Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. E. Carson, “Tracer kinetic modeling in PET,” in Positron Emission Tomography, edited by D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey (Springer-Verlag, London, 2005).
2. S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine (Saunders, Philadelphia, 2003).
3. K. C. Schmidt and F. E. Turkheimer, “Kinetic modeling in positron emission tomography,” Q. J. Nucl. Med. 46, 7085 (2002).
4. H. Watabe, Y. Ikoma, Y. Kimura, M. Naganawa, and M. Shidahara, “PET kinetic analysis–Compartmental model,” Ann. Nucl. Med. 20, 583588 (2006).
5. S. Urien, “MicroPharm-K: A microcomputer interactive program for the analysis and simulation of pharmacokinetic processes,” Pharm. Res. 12, 12251230 (1995).
6. X. Zhang, J. N. Andrews, and S. E. Pedersen, “Kinetic modeling and fitting software for interconnected reaction schemes: VisKin,” Anal. Biochem. 361, 153161 (2007).
7. F. O’Sullivan and A. Saha, “Use of ridge regression for improved estimation of kinetic constants from PET data,” IEEE Trans. Med. Imaging 18, 115125 (1999).
8. Y. Zhou, H. Sung-Cheng, and M. Bergsneider, “Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies,” IEEE Trans. Nucl. Sci. 48, 125130 (2001).
9. Y. Zhou, C. J. Endres, J. R. Brasic, S. C. Huang, and D. F. Wong, “Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model,” Neuroimage 18, 975989 (2003).
10. M. Byrtek, F. O’Sullivan, M. Muzi, and A. M. Spence, “An adaptation of ridge regression for improved estimation of kinetic model parameters from PET studies,” IEEE Trans. Nucl. Sci. 52, 6368 (2005).
11. X. Dai, Z. Chen, and J. Tian, “Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies,” Nucl. Med. Commun. 32, 416 (2011).
12. A. Eftaxias, J. Font, A. Fortuny, A. Fabregat, and F. Stuber, “Nonlinear kinetic parameter estimation using simulated annealing,” Comput. Chem. Eng. 26, 17251733 (2002).
13. K. P. Wong, S. R. Meikle, D. Feng, and M. J. Fulham, “Estimation of input function and kinetic parameters using simulated annealing: Application in a flow model,” IEEE Trans. Nucl. Sci. 49, 707713 (2002).
14. M. Yaqub, R. Boellaard, M. A. Kropholler, and A. A. Lammertsma, “Optimization algorithms and weighting factors for analysis of dynamic PET studies,” Phys. Med. Biol. 51, 42174232 (2006).
15. R. E. Marsh, T. A. Riauka, and S. A. McQuarrie, “Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics,” J. Pharm. Pharm. Sci. 10, 168179 (2007).
16. W. H. Lawton and E. A. Sylvestre, “Elimination of linear parameters in nonlinear regression,” Technometrics 13, 461467 (1971).
17. L. Kaufman and V. Pereyra, “A method for separable nonlinear least squares problems with separable nonlinear equality,” SIAM J. Numer. Anal. 15, 1220 (1978).
18. G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413432 (1973).
19. G. Golub and V. Pereyra, “Separable nonlinear least squares: The variable projection method and its applications,” Inverse Probl. 19, R1R26 (2003).
20. R. A. Koeppe, J. E. Holden, and W. R. Ip, “Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography,” J. Cereb. Blood Flow Metab. 5, 224234 (1985).
21. R. H. Huesman, B. W. Reutter, G. L. Zeng, and G. T. Gullberg, “Kinetic parameter estimation from SPECT cone-beam projection measurements,” Phys. Med. Biol. 43, 973982 (1998).
22. B. W. Reutter, G. T. Gullberg, and R. H. Huesman, “Kinetic parameter estimation from attenuated SPECT projection measurements,” IEEE Trans. Nucl. Sci. 45, 30073013 (1998).
23. R. Boellaard, P. Knaapen, A. Rijbroek, G. J. Luurtsema, and A. A. Lammertsma, “Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography,” Mol. Imaging Biol. 7, 273285 (2005).
24. H. Watabe, H. Jino, N. Kawachi, N. Teramoto, T. Hayashi, Y. Ohta, and H. Iida, “Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method,” J. Nucl. Med. 46, 12191224 (2005).
25. R. N. Gunn, A. A. Lammertsma, S. P. Hume, and V. J. Cunningham, “Parametric imaging of ligand-receptor binding in PET using a simplified reference region model,” Neuroimage 6, 279287 (1997).
26. R. N. Gunn, S. R. Gunn, F. E. Turkheimer, J. A. Aston, and V. J. Cunningham, “Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling,” J. Cereb. Blood Flow Metab. 22, 14251439 (2002).
27. Y. T. Hong and T. D. Fryer, “Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: General principle and application to [18F]fluorodeoxyglucose positron emission tomography,” Neuroimage 51, 164172 (2010).
28. Y. T. Hong, J. S. Beech, R. Smith, J. C. Baron, and T. D. Fryer, “Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions,” J. Cereb. Blood Flow Metab. 31, 648657 (2011).
29. D. Feng, D. Ho, K. Chen, L. C. Wu, J. K. Wang, R. S. Liu, and S. H. Yeh, “An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data,” IEEE Trans. Med. Imaging 14, 697710 (1995).
30. M. E. Phelps, PET: Molecular Imaging and Its Biological Applications (Springer Science, New York, NY, 2004).
31. A. Bertoldo, P. Peltoniemi, V. Oikonen, J. Knuuti, P. Nuutila, and C. Cobelli, “Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: A four-compartment five-rate-constant model,” Am. J. Physiol. Endocrinol. Metab. 281, E524E536 (2001).
32. G. Tomasi, A. Bertoldo, S. Bishu, A. Unterman, C. B. Smith, and K. C. Schmidt, “Voxel-based estimation of kinetic model parameters of the L-[1-(11)C]leucine PET method for determination of regional rates of cerebral protein synthesis: Validation and comparison with region-of-interest-based methods,” J. Cereb. Blood Flow Metab. 29, 13171331 (2009).
33. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1988).

Data & Media loading...


Article metrics loading...



Kinetic modeling is widely used to analyze dynamic imaging data, estimating kinetic parameters that quantify functional or physiologic processes. Typical kinetic models give rise to nonlinear solution equations in multiple dimensions, presenting a complex fitting environment. This work generalizes previously described separable nonlinear least-squares techniques for fitting serial compartment models with up to three tissue compartments and five rate parameters.

The approach maximally separates the linear and nonlinear aspects of the modeling equations, using a formulation modified from previous basis function methods to avoid a potential mathematical degeneracy. A fast and robust algorithm for solving the linear subproblem with full user-defined constraints is also presented. The generalized separable parameter space technique effectively reduces the dimensionality of the nonlinear fitting problem to one dimension for 2K-3K compartment models, and to two dimensions for 4K-5K models.

Exhaustive search fits, which guarantee identification of the true global minimum fit, required approximately 10 ms for 2K-3K and 1.1 s for 4K-5K models, respectively. The technique is also amenable to fast gradient-descent iterative fitting algorithms, where the reduced dimensionality offers improved convergence properties. The objective function for the separable parameter space nonlinear subproblem was characterized and found to be generally well-behaved with a well-defined global minimum. Separable parameter space fits with the Levenberg-Marquardt algorithm required fewer iterations than comparable fits for conventional model formulations, averaging 1 and 7 ms for 2K-3K and 4K-5K models, respectively. Sensitivity to initial conditions was likewise reduced.

The separable parameter space techniques described herein generalize previously described techniques to encompass 1K-5K compartment models, enable robust solution of the linear subproblem with full user-defined constraints, and are amenable to rapid and robust fitting using iterative gradient-descent type algorithms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd