1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
In vivo dosimetry in brachytherapy
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/7/10.1118/1.4810943
1.
1. International Commission on Radiation Units and Measurements, “Dose and volume specification for reporting intracavitary therapy in gynecology,” ICRU Report No. 38 (ICRU, Bethesta, MD, 1985).
2.
2. R. Pötter et al., “Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology,” Radiother. Oncol. 78, 6777 (2006).
http://dx.doi.org/10.1016/j.radonc.2005.11.014
3.
3. T. Major, C. Polgar, K. Lovey, and G. Frohlich, “Dosimetric characteristics of accelerated partial breast irradiation with CT image-based multicatheter interstitial brachytherapy: A single institution's experience,” Brachytherapy 10, 421426 (2011).
http://dx.doi.org/10.1016/j.brachy.2010.12.006
4.
4. W. S. Bice Jr. et al., “Centralized multiinstitutional postimplant analysis for interstitial prostate brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 41, 921927 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)90123-7
5.
5. M. J. Rivard, J. L. Venselaar, and L. Beaulieu, “The evolution of brachytherapy treatment planning,” Med. Phys. 36, 21362153 (2009).
http://dx.doi.org/10.1118/1.3125136
6.
6. J. Van Dyk, R. B. Barnett, J. E. Cygler, and P. C. Shragge, “Commissioning and quality assurance of treatment planning computers,” Int. J. Radiat. Oncol., Biol., Phys. 26, 261273 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90206-B
7.
7. B. Mijnheer, “State of the art of in vivo dosimetry,” Radiat. Prot. Dosim. 131, 117122 (2008).
http://dx.doi.org/10.1093/rpd/ncn231
8.
8. AAPM, “Report of TG 62 of the Radiation Therapy Committee: Diode in vivo dosimetry for patients receiving external beam radiation therapy,” AAPM Report No. 87 (Medical Physics Publishing, Madison, WI, 2005).
9.
9. A. J. Vinall, A. J. Williams, V. E. Currie, E. A. Van, and D. Huyskens, “Practical guidelines for routine intensity-modulated radiotherapy verification: Pre-treatment verification with portal dosimetry and treatment verification with in vivo dosimetry,” Br. J. Radiol. 83, 949957 (2010).
http://dx.doi.org/10.1259/bjr/31573847
10.
10. A. Mans et al., “Catching errors with in vivo EPID dosimetry,” Med. Phys. 37, 26382644 (2010).
http://dx.doi.org/10.1118/1.3397807
11.
11. B. Mijnheer, A. S. Beddar, J. Izewska, and C. S. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (19pp.) (2013).
http://dx.doi.org/10.1118/1.4811216
12.
12. P. O. Lopez, P. Andreo, J.-M. Cosset, A. Dutreix, and T. Landberg, “Prevention of accidental exposures to patients undergoing radiation therapy,” ICRP Publication 86, Annals of the ICRP (Pergamon, New York, 2000).
13.
13. L. P. Ashton, J.-M. Cosset, V. Levin, A. Martinez, and S. Nag, “Prevention of high-dose-rate brachytherapy accidents,” ICRP Publication 97, Annals of the ICRP (Pergamon, New York, 2004).
14.
14. IAEA, “Lessons learned from accidental exposures in radiotherapy,” IAEA Safety Report Series 17 (IAEA, Vienna, 2000).
15.
15. K. Yoshida et al., “Needle applicator displacement during high-dose-rate interstitial brachytherapy for prostate cancer,” Brachytherapy 9, 3641 (2010).
http://dx.doi.org/10.1016/j.brachy.2009.04.006
16.
16. T. Simnor et al., “Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer,” Radiother. Oncol. 93, 253258 (2009).
http://dx.doi.org/10.1016/j.radonc.2009.09.015
17.
17. A. A. de Leeuw, M. A. Moerland, C. Nomden, R. H. Tersteeg, J. M. Roesink, and I. M. Jürgenliemk-Schulz, “Applicator reconstruction and applicator shifts in 3D MR-based PDR brachytherapy of cervical cancer,” Radiother. Oncol. 93, 341346 (2009).
http://dx.doi.org/10.1016/j.radonc.2009.05.003
18.
18. N. Milickovic et al., “4D analysis of influence of patient movement and anatomy alteration on the quality of 3D U/S-based prostate HDR brachytherapy treatment delivery,” Med. Phys. 38, 49824993 (2011).
http://dx.doi.org/10.1118/1.3618735
19.
19. K. Koedooder, W. N. van, H. N. van der Grient, Y. R. van Herten, B. R. Pieters, and L. E. Blank, “Safety aspects of pulsed dose rate brachytherapy: Analysis of errors in 1300 treatment sessions,” Int. J. Radiat. Oncol., Biol., Phys. 70, 953960 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.11.003
20.
20. L. Beaulieu et al., “Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation,” Med. Phys. 39, 62086236 (2012).
http://dx.doi.org/10.1118/1.4747264
21.
21. J. G. Sutherland, K. M. Furutani, Y. I. Garces, and R. M. Thomson, “Model-based dose calculations for 125I lung brachytherapy,” Med. Phys. 39, 43654377 (2012).
http://dx.doi.org/10.1118/1.4729737
22.
22. H. Afsharpour et al., “Consequences of dose heterogeneity on the biological efficiency of 103Pd permanent breast seed implants,” Phys. Med. Biol. 57, 809823 (2012).
http://dx.doi.org/10.1088/0031-9155/57/3/809
23.
23. S. A. White, G. Landry, G. F. van, F. Verhaegen, and B. Reniers, “Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry,” Phys. Med. Biol. 57, 35853596 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/3585
24.
24. ICRU, International Commission on Radiation Units and Measurements, “Dose and volume specification for reporting interstitial therapy,” ICRU Report No. 58 (ICRU, Bethesta, 1997).
25.
25. S. Nag et al., “The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix,” Int. J. Radiat. Oncol., Biol., Phys. 52, 3348 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)01755-2
26.
26. A. N. Viswanathan and B. Thomadsen, “American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: General principles,” Brachytherapy 11, 3346 (2012).
http://dx.doi.org/10.1016/j.brachy.2011.07.003
27.
27. B. J. Davis et al., “American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy,” Brachytherapy 11, 619 (2012).
http://dx.doi.org/10.1016/j.brachy.2011.07.005
28.
28. G. Kovacs et al., “GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer,” Radiother. Oncol. 74, 137148 (2005).
http://dx.doi.org/10.1016/j.radonc.2004.09.004
29.
29. C. Salembier et al., “Tumour and target volumes in permanent prostate brachytherapy: A supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy,” Radiother. Oncol. 83, 310 (2007).
http://dx.doi.org/10.1016/j.radonc.2007.01.014
30.
30. R. Alecu and M. Alecu, “In vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix,” Med. Phys. 26, 768770 (1999).
http://dx.doi.org/10.1118/1.598598
31.
31. K. Tanderup, J. J. Christensen, J. Granfeldt, and J. C. Lindegaard, “Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry,” Radiother. Oncol. 79, 8793 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.02.016
32.
32. I. A. Brezovich, J. Duan, P. N. Pareek, J. Fiveash, and M. Ezekiel, “In vivo urethral dose measurements: A method to verify high dose rate prostate treatments,” Med. Phys. 27, 22972301 (2000).
http://dx.doi.org/10.1118/1.1312811
33.
33. J. E. Cygler, A. Saoudi, G. Perry, C. Morash, and C. E., “Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants,” Radiother. Oncol. 80, 296301 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.07.008
34.
34. E. J. Bloemen-van Gurp et al., “In vivo dosimetry using a linear MOSFET-array dosimeter to determine the urethra dose in 125I permanent prostate implants,” Int. J. Radiat. Oncol., Biol., Phys. 73, 314321 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.08.040
35.
35. C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, and K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36, 50335043 (2009).
http://dx.doi.org/10.1118/1.3238102
36.
36. G. Kertzscher, C. E. Andersen, F. A. Siebert, S. K. Nielsen, J. C. Lindegaard, and K. Tanderup, “Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion,” Radiother. Oncol. 100, 456462 (2011).
http://dx.doi.org/10.1016/j.radonc.2011.09.009
37.
37. D. O’Connell, C. A. Joslin, N. Howard, N. W. Ramsey, and W. E. Liversage, “The treatment of uterine carcinoma using the Cathetron. Part I. Technique,” Br. J. Radiol. 40, 882887 (1967).
http://dx.doi.org/10.1259/0007-1285-40-480-882
38.
38. C. A. Joslin, C. W. Smith, and A. Mallik, “The treatment of cervix cancer using high activity 60Co sources,” Br. J. Radiol. 45, 257270 (1972).
http://dx.doi.org/10.1259/0007-1285-45-532-257
39.
39. K. Schultka, B. Ciesielski, K. Serkies, T. Sawicki, Z. Tarnawska, and J. Jassem, “EPR/alanine dosimetry in LDR brachytherapy: A feasibility study,” Radiat. Prot. Dosim. 120, 171175 (2006).
http://dx.doi.org/10.1093/rpd/nci528
40.
40. M. Allahverdi, M. Sarkhosh, M. Aghili, R. Jaberi, A. Adelnia, and G. Geraily, “Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered,” Radiat. Prot. Dosim. 150, 312315 (2012).
http://dx.doi.org/10.1093/rpd/ncr415
41.
41. N. Suchowerska, M. Jackson, J. Lambert, Y. B. Yin, G. Hruby, and D. R. McKenzie, “Clinical trials of a urethral dose measurement system in brachytherapy using scintillation detectors,” Int. J. Radiat. Oncol., Biol., Phys. 79, 609615 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.03.030
42.
42. J. A. Raffi et al., “Determination of exit skin dose for 192Ir intracavitary accelerated partial breast irradiation with thermoluminescent dosimeters,” Med. Phys. 37, 26932702 (2010).
http://dx.doi.org/10.1118/1.3429089
43.
43. R. A. Kinhikar et al., “Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast,” Phys. Med. Biol. 51, N263N268 (2006).
http://dx.doi.org/10.1088/0031-9155/51/14/N01
44.
44. C. A. Mangold, A. Rijnders, D. Georg, L. E. Van, R. Pötter, and D. Huyskens, “Quality control in interstitial brachytherapy of the breast using pulsed dose rate: Treatment planning and dose delivery with an Ir-192 afterloading system,” Radiother. Oncol. 58, 4351 (2001).
http://dx.doi.org/10.1016/S0167-8140(00)00270-X
45.
45. M. J. Rivard et al., “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
46.
46. R. Bachelot-Narquin, “Measures taken by the French Health Minister to ensure safety in radiotherapy treatments,” Safety in External Radiotherapy Treatments (ASN, Paris, 2009), Vol. 185, pp. 57 (available URL: http://www.conference-radiotherapy-asn.com).
47.
47. F. Guedea et al., “Overview of brachytherapy resources in Europe: A survey of patterns of care study for brachytherapy in Europe,” Radiother. Oncol. 82, 5054 (2007).
http://dx.doi.org/10.1016/j.radonc.2006.11.011
48.
48. F. Guedea et al., “Overview of brachytherapy resources in Latin America: A patterns-of-care survey,” Brachytherapy 10, 363368 (2011).
http://dx.doi.org/10.1016/j.brachy.2010.12.003
49.
49. R. Pötter, L. E. Van, N. Gerstner, and A. Wambersie, “Survey of the use of the ICRU 38 in recording and reporting cervical cancer brachytherapy,” Radiother. Oncol. 58, 1118 (2001).
http://dx.doi.org/10.1016/S0167-8140(00)00266-8
50.
50. T. Toita et al., “Patterns of radiotherapy practice for patients with cervical cancer (1999-2001): Patterns of care study in Japan,” Int. J. Radiat. Oncol., Biol., Phys. 70, 788794 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.10.045
51.
51. W. Small Jr., B. Erickson, and F. Kwakwa, “American Brachytherapy Society survey regarding practice patterns of postoperative irradiation for endometrial cancer: Current status of vaginal brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 63, 15021507 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.04.038
52.
52. K. S. Kapp, G. F. Stuecklschweiger, D. S. Kapp, and A. G. Hackl, “Dosimetry of intracavitary placements for uterine and cervical carcinoma: Results of orthogonal film, TLD, and CT-assisted techniques,” Radiother. Oncol. 24, 137146 (1992).
http://dx.doi.org/10.1016/0167-8140(92)90372-2
53.
53. D. W. O. Rogers, “General characteristics of radiation dosimeters and a terminology to describe them,” in Clinical Dosimetry Measurements in Radiotherapy, edited by D. W. O. Rogers and J. Cygler (Medical Physics Publishing, Madison, 2009), pp. 137146.
54.
54. J. F. Williamson and M. J. Rivard, “Quantitative dosimetry methods for brachytherapy,” in Brachytherapy Physics, edited by B. Thomadsen, M. J. Rivard, and W. Butler (Medical Physics Publishing, Madison, WI, 2005).
55.
55. T. Nose et al., “In vivo dosimetry of high-dose-rate brachytherapy: Study on 61 head-and-neck cancer patients using radiophotoluminescence glass dosimeter,” Int. J. Radiat. Oncol., Biol., Phys. 61, 945953 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.10.031
56.
56. T. Nose et al., “In vivo dosimetry of high-dose-rate interstitial brachytherapy in the pelvic region: Use of a radiophotoluminescence glass dosimeter for measurement of 1004 points in 66 patients with pelvic malignancy,” Int. J. Radiat. Oncol., Biol., Phys. 70, 626633 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.09.053
57.
57. E. L. Seymour, S. J. Downes, G. B. Fogarty, M. A. Izard, and P. Metcalfe, “In vivo real-time dosimetric verification in high dose rate prostate brachytherapy,” Med. Phys. 38, 47854794 (2011).
http://dx.doi.org/10.1118/1.3615161
58.
58. J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34, 17591765 (2007).
http://dx.doi.org/10.1118/1.2727248
59.
59. A. S. Kirov, J. F. Williamson, A. S. Meigooni, and Y. Zhu, “TLD, diode and Monte Carlo dosimetry of an 192Ir source for high dose-rate brachytherapy,” Phys. Med. Biol. 40, 20152036 (1995).
http://dx.doi.org/10.1088/0031-9155/40/12/002
60.
60. M. Westermark, J. Arndt, B. Nilsson, and A. Brahme, “Comparative dosimetry in narrow high-energy photon beams,” Phys. Med. Biol. 45, 685702 (2000).
http://dx.doi.org/10.1088/0031-9155/45/3/308
61.
61. G. Anagnostopoulos et al., “In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 57, 11831191 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00762-4
62.
62. R. Das, W. Toye, T. Kron, S. Williams, and G. Duchesne, “Thermoluminescence dosimetry for in vivo verification of high dose rate brachytherapy for prostate cancer,” Australas. Phys. Eng. Sci. Med. 30, 178184 (2007).
http://dx.doi.org/10.1007/BF03178424
63.
63. W. Toye, R. Das, T. Kron, R. Franich, P. Johnston, and G. Duchesne, “An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry,” Radiother. Oncol. 91, 243248 (2009).
http://dx.doi.org/10.1016/j.radonc.2008.08.016
64.
64. C. Waldhäusl, A. Wambersie, R. Potter, and D. Georg, “In-vivo dosimetry for gynaecological brachytherapy: Physical and clinical considerations,” Radiother. Oncol. 77, 310317 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.09.004
65.
65. J. M. Fagerstrom, J. A. Micka, and L. A. DeWerd, “Response of an implantable MOSFET dosimeter to 192Ir HDR radiation,” Med. Phys. 35, 57295737 (2008).
http://dx.doi.org/10.1118/1.3013574
66.
66. C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, and K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy, Med. Phys. 36, 708718 (2009).
http://dx.doi.org/10.1118/1.3063006
67.
67. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 18831900 (1992).
http://dx.doi.org/10.1088/0031-9155/37/10/006
68.
68. J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 55055516 (2006).
http://dx.doi.org/10.1088/0031-9155/51/21/008
69.
69. F. Therriault-Proulx, T. M. Briere, F. Mourtada, S. Aubin, S. Beddar, and L. Beaulieu, “A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy,” Med. Phys. 38, 25422551 (2011).
http://dx.doi.org/10.1118/1.3572229
70.
70. L. E. Cartwright, N. Suchowerska, Y. Yin, J. Lambert, M. Haque, and D. R. McKenzie, “Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters,” Med. Phys. 37, 22472255 (2010).
http://dx.doi.org/10.1118/1.3397446
71.
71. M. Anton et al., “In vivo dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer: A phantom study,” Phys. Med. Biol. 54, 29152931 (2009).
http://dx.doi.org/10.1088/0031-9155/54/9/022
72.
72. S. M. Hsu et al., “Clinical application of radiophotoluminescent glass dosimeter for dose verification of prostate HDR procedure,” Med. Phys. 35, 55585564 (2008).
http://dx.doi.org/10.1118/1.3005478
73.
73. A. Ismail et al., “Radiotherapy quality assurance by individualized in vivo dosimetry: State of the art,” Cancer Radiother. 13, 182189 (2009).
http://dx.doi.org/10.1016/j.canrad.2009.01.001
74.
74. J. E. Cygler, K. Tanderup, A. S. Beddar, and J. Perez-Calatayud, “In vivo dosimetry in brachytherapy,” in Comprehensive Brachytherapy: Physical and Clinical Aspects, edited by J. Venselaar, D. Baltas, A. S. Meigooni, and P. Hoskin (Taylor & Francis, London, 2012), pp. 379397.
75.
75. D. W. O. Rogers and J. Cygler, Clinical Dosimetry Measurements in Radiotherapy (Medical Physics Publishing, Madison, 2009).
76.
76. A. Piermattei, L. Azario, G. Monaco, A. Soriani, and G. Arcovito, “p-type silicon detector for brachytherapy dosimetry,” Med. Phys. 22, 835839 (1995).
http://dx.doi.org/10.1118/1.597486
77.
77. M. Soubra, J. Cygler, and G. Mackay, “Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter,” Med. Phys. 21, 567572 (1994).
http://dx.doi.org/10.1118/1.597314
78.
78. V. O. Zilio, O. P. Joneja, Y. Popowski, A. Rosenfeld, and R. Chawla, “Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors,” Med. Phys. 33, 15321529 (2006).
http://dx.doi.org/10.1118/1.2198168
79.
79. H. Niu, W. C. Hsi, J. C. Chu, M. C. Kirk, and E. Kouwenhoven, “Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy,” Med. Phys. 31, 33723377 (2004).
http://dx.doi.org/10.1118/1.1812609
80.
80. E. J. Bloemen-van Gurp et al., “In vivo dosimetry with a linear MOSFET array to evaluate the urethra dose during permanent implant brachytherapy using iodine-125,” Int. J. Radiat. Oncol., Biol., Phys. 75, 12661272 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2009.04.042
81.
81. A. Cherpak, J. Cygler, and G. Perry, “Real-time measurement of urethral dose and position using a RADPOS array during permanent seed implantation for prostate brachytherapy,” Med. Phys. 38, 3577 (2011).
http://dx.doi.org/10.1118/1.3612344
82.
82. A. Cherpak, W. Ding, A. Hallil, and J. E. Cygler, “Evaluation of a novel 4D in vivo dosimetry system,” Med. Phys. 36, 16721679 (2009).
http://dx.doi.org/10.1118/1.3100264
83.
83. B. Reniers, G. Landry, R. Eichner, A. Hallil, and F. Verhaegen, “In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: Feasibility study,” Med. Phys. 39, 19251935 (2012).
http://dx.doi.org/10.1118/1.3693049
84.
84. M. Farahani, F. C. Eichmiller, and W. L. McLaughlin, “New method for shielding electron beams used for head and neck cancer treatment,” Med. Phys. 20, 12371241 (1993).
http://dx.doi.org/10.1118/1.597152
85.
85. S. Olsson, E. S. Bergstrand, A. K. Carlsson, E. O. Hole, and E. Lund, “Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192Ir brachytherapy source, using ESR spectroscopy,” Phys. Med. Biol. 47, 13331356 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/308
86.
86. C. S. Calcina, A. A. de, J. R. Rocha, F. C. Abrego, and O. Baffa, “Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry,” Phys. Med. Biol. 50, 11091117 (2005).
http://dx.doi.org/10.1088/0031-9155/50/6/005
87.
87. A. C. De, S. Onori, E. Petetti, A. Piermattei, and L. Azario, “Alanine/EPR dosimetry in brachytherapy,” Phys. Med. Biol. 44, 11811191 (1999).
http://dx.doi.org/10.1088/0031-9155/44/5/007
88.
88. B. Ciesielski, K. Schultka, A. Kobierska, R. Nowak, and Z. Peimel-Stuglik, “In vivo alanine/EPR dosimetry in daily clinical practice: A feasibility study,” Int. J. Radiat. Oncol., Biol., Phys. 56, 899905 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00196-2
89.
89. S. W. McKeever et al., “Recent advances in dosimetry using the optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 109, 269276 (2004).
http://dx.doi.org/10.1093/rpd/nch302
90.
90. E. G. Yukihara and S. W. McKeever, “Optically stimulated luminescence (OSL) dosimetry in medicine,” Phys. Med. Biol. 53, R351R379 (2008).
http://dx.doi.org/10.1088/0031-9155/53/20/R01
91.
91. G. Kertzscher, C. E. Andersen, J. Edmund, and K. Tanderup, “Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy,” Radiat. Meas. 46, 20202024 (2011).
http://dx.doi.org/10.1016/j.radmeas.2011.05.079
92.
92. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 19011913 (1992).
http://dx.doi.org/10.1088/0031-9155/37/10/007
93.
93. A. S. Beddar, N. Suchowerska, and S. H. Law, “Plastic scintillation dosimetry for radiation therapy: Minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49, 783790 (2004).
http://dx.doi.org/10.1088/0031-9155/49/5/009
94.
94. L. Archambault, A. S. Beddar, L. Gingras, R. Roy, and L. Beaulieu, “Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry,” Med. Phys. 33, 128135 (2006).
http://dx.doi.org/10.1118/1.2138010
95.
95. A. R. Beierholm, R. O. Ottosson, L. R. Lindvold, C. F. Behrens, and C. E. Andersen, “Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators,” Phys. Med. Biol. 56, 30333045 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/009
96.
96. L. Archambault et al., “Toward a real-time in vivo dosimetry system using plastic scintillation detectors,” Int. J. Radiat. Oncol., Biol., Phys. 78, 280287 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.11.025
97.
97. S. Beddar, “On possible temperature dependence of plastic scintillator response,” Med. Phys. 39, 6522 (2012).
http://dx.doi.org/10.1118/1.4748508
98.
98. F. Therriault-Proulx, L. Archambault, L. Beaulieu, and S. Beddar, “Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement,” Phys. Med. Biol. 57, 71477159 (2012).
http://dx.doi.org/10.1088/0031-9155/57/21/7147
99.
99. A. Cherpak, M. Serban, J. Seuntjens, and J. E. Cygler, “4D dose-position verification in radiation therapy using the RADPOS system in a deformable lung phantom,” Med. Phys. 38, 179187 (2011).
http://dx.doi.org/10.1118/1.3515461
100.
100. A. J. Cherpak, J. E. Cygler, S. Andrusyk, J. Pantarotto, R. MacRae, and G. Perry, “Clinical use of a novel in vivo 4D monitoring system for simultaneous patient motion and dose measurements,” Radiother. Oncol. 102, 290296 (2012).
http://dx.doi.org/10.1016/j.radonc.2011.08.021
101.
101. L. N. McDermott et al., “3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT,” Radiother. Oncol. 86, 3542 (2008).
http://dx.doi.org/10.1016/j.radonc.2007.11.010
102.
102. J. Cunningham, M. Coffey, T. Knoos, and O. Holmberg, “Radiation oncology safety information system (ROSIS): Profiles of participants and the first 1074 incident reports,” Radiother. Oncol. 97, 601607 (2010).
http://dx.doi.org/10.1016/j.radonc.2010.10.023
103.
103. G. O. Sawakuchi, L. Archambault, A. Scullion, and J. E. Cygler, “Results of a survey to assess the current status of in-vivo dosimetry in Canada,” Interactions: the Canadian Medical Physics Newsletter 58(1), 1318, 2012.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4810943
Loading
/content/aapm/journal/medphys/40/7/10.1118/1.4810943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/7/10.1118/1.4810943
2013-06-25
2014-08-29

Abstract

dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/7/1.4810943.html;jsessionid=33orhmqi7p2si.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/7/10.1118/1.4810943&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: In vivo dosimetry in brachytherapy
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4810943
10.1118/1.4810943
SEARCH_EXPAND_ITEM