. Spiliopoulos, and D. Siablis, “Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery,” Cardiovasc. Intervent. Radiol. 34, 11721181 (2011).
http://dx.doi.org/10.1007/s00270-010-0092-8
4.
4. I. Paraskevopoulos et al., “Evaluation of below-the-knee drug-eluting stents with frequency-domain optical coherence tomography: Neointimal hyperplasia and neoatherosclerosis,” J. Endovasc. Ther. 20, 8093 (2013).
http://dx.doi.org/10.1583/12-4091.1
5.
5. C. Setacci et al., “Safety and feasibility of intravascular optical coherence tomography using a nonocclusive technique to evaluate carotid plaques before and after stent deployment,” J. Endovasc. Ther. 19, 303311 (2012).
http://dx.doi.org/10.1583/12-3871R.1
6.
6. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327, 307310 (1986).
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
7.
7. K. Sihan et al., “A novel approach to quantitative analysis of intravascular optical coherence tomography imaging,” Comput. Cardiol. 10891092 (2008).
http://dx.doi.org/10.1109/CIC.2008.4749235
8.
8. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 679698 (1986).
http://dx.doi.org/10.1109/TPAMI.1986.4767851
9.
9. G. T. Bonnema, K. O. Cardinal, S. K. Williams, and J. K. Barton, “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets,” Phys. Med. Biol. 53, 30833098 (2008).
http://dx.doi.org/10.1088/0031-9155/53/12/001
10.
10. S. Gurmeric, G. Unal, S. Carlier, Y. Yang, and G. Slabaugh, “Automatic stent implant follow-up in intravascular optical coherence tomography images,” in Proceedings of the MICCAI-CVII: The International Workshop on Computer Vision for Intravascular Imaging (New York, NY, 2008).
11.
11. C. Kauffmann, P. Motreff, and L. Sarry, “In vivo supervised analysis of stent reendothelialization from optical coherence tomography,” IEEE Trans. Med. Imaging 29, 807818 (2010).
http://dx.doi.org/10.1109/TMI.2009.2037755
12.
12. G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26, 809816 (2010).
http://dx.doi.org/10.1007/s10554-009-9508-4
13.
13. N. Bruining, K. Sihan, J. Ligthart, S. de Winter, and E. Regar, “Automated three-dimensional detection of intracoronary stent struts in optical coherence tomography images,” in Proceedings of the International Conference in Computing in Cardiology, Hangzhou, China (IEEE, 2011), pp. 221224.
14.
14. S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39, 503513 (2012).
http://dx.doi.org/10.1118/1.3673067
15.
15. H. Lu et al., “Automatic stent detection in intravascular OCT images using bagged decision trees,” Biomed. Opt. Express 3, 28092824 (2012).
http://dx.doi.org/10.1364/BOE.3.002809
16.
16. L. Breiman, “Bagging predictors,” Mach. Learn. 24(2), 123140 (1996).
http://dx.doi.org/10.1023/A:1018054314350
17.
17. W. Gander, G. H. Golub, and R. Strebel, “Least squares fitting of circles and ellipses,” BIT 34, 558578 (1994).
http://dx.doi.org/10.1007/BF01934268
18.
18. M. A. Kupinski and M. L. Giger, “Automated seeded lesion segmentation on digital mammograms,” IEEE Trans. Med. Imaging 17, 510517 (1998).
http://dx.doi.org/10.1109/42.730396
19.
19. J. C. Bezdek, R. Ehrlich, and W. Full, “The fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191203 (1984).
http://dx.doi.org/10.1016/0098-3004(84)90020-7
20.
20. S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 710732 (1992).
http://dx.doi.org/10.1109/34.142909
21.
21. R. Brinks, “On the convergence of derivatives of B-splines to derivatives of the Gaussian function,” Comput. Appl. Math. 27, 7992 (2008).
22.
22. J. C. Bezdek, N. R. Pal, J. Keller, and R. Krisnapuram, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (Kluwer Academic, New York, NY, 1999).
23.
23. I. Ozkan and I. B. Turksen, “Upper and lower values for the level of fuzziness in FCM,” Inf. Sci. 177, 51435152 (2007).
http://dx.doi.org/10.1016/j.ins.2007.06.028
24.
24. P. K. Jena and S. Chattopaghyay, “Comparative study of fuzzy k-nearest neighbor and fuzzy C-means algorithms,” Int. J. Comput. Appl. Technol. 57, 2232 (2012).
25.
25. G. Taubin, “Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 11151138 (1991).
http://dx.doi.org/10.1109/34.103273
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/6/10.1118/1.4803461
Loading
/content/aapm/journal/medphys/40/6/10.1118/1.4803461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/6/10.1118/1.4803461
2013-05-06
2014-10-26

Abstract

A new segmentation technique is implemented for automatic lumen area extraction and stent strut detection in intravascular optical coherence tomography (OCT) images for the purpose of quantitative analysis of in-stent restenosis (ISR). In addition, a user-friendly graphical user interface (GUI) is developed based on the employed algorithm toward clinical use.

Four clinical datasets of frequency-domain OCT scans of the human femoral artery were analyzed. First, a segmentation method based on fuzzy C means (FCM) clustering and wavelet transform (WT) was applied toward inner luminal contour extraction. Subsequently, stent strut positions were detected by utilizing metrics derived from the local maxima of the wavelet transform into the FCM membership function.

The inner lumen contour and the position of stent strut were extracted with high precision. Compared to manual segmentation by an expert physician, the automatic lumen contour delineation had an average overlap value of 0.917 ± 0.065 for all OCT images included in the study. The strut detection procedure achieved an overall accuracy of 93.80% and successfully identified 9.57 ± 0.5 struts for every OCT image. Processing time was confined to approximately 2.5 s per OCT frame.

A new fast and robust automatic segmentation technique combining FCM and WT for lumen border extraction and strut detection in intravascular OCT images was designed and implemented. The proposed algorithm integrated in a GUI represents a step forward toward the employment of automated quantitative analysis of ISR in clinical practice.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/6/1.4803461.html;jsessionid=9qpur22eusq0b.x-aip-live-02?itemId=/content/aapm/journal/medphys/40/6/10.1118/1.4803461&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/6/10.1118/1.4803461
10.1118/1.4803461
SEARCH_EXPAND_ITEM