Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. P. M. Mayles, “The Glasgow incident – a physicist's reflections,” Clin. Oncol. 19, 47 (2007).
2. M. V. Williams, “Radiotherapy near misses, incidents and errors: Radiotherapy incident in Glasgow,” Clin. Oncol. 19, 13 (2007).
3. S. Derreumaux, C. Etard, C. Huet, F. Trompier, I. Clairand, J.-F. Bottollier-Depois, B. Aubert, and P. Gourmelon, “Lessons from recent accidents in radiation therapy in France,” Radiat. Prot. Dosim. 131, 130135 (2008).
4. International Commission on Radiological Protection, “ICRP Publication 112: Preventing accidental exposures from new external beam radiation therapy technologies,” Ann. ICRP 39(4), 186 (2009).
5. W. Bogdanich, “Radiation offers new cures, and ways to do harm,” New York Times, January 23, 2010.
6. W. Bogdanich, “A pinpoint beam strays invisibly, harming instead of healing,” New York Times, December 29, 2010.
7. W. Bogdanich, “As technology surges, radiation safeguards lag,” New York Times, January 26, 2010.
8. C. Marajh, “Anatomy of an error: Cancer treatment radiation overdose,” Trinidad Express Newspapers, July 20, 2011 (available URL:
9. O. Holmberg, M. Coffey, T. Knöös, and J. Cunningham, “Spotlight on in-vivo dosimetry,” ROSIS Newsletter, March 2, 2006 (available URL:
10. M. Essers and B. J. Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 43, 245259 (1999).
11. C. Fiorino, D. Corletto, P. Mangili, S. Broggi, A. Bonini, G. Cattaneo, R. Parisi, A. Rosso, P. Signorotto, E. Villa, and R. Calandrino, “Quality assurance by systematic in vivo dosimetry: Results on a large cohort of patients,” Radiother. Oncol. 56, 8595 (2000).
12. European Society of Radiation Oncology, “Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams (entrance dose),” ESTRO Booklet No. 5 (European Society of Radiation Oncology, ESTRO, Brussels, Belgium, 2001).
13. Report of TG 62 of the Radiation Therapy Committee, “Diode in vivo dosimetry for patients receiving external beam radiation therapy,” AAPM Report No. 87 (Medical Physics Publishing, Madison, WI, 2005).
14. WHO Report, Radiotherapy Risk Profile (World Health Organization, WHO, Geneva, 2008).
15. A. Mans, M. Wendling, L. N. McDermott, J.-J. Sonke, B. Mijnheer, M. van Herk, and J. C. Stroom, “Catching errors with in vivo EPID dosimetry,” Med. Phys. 37, 26382644 (2010).
16. International Atomic Energy Agency, “Development of procedures for in vivo dosimetry in radiotherapy,” IAEA Human Health Report No. 8. (International Atomic Energy Agency, IAEA, Vienna, Austria, 2013).
17.European Commission, 97/43 Council Directive EURATOM, 2007 (available URL:
18. International Atomic Energy Agency, “IAEA radiation protection and safety of radiation sources: International basic safety standards,” Interim ed. (International Atomic Energy Agency, IAEA, Vienna, Austria, 2011) (available URL:
19. The Swedish Radiation Protection Institute (SSI), “Regulations on radiation therapy,” Report SSI FS 2000:4 (The Swedish Radiation Protection Institute, Stockholm, Sweden, 2000).
20.The Royal College of Radiologists, Society and College of Radiographers, Institute of Physics and Engineering in Medicine, British Institute of Radiology, Implementing In Vivo Dosimetry (Royal College of Radiologists, London, 2008).
21. K. Tanderup, S. Beddar, C. Andersen, G. Kertzscher, and J. Cygler, “In vivo dosimetry in brachytherapy,” Med. Phys. (in press).
22. G. Marinello, “Chapter 16: Radiothermoluminescent dosimeters and diodes,” Handbook of Radiotherapy Physics: Theory and Practice, edited by P. Mayles, A. E. Nahum, and J.-C. Rosenwald (Taylor & Francis, London, 2007).
23. A. S. Saini and T. C. Zhu, “Dose rate and SDD dependence of commercially available diode detectors,” Med. Phys. 31, 914924 (2004).
24. A. S. Saini and T. C. Zhu, “Energy dependence of commercially available diode detectors for in-vivo dosimetry,” Med. Phys. 34, 17041711 (2007).
25. A. S. Saini and T. C. Zhu, “Temperature dependence of commercially available diode detectors,” Med. Phys. 29, 622630 (2002).
26. N. Jornet, P. Carrasco, D. Jurado, A. Ruiz, T. Eudaldo, and M. Ribas, “Comparison study of MOSFET detectors and diodes for entrance in vivo dosimetry in 18 MV x-ray beams,” Med. Phys. 31, 25342542 (2004).
27. R. Ramaseshan, K. S. Kohli, T. J. Zhang, T. Lam, B. Norlinger, A. Hallil, and M. Islam, “Performance characteristics of a microMOSFET as an in vivo dosimeter in radiation therapy,” Phys. Med. Biol. 49, 40314048 (2004).
28. E. J. Bloemen-van Gurp, W. du Bois, P. A. Visser, I. Bruinvis, D. Jalink, J. Hermans, and P. Lambin, “Clinical dosimetry with MOSFET dosimeters to determine the dose along the field junction in a split beam technique,” Radiother. Oncol. 67, 351357 (2003).
29. P. Scalchi, P. Francescon, and P. Rajaguru, “Characterization of a new MOSFET detector configuration for in vivo skin dosimetry,” Med. Phys. 32, 15711578 (2005).
30. E. J. Bloemen-van Gurp, A. W. H. Minken, B. J. Mijnheer, C. J. G. Dehing- Oberye, and P. Lambin, “Total body irradiation, towards optimal individual delivery: Dose evaluation with MOSFETs, TLDs and a treatment planning system,” Int. J. Radiat. Oncol., Biol., Phys. 69, 12971304 (2007).
31. T. M. Briere, R. Tailor, N. Tolani, K. Prado, R. Lane, S. Woo, C. Ha, M. T. Gillin, and A. S. Beddar, “Patient dosimetry for total body irradiation using single-use MOSFET detectors,” J. Appl. Clin. Med. Phys. 9, 200205 (2008).
32. C. F. Chuang, L. J. Verhey, and P. Xia, “Investigation of the use of MOSFET for clinical IMRT dosimetric verification,” Med. Phys. 29, 11091115 (2002).
33. Z.-Y. Qi, X-W. Deng, S.-M. Huang, A. Shiu, M. Lerch, P. Metcalfe, A. Rosenfeld, and T. Kron, “Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 80, 15811588 (2011).
34. A. J. Cherpak, J. E. Cygler, S. Andrusyk, J. Pantarotto, R. MacRae, and G. Perry, “Clinical use of a novel in vivo 4D monitoring system for simultaneous patient motion and dose measurements,” Radiother. Oncol. 102, 290296 (2012).
35. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 18831900 (1992).
36. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 19011913 (1992).
37. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Cerenkov light generated in optical fibers and other light-pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925935 (1992).
38. A. S. Beddar, N. Suchowerska, and S. H. Law, “Plastic scintillation dosimetry for radiation therapy: Minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49, 783790 (2004).
39. L. Archambault, A. S. Beddar, L. Gingras, R. Roy, and L. Beaulieu, “Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry,” Med. Phys. 33, 128135 (2006).
40. J. Lambert, Y. Yin, D. R. McKenzie, S. Law, and N. Suchowerska, “Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide,” Phys. Med. Biol. 53, 30713080 (2008).
41. A. R. Beierholm, R. O. Ottosson, L. R. Lindvold, C. F. Behrens, and C. E. Andersen, “Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators,” Phys. Med. Biol. 56, 30333045 (2011).
42. M. Guillot, L. Gingras, L. Archambault, S. Beddar, and L. Beaulieu, “Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations,” Med. Phys. 38, 21402150 (2011).
43. L. Archambault, T. M. Briere, F. Pönisch, L. Beaulieu, D. Kuban, A. Lee, and S. Beddar, “Toward a real-time in vivo dosimetry system using plastic scintillation detectors,” Int. J. Radiat. Oncol., Biol., Phys. 78, 280287 (2010).
44. W. van Elmpt, L. McDermott, S. Nijsten, M. Wendling, P. Lambin, and B. Mijnheer, “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol. 88, 289309 (2008).
45. S. M. J. J. G. Nijsten, W. J. C. van Elmpt, M. Jacobs, B. J. Mijnheer, A. L. A. J. Dekker, P. Lambin, and A. W. H. Minken, “A global calibration model for a-Si EPIDs used for transit dosimetry,” Med. Phys. 34, 38723884 (2007).
46. A. Piermattei, A. Fidanzio, G. Stimato, L. Azario, L. Grimaldi, G. D’Onofrio, S. Cilla, M. Balducci, M. A. Gambacorta, N. Di Napoli, and N. Cellini, “In vivo dosimetry by an aSi-based EPID,” Med. Phys. 33, 44144422 (2006).
47. A. Piermattei, A. Fidanzio, L. Azario, L. Grimaldi, G. D’Onofrio, S. Cilla, G. Stimato, D. Gaudino, S. Ramella, R. D’Angelillo, F. Cellini, L. Trodella, A. Russo, L. Iadanza, S. Zucca, V. Fusco, N. Di Napoli, M. A. Gambacorta, M. Balducci, N. Cellini, F. Deodato, G. Macchia, and A. G. Morganti, “Application of a practical method for the isocenter point in vivo dosimetry by a transit signal,” Phys. Med. Biol. 52, 51015117 (2007).
48. M. Wendling, L. N. McDermott, A. Mans, J.-J. Sonke, M. van Herk, and B. Mijnheer, “A simple back-projection algorithm for 3D EPID dosimetry of IMRT treatments,” Med. Phys. 36, 33103321 (2009).
49. A. Mans, P. Remeijer, I. Olaciregui-Ruiz, M. Wendling, J.-J. Sonke, B. Mijnheer, M. van Herk, and J. Stroom, “3D dosimetric verification of volumetric-modulated arc therapy by portal dosimetry,” Radiother. Oncol. 94, 181187 (2010).
50. J. F. Aguirre, R. Tailor, G. Ibbott, M. Stovall, W. Hanson, “Thermoluminescence dosimetry as a tool for the remote verification of output for radiotherapy beams: 25 years of experience,” in Proceedings of the International Symposium on Standards and Codes of Practice in Medical Radiation Dosimetry, IAEA-CN-96/82 (IAEA, Vienna, 2002), pp. 191199.
51. J. Izewska, and P. Andreo, “The IAEA/WHO TLD postal programme for radiotherapy hospitals,” Radiother. Oncol. 54, 6572 (2000).
52. J. Izewska, M. Hultqvist, and P. Bera, “Analysis of uncertainties in the IAEA/WHO TLD postal dose audit system,” Radiat. Meas. 43, 959963 (2008).
53. J. Van Dam and G. Marinello, Methods for in vivo Dosimetry in External Radiotherapy, ESTRO Booklet No.1, 2nd ed. (European Society for Radiation Oncology, ESTRO, Brussels, Belgium, 2006).
54. L. A. DeWerd, L. J. Bartol, and S. D. Davis, “Thermoluminescent dosimetry,” in Clinical Dosimetry Measurements in Radiotherapy, edited by D. Rogers and J. Cygler, Medical Physics Monograph No. 34 (Medical Physics, Madison, WI, 2009), Chap. 24, pp. 815840.
55. A. Roué, J. L. M. Venselaar, I. H. Ferreira, A. Bridier, and J. Van Dam, “Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources,” Radiother. Oncol. 83, 8693 (2007).
56. P. Mobit, A. Nahum, and P. Mayles, “A Monte Carlo study of the quality dependence factors of common TLD materials in photon and electron beams,” Phys. Med. Biol. 43, 20152032 (1998).
57. P. A. Jursinic, “Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements,” Med. Phys. 34, 45944604 (2007).
58. A. Viamonte, L. A. R. da Rosa, L. A. Buckley, A. Cherpak, and J. E. Cygler, “Radiotherapy dosimetry using a commercial OSL system,” Med. Phys. 35, 12611266 (2008).
59. E. G. Yukihara and S. W. S. McKeever, “Optically stimulated luminescence (OSL) dosimetry in medicine,” Phys. Med. Biol. 53, R351R379 (2008).
60. C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, and K. Tanderup, “Characterization of a fiber-coupled Al2O3: C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36, 708718 (2009).
61. C. Reft, “The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams,” Med. Phys. 36, 16901699 (2009).
62. R. Al-Senan and M. Hatab, “Characteristics of an OSLD in the diagnostic energy range,” Med. Phys. 38, 43964405 (2011).
63. I. Mrčela, T. Bokulić, J. Izewska, M. Budanec, A. Fröbe, and Z. Kusić, “Optically stimulated luminescence in-vivo dosimetry for radiotherapy: Physical characterization and clinical measurements in 60Co beams,” Phys. Med. Biol. 56, 60656082 (2011).
64. J. Kerns, S. Kry, N. Saho, and D. Followill, “Angular dependence of the nanodot OSL dosimeter,” Med. Phys. 38, 39553962 (2011).
65. P. A. Jursinic, “Changes in optical stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose,” Med. Phys. 37, 132140 (2010).
66. F. Araki, T. Ikegami, T. Ishidoya, and H. Kubo, “Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector,” Med. Phys. 30, 19761981 (2003).
67. F. Araki, N. Moribe, T. Shimonobou, and Y. Yamashita, “Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife,” Med. Phys. 31, 19801986 (2004).
68. H. Mizuno, T. Kanai, Y. Kusano, S. Ko, M. Ono, A. Fukumura, K. Abe, K. Nishizawa, M. Shimbo, S. Sakata, S. Ishikura, and H. Ikeda, “Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams,” Radiother. Oncol. 86, 258263 (2008).
69. J.-E. Rah, U.-J. Hwang, H. Jeong, S.-Y. Lee, D.-H. Lee, D. H. Shin, M. Yoon, S. B. Lee, R. Lee, and S. Y. Park, “Clinical application of glass dosimeter for in vivo dose measurements of total body irradiation treatment technique,” Radiat. Meas. 46, 4045 (2011).
70. A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
71. S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. LoSasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
72. S. Devic, J. Seuntjens, W. Abdel-Rahman, M. Olivares, and E. B. Podgorsak, “Accurate skin dose measurements using radiochromic film in clinical applications,” Med. Phys. 33, 11161123 (2006).
73. A. Bufacchi, A. Carosi, N. Adorante, S. Delle Canne, T. Malatesta, R. Capparella, R. Fragomeni, A. Bonanni, M. Leone, L. Marmiroli, and L. Begnozzi, “In vivo EBT radiochromic film dosimetry of electron beams for total skin electron therapy (TSET),” Phys. Med. Biol. 23, 6772 (2007).
74. P. Schiapparelli, D. Zefiro, F. Massone, and G. Taccini, “Total skin electron therapy (TSET): A reimplementation using radiochromic films and IAEA TRS-398 code of practice,” Med. Phys. 37, 35103517 (2010).
75. F. C. Su, C. Shi, and N. Papanikolaou, “Clinical application of GAFCHROMIC EBT film for in vivo dose measurements of total body irradiation radiotherapy,” Appl. Radiat. Isot. 66, 389394 (2008).
76. C. Scarantino, D. Suslander, C. Rini, G. Mann, and R. Black, “An implantable radiation dosimeter for use in external beam radiation therapy,” Med. Phys. 31, 26582671 (2004).
77. A. S. Beddar, M. Salehpour, T. M. Briere, H. Hamidian, and M. T. Gillin, “Preliminary evaluation of implantable MOSFET radiation dosimeters,” Phys. Med. Biol. 50, 141149 (2005).
78. R. D. Black, C. W. Scarantino, G. G. Mann, M. S. Anscher, R. D. Ornitz, and B. E. Nelms, “An analysis of an implantable dosimeter system for external beam therapy,” Int. J. Radiat. Oncol., Biol., Phys. 63, 290300 (2005).
79. T. M. Briere, M. T. Gillin, and A. S. Beddar, “Implantable MOSFET detectors: Evaluation of a new design,” Med. Phys. 34, 45854590 (2007).
80. R. Boellaard, M. Essers, M. van Herk, and B. J. Mijnheer, “A new method to obtain the midplane dose using portal in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 41, 465474 (1998).
81. A. Piermattei, F. Greco, L. Azario, A. Porcelli, S. Cilla, S. Zucca, A. Russo, E. Di Castro, M. Russo, R. Caivano, V. Fusco, A. Morganti, and A. Fidanzio, “A National project for in vivo dosimetry procedures in radiotherapy: First results,” Nucl. Instrum Methods Phys. Res. B 274, 4250 (2012).
82. L. G. Pacyna, M. Darby, and K. Prado, “Use of thermoluminescent dosimetry to verify dose compensation in total body irradiation,” Med. Dosim. 22, 319324 (1997).
83. M. A. Duch, M. Ginjaume, H. Chakkor, X. Ortega, N. Jornet, and M. Ribas, “Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques,” Radiother. Oncol. 47, 319324 (1998).
84. T. Kron, M. Butson, F. Hunt, and J. Denham, “TLD extrapolation for skin dose determination in vivo,” Radiother. Oncol. 41, 119123 (1996).
85. W. Parker and C. Freeman, “A simple technique for craniospinal radiotherapy in the supine position,” Radiother. Oncol. 78, 217222 (2006).
86. J. Jin, E. Klein, F. Kong, and Z. Li, “An improved internal mammary irradiation technique in radiation treatment of locally advanced breast cancer,” J. Appl. Clin. Med. Phys. 6, 110 (2005).
87. S. S. Tung, A. S. Shiu, G. Starkschall, W. H. Morrison, and K. R. Hogstrom, “Dosimetric evaluation of total scalp irradiation using a lateral electron-photon technique,” Int. J. Radiat. Oncol., Biol., Phys. 27, 153160 (1993).
88. C. Hurkmans, E. Scheepers, B. G. F. Springorum, and H. Uiterwaal, “Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators,” Int. J. Radiat. Oncol., Biol., Phys. 63, 282289 (2005).
89. S. Scarboro, D. Followill, R. Howell, and S. Kry, “Variations in photon energy spectra of a 6 MV beam and their impact on TLD response,” Med. Phys. 38, 26192628 (2011).
90. M. F. Chan, Y. Song, L. T. Dauer, J. Li, D. Huang, and C. Burman, “Estimating dose to implantable cardioverter-defibrillator outside the treatment field using a skin QED diode, optically stimulated luminescence dosimeters, and LiF thermoluminescent dosimeters,” Med. Dosim.. 37, 334338 (2012).
91. S. Kry, M. Price, D. Followill, F. Mourtada, and M. Slaehpour, “The use of LiF (TLD-100) as an out-of-field dosimeter,” J. Appl. Clin. Med. Phys. 8, 17 (2007).
92. S. Marcié, E. Charpiot, R.-J. Bensadoun, G. Ciais, J. Hérault, A. Costa, and J.-P. Gérard, “In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 16031606 (2005).
93. P. E. Engström, P. Haraldsson, T. Landberg, H. S. Hansen, S. A. Engelholm, and H. Nyström, “In vivo dose verification of IMRT treated head and neck cancer patients,” Acta Oncol. 44, 572578 (2005).
94. F. M. Gagliardi, K. J. Roxby, P. E. Engström, and J. C. Crosbie, “Intra-cavitary dosimetry for IMRT head and neck treatment using thermoluminescent dosimeters in a naso-oesophageal tube,” Phys. Med. Biol. 54, 36493657 (2009).
95. R. Varadhan, J. Miller, B. Garrity, and M. Weber, “In vivo prostate IMRT dosimetry with MOSFET detectors using brass buildup caps,” J. Appl. Clin. Med. Phys. 7, 2232 (2006).
96. A. J. Vinall, J. Williams, V. E. Currie, A. van Esch, and D. Huyskens, “Practical guidelines for routine intensity-modulated radiotherapy verification: Pre-treatment verification with portal dosimetry and treatment verification with in vivo dosimetry,” Br. J. Radiol. 83, 949957 (2010).
97. N. Kadesjö, T. Nyholm, and J. Olofsson, “A practical approach to diode based in vivo dosimetry for intensity modulated radiotherapy,” Radiother. Oncol. 98, 378381 (2011).
98. M. van Zijtveld, M. Dirkx, M. Breuers, J. C. J. de Boer, and B. J. M. Heijmen, “Portal dose image prediction for in vivo treatment verification completely based on EPID measurements,” Med. Phys. 36, 946952 (2009).
99. S. M. J. J. G. Nijsten, B. J. Mijnheer, A. L. A. J. Dekker, Ph. Lambin, and A. W. H. Minken, “Routine individualized patient dosimetry using electronic portal imaging devices,” Radiother. Oncol. 83, 6575 (2007).
100. W. van Elmpt, S. Nijsten, S. Petit, B. Mijnheer, P. Lambin, and A. Dekker, “3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 73, 15801587 (2009).
101. G. S. Ibbott, D. S. Followill, H. A. Molineu, J. R. Lowenstein, P. E. Alvarez, and J. E. Roll, “Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials,” Int. J. Radiat. Oncol., Biol., Phys. 71, S71S75 (2008).
102.IAEA Report, Investigation of an Accidental Exposure of Radiotherapy Patients in Panama/Report of a Team of Experts (International Atomic Energy Agency, IAEA, Vienna, Austria, 2001).
103. M. V. Williams, and A. McKenzie, “Can we afford not to implement in vivo dosimetry?,” Br. J. Radiol. 81, 681684 (2008).
104. A. J. Munro, “Hidden danger, obvious opportunity: Error and risk in the management of cancer,” Br. J. Radiol. 80, 955966 (2007).
105. R. Bachelot-Narquin, “Measures taken by the French Health Minister to ensure safety in radiotherapy treatments,” Safety in External Radiotherapy, Controle Review No. 185, Paris, France, November 5–7, 2009 (available URL:
106. J. Kruse, “On the insensitivity of single field planar dosimetry to IMRT inaccuracies,” Med. Phys. 37, 25162524 (2010).
107. B. Nelms, H. Zhen, and W. A. Tomé, “Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors,” Med. Phys. 38, 10371044 (2011).
108. P. Carrasco, N. Jornet, A. Lathorne, T. Eudaldo, A. Ruiz, and M. Ribas, “3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification,” Med. Phys. 39, 50405049 (2012).
109. H. Zhen, B. E. Nelms, and W. Tomé, “Moving from γ passing rates to patient DVH-based QA metrics in pretreatment dose QA,” Med. Phys. 38, 54775489 (2011).
110. C. Wu, K. E. Hosier, K. E. Beck, M. B. Radevic, J. Lehmann, H. A. Zhang, A. Kroner, S. C. Dutton, S. A. Rosenthal, J. K. Bareng, M. D. Logsdon, and D. R. Asche, “On using 3D γ-analysis for IMRT and VMAT pretreatment plan QA,” Med. Phys. 39, 30513059 (2012).
111. D. Verellen, M. De Ridder, N. Lindhout, K. Tournel, G. Soete, and G. Storme, “Innovations in image-guided radiotherapy,” Nat. Rev. Cancer 7, 949960 (2007).
112. AAPM, “The role of in-room kV X-ray imaging for patient setup and target localization,” AAPM Task Group 104 Report (American Association of Physicists in Medicine, College Park, MD, 2009).
113. W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi, J. Pawelke, and F. Pönisch, “Charged hadron tumour therapy monitoring by means of PET,” Nucl. Instrum. Methods A. 525, 284288 (2004).
114. K. Parodi, H. Paganetti, E. Cascio, J. B. Flanz, A. A. Bonab, N. M. Alpert, K. Lohmann, and T. Bortfeld, “PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants,” Med. Phys. 34, 419435 (2007).
115. S. Vynckier, S. Derreumaux, F. Richard, A. Bol, C. Michel, and A. Wambersie, “Is it possible to verify directly a proton-treatment plan using positron emission tomography?,” Radiother. Oncol. 26, 275277 (1993).
116. Y. Hishikawa, K. Kagawa, M. Murakami, H. Sakai, T. Akagi, and M. Abe, “Usefulness of positron-emission tomographic images after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 13881391 (2002).
117. K. Parodi, H. Paganetti, H. A. Shih, S. Michaud, J. S. Loeffler, T. F. DeLaney, N. J. Liebsch, J. E. Munzenrider, A. J. Fischman, A. Knopf, and T. Bortfeld, “Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 920934 (2007).
118. M. Moteabbed, S. Espana, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy,” Phys. Med. Biol. 56, 10631082 (2011).
119. J. C. Polf, S. Peterson, G. Ciangaru, M. Gillin, and S. Beddar, “Prompt gamma-ray emission from biological tissues during proton irradiation: A preliminary study,” Phys. Med. Biol. 54, 731743 (2009).
120. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, and L. Trache, “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
121. C. H. Min, C. H. Kim, M. Y. Youn, and J. W. Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett. 89, 183517 (2006).
122. V. Bom, L. Joulaeizadeh, and F. Beekman, “Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit,” Phys. Med. Biol. 57, 297308 (2012).
123. J. Smeets, F. Roellinghoff, D. Prieels, F. Stichelbaut, A. Benilov, C. Fiorini, R. Peloso, M. Basilavecchia, T. Frizzi, and J. Dehaes, “Prompt gamma imaging with a slit camera for real-time range control in proton therapy,” Phys. Med. Biol. 57, 33713405 (2012).
124. M. Frandes, A. Zoglauer, V. Maxim, and R. Prost, “A tracking Compton-scattering imaging system for hadron therapy monitoring,” IEEE Trans. Nucl. Sci. 57, 144150 (2010).
125. T. Kormoll, F. Fiedler, S. Schone, J. Wustemann, K. Zuber, and W. Enghardt, “A compton imager for in-vivo dosimetry of proton beams-a design study,” Nucl. Instrum. Methods Phys. Res. A 626–627, 114119 (2010).
126. D. Mackin, S. Peterson, S. Beddar, and J. Polf, “Evaluation of a stochastic reconstruction algorithm for use in compton camera imaging and beam range verification from secondary gamma emission during proton therapy,” Phys. Med. Biol. 57, 35373553 (2012).
127. J. C. Polf, S. Peterson, D. Robertson, and S. Beddar, “Measuring prompt gamma ray emission during proton radiotherapy for assessment of treatment delivery and patient response,” AIP Conf. Proc. 1336, 364368 (2011).
128. A. A. Swinnen, J. J. Verstraete, and D. P. Huyskens, “Feasibility study of entrance in vivo dose measurements with mailed thermoluminescence detectors,” Radiother. Oncol. 73, 8996 (2004).
129. International Commission on Radiation Units and Measurements, “Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT),” ICRU Report No. 83 (Oxford University Press, Oxford, UK, 2010).
130. W. van Elmpt, S. Petit, D. De Ruysscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188194 (2010).
131. C. Ling, P. Zhang, T. Etmektzoglou, J. Star-Lack, M. Sun, E. Shapiro, and M. Hunt, “Acquisition of MV-scatter-free kilovoltage CBCT images during RapidArc™ or VMAT,” Radiother. Oncol. 100, 145149 (2011).
132. M. van Herk, L. Ploeger, and J.-J. Sonke, “A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation,” Radiother. Oncol. 100, 365369 (2011).
133. S. Janek, R. Svensson, C. Jonsson, and A. Brahme, “Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy,” Phys. Med. Biol. 51, 57695783 (2006).
134. A. T. Hansen, S. B. Hansen, and J. B. Petersen, “The potential application of silver and positron emission tomography for in vivo dosimetry during radiotherapy,” Phys. Med. Biol. 53, 353360 (2008).
135. G. Busuoli, A. Cavallini, A. Fasso, and O. Rimondi, “Mixed radiation dosimetry with LiF (TLD-100),” Phys. Med. Biol. 15, 673681 (1970).
136. D. Youssian and Y. Horowitz, “Estimation of gamma dose in neutron dosimetry using peak 4 to peak 5 ratios in LiF:Mg,Ti (TLD-100/600),” Radiat. Prot. Dosim. 77, 151158 (1998).
137. B. Mukherjee, J. Lambert, R. Hentschel, and J. Farr, “Explicit estimation of out-of-field neutron and gamma dose equivalents during proton therapy using thermoluminescence-dosimeters,” Radiat. Meas. 46, 19521955 (2011).

Data & Media loading...


Article metrics loading...



dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors’ opinion that all treatments with curative intent should be verified through dose measurements in combination with pretreatment checks.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd