1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
In vivo dosimetry in external beam radiotherapy
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/7/10.1118/1.4811216
1.
1. W. P. M. Mayles, “The Glasgow incident – a physicist's reflections,” Clin. Oncol. 19, 47 (2007).
http://dx.doi.org/10.1016/j.clon.2006.12.003
2.
2. M. V. Williams, “Radiotherapy near misses, incidents and errors: Radiotherapy incident in Glasgow,” Clin. Oncol. 19, 13 (2007).
http://dx.doi.org/10.1016/j.clon.2006.12.004
3.
3. S. Derreumaux, C. Etard, C. Huet, F. Trompier, I. Clairand, J.-F. Bottollier-Depois, B. Aubert, and P. Gourmelon, “Lessons from recent accidents in radiation therapy in France,” Radiat. Prot. Dosim. 131, 130135 (2008).
http://dx.doi.org/10.1093/rpd/ncn235
4.
4. International Commission on Radiological Protection, “ICRP Publication 112: Preventing accidental exposures from new external beam radiation therapy technologies,” Ann. ICRP 39(4), 186 (2009).
5.
5. W. Bogdanich, “Radiation offers new cures, and ways to do harm,” New York Times, January 23, 2010.
6.
6. W. Bogdanich, “A pinpoint beam strays invisibly, harming instead of healing,” New York Times, December 29, 2010.
7.
7. W. Bogdanich, “As technology surges, radiation safeguards lag,” New York Times, January 26, 2010.
8.
8. C. Marajh, “Anatomy of an error: Cancer treatment radiation overdose,” Trinidad Express Newspapers, July 20, 2011 (available URL: http://www.trinidadexpress.com/news/Anatomy_of_an_error-125929808.html).
9.
9. O. Holmberg, M. Coffey, T. Knöös, and J. Cunningham, “Spotlight on in-vivo dosimetry,” ROSIS Newsletter, March 2, 2006 (available URL: http://www.rosis.info/docs/spotlight_case2.pdf).
10.
10. M. Essers and B. J. Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 43, 245259 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00341-1
11.
11. C. Fiorino, D. Corletto, P. Mangili, S. Broggi, A. Bonini, G. Cattaneo, R. Parisi, A. Rosso, P. Signorotto, E. Villa, and R. Calandrino, “Quality assurance by systematic in vivo dosimetry: Results on a large cohort of patients,” Radiother. Oncol. 56, 8595 (2000).
http://dx.doi.org/10.1016/S0167-8140(00)00195-X
12.
12. European Society of Radiation Oncology, “Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams (entrance dose),” ESTRO Booklet No. 5 (European Society of Radiation Oncology, ESTRO, Brussels, Belgium, 2001).
13.
13. Report of TG 62 of the Radiation Therapy Committee, “Diode in vivo dosimetry for patients receiving external beam radiation therapy,” AAPM Report No. 87 (Medical Physics Publishing, Madison, WI, 2005).
14.
14. WHO Report, Radiotherapy Risk Profile (World Health Organization, WHO, Geneva, 2008).
15.
15. A. Mans, M. Wendling, L. N. McDermott, J.-J. Sonke, B. Mijnheer, M. van Herk, and J. C. Stroom, “Catching errors with in vivo EPID dosimetry,” Med. Phys. 37, 26382644 (2010).
http://dx.doi.org/10.1118/1.3397807
16.
16. International Atomic Energy Agency, “Development of procedures for in vivo dosimetry in radiotherapy,” IAEA Human Health Report No. 8. (International Atomic Energy Agency, IAEA, Vienna, Austria, 2013).
17.
17.European Commission, 97/43 Council Directive EURATOM, 2007 (available URL: http://ec.europa.eu/energy/nuclear/radioprotection/doc/legislation/9743_en.pdf).
18.
18. International Atomic Energy Agency, “IAEA radiation protection and safety of radiation sources: International basic safety standards,” Interim ed. (International Atomic Energy Agency, IAEA, Vienna, Austria, 2011) (available URL: http://www.pub.iaea.org/MTCD/Publications/PDF/p1531interim_web.pdf).
19.
19. The Swedish Radiation Protection Institute (SSI), “Regulations on radiation therapy,” Report SSI FS 2000:4 (The Swedish Radiation Protection Institute, Stockholm, Sweden, 2000).
20.
20.The Royal College of Radiologists, Society and College of Radiographers, Institute of Physics and Engineering in Medicine, British Institute of Radiology, Implementing In Vivo Dosimetry (Royal College of Radiologists, London, 2008).
21.
21. K. Tanderup, S. Beddar, C. Andersen, G. Kertzscher, and J. Cygler, “In vivo dosimetry in brachytherapy,” Med. Phys. (in press).
22.
22. G. Marinello, “Chapter 16: Radiothermoluminescent dosimeters and diodes,” Handbook of Radiotherapy Physics: Theory and Practice, edited by P. Mayles, A. E. Nahum, and J.-C. Rosenwald (Taylor & Francis, London, 2007).
23.
23. A. S. Saini and T. C. Zhu, “Dose rate and SDD dependence of commercially available diode detectors,” Med. Phys. 31, 914924 (2004).
http://dx.doi.org/10.1118/1.1650563
24.
24. A. S. Saini and T. C. Zhu, “Energy dependence of commercially available diode detectors for in-vivo dosimetry,” Med. Phys. 34, 17041711 (2007).
http://dx.doi.org/10.1118/1.2719365
25.
25. A. S. Saini and T. C. Zhu, “Temperature dependence of commercially available diode detectors,” Med. Phys. 29, 622630 (2002).
http://dx.doi.org/10.1118/1.1461842
26.
26. N. Jornet, P. Carrasco, D. Jurado, A. Ruiz, T. Eudaldo, and M. Ribas, “Comparison study of MOSFET detectors and diodes for entrance in vivo dosimetry in 18 MV x-ray beams,” Med. Phys. 31, 25342542 (2004).
http://dx.doi.org/10.1118/1.1785452
27.
27. R. Ramaseshan, K. S. Kohli, T. J. Zhang, T. Lam, B. Norlinger, A. Hallil, and M. Islam, “Performance characteristics of a microMOSFET as an in vivo dosimeter in radiation therapy,” Phys. Med. Biol. 49, 40314048 (2004).
http://dx.doi.org/10.1088/0031-9155/49/17/014
28.
28. E. J. Bloemen-van Gurp, W. du Bois, P. A. Visser, I. Bruinvis, D. Jalink, J. Hermans, and P. Lambin, “Clinical dosimetry with MOSFET dosimeters to determine the dose along the field junction in a split beam technique,” Radiother. Oncol. 67, 351357 (2003).
http://dx.doi.org/10.1016/S0167-8140(03)00035-5
29.
29. P. Scalchi, P. Francescon, and P. Rajaguru, “Characterization of a new MOSFET detector configuration for in vivo skin dosimetry,” Med. Phys. 32, 15711578 (2005).
http://dx.doi.org/10.1118/1.1924328
30.
30. E. J. Bloemen-van Gurp, A. W. H. Minken, B. J. Mijnheer, C. J. G. Dehing- Oberye, and P. Lambin, “Total body irradiation, towards optimal individual delivery: Dose evaluation with MOSFETs, TLDs and a treatment planning system,” Int. J. Radiat. Oncol., Biol., Phys. 69, 12971304 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.07.2334
31.
31. T. M. Briere, R. Tailor, N. Tolani, K. Prado, R. Lane, S. Woo, C. Ha, M. T. Gillin, and A. S. Beddar, “Patient dosimetry for total body irradiation using single-use MOSFET detectors,” J. Appl. Clin. Med. Phys. 9, 200205 (2008).
32.
32. C. F. Chuang, L. J. Verhey, and P. Xia, “Investigation of the use of MOSFET for clinical IMRT dosimetric verification,” Med. Phys. 29, 11091115 (2002).
http://dx.doi.org/10.1118/1.1481520
33.
33. Z.-Y. Qi, X-W. Deng, S.-M. Huang, A. Shiu, M. Lerch, P. Metcalfe, A. Rosenfeld, and T. Kron, “Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 80, 15811588 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.10.063
34.
34. A. J. Cherpak, J. E. Cygler, S. Andrusyk, J. Pantarotto, R. MacRae, and G. Perry, “Clinical use of a novel in vivo 4D monitoring system for simultaneous patient motion and dose measurements,” Radiother. Oncol. 102, 290296 (2012).
http://dx.doi.org/10.1016/j.radonc.2011.08.021
35.
35. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 18831900 (1992).
http://dx.doi.org/10.1088/0031-9155/37/10/006
36.
36. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 19011913 (1992).
http://dx.doi.org/10.1088/0031-9155/37/10/007
37.
37. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Cerenkov light generated in optical fibers and other light-pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925935 (1992).
http://dx.doi.org/10.1088/0031-9155/37/4/007
38.
38. A. S. Beddar, N. Suchowerska, and S. H. Law, “Plastic scintillation dosimetry for radiation therapy: Minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49, 783790 (2004).
http://dx.doi.org/10.1088/0031-9155/49/5/009
39.
39. L. Archambault, A. S. Beddar, L. Gingras, R. Roy, and L. Beaulieu, “Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry,” Med. Phys. 33, 128135 (2006).
http://dx.doi.org/10.1118/1.2138010
40.
40. J. Lambert, Y. Yin, D. R. McKenzie, S. Law, and N. Suchowerska, “Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide,” Phys. Med. Biol. 53, 30713080 (2008).
http://dx.doi.org/10.1088/0031-9155/53/11/021
41.
41. A. R. Beierholm, R. O. Ottosson, L. R. Lindvold, C. F. Behrens, and C. E. Andersen, “Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators,” Phys. Med. Biol. 56, 30333045 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/009
42.
42. M. Guillot, L. Gingras, L. Archambault, S. Beddar, and L. Beaulieu, “Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations,” Med. Phys. 38, 21402150 (2011).
http://dx.doi.org/10.1118/1.3562896
43.
43. L. Archambault, T. M. Briere, F. Pönisch, L. Beaulieu, D. Kuban, A. Lee, and S. Beddar, “Toward a real-time in vivo dosimetry system using plastic scintillation detectors,” Int. J. Radiat. Oncol., Biol., Phys. 78, 280287 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.11.025
44.
44. W. van Elmpt, L. McDermott, S. Nijsten, M. Wendling, P. Lambin, and B. Mijnheer, “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol. 88, 289309 (2008).
http://dx.doi.org/10.1016/j.radonc.2008.07.008
45.
45. S. M. J. J. G. Nijsten, W. J. C. van Elmpt, M. Jacobs, B. J. Mijnheer, A. L. A. J. Dekker, P. Lambin, and A. W. H. Minken, “A global calibration model for a-Si EPIDs used for transit dosimetry,” Med. Phys. 34, 38723884 (2007).
http://dx.doi.org/10.1118/1.2776244
46.
46. A. Piermattei, A. Fidanzio, G. Stimato, L. Azario, L. Grimaldi, G. D’Onofrio, S. Cilla, M. Balducci, M. A. Gambacorta, N. Di Napoli, and N. Cellini, “In vivo dosimetry by an aSi-based EPID,” Med. Phys. 33, 44144422 (2006).
http://dx.doi.org/10.1118/1.2360014
47.
47. A. Piermattei, A. Fidanzio, L. Azario, L. Grimaldi, G. D’Onofrio, S. Cilla, G. Stimato, D. Gaudino, S. Ramella, R. D’Angelillo, F. Cellini, L. Trodella, A. Russo, L. Iadanza, S. Zucca, V. Fusco, N. Di Napoli, M. A. Gambacorta, M. Balducci, N. Cellini, F. Deodato, G. Macchia, and A. G. Morganti, “Application of a practical method for the isocenter point in vivo dosimetry by a transit signal,” Phys. Med. Biol. 52, 51015117 (2007).
http://dx.doi.org/10.1088/0031-9155/52/16/026
48.
48. M. Wendling, L. N. McDermott, A. Mans, J.-J. Sonke, M. van Herk, and B. Mijnheer, “A simple back-projection algorithm for 3D EPID dosimetry of IMRT treatments,” Med. Phys. 36, 33103321 (2009).
http://dx.doi.org/10.1118/1.3148482
49.
49. A. Mans, P. Remeijer, I. Olaciregui-Ruiz, M. Wendling, J.-J. Sonke, B. Mijnheer, M. van Herk, and J. Stroom, “3D dosimetric verification of volumetric-modulated arc therapy by portal dosimetry,” Radiother. Oncol. 94, 181187 (2010).
http://dx.doi.org/10.1016/j.radonc.2009.12.020
50.
50. J. F. Aguirre, R. Tailor, G. Ibbott, M. Stovall, W. Hanson, “Thermoluminescence dosimetry as a tool for the remote verification of output for radiotherapy beams: 25 years of experience,” in Proceedings of the International Symposium on Standards and Codes of Practice in Medical Radiation Dosimetry, IAEA-CN-96/82 (IAEA, Vienna, 2002), pp. 191199.
51.
51. J. Izewska, and P. Andreo, “The IAEA/WHO TLD postal programme for radiotherapy hospitals,” Radiother. Oncol. 54, 6572 (2000).
http://dx.doi.org/10.1016/S0167-8140(99)00164-4
52.
52. J. Izewska, M. Hultqvist, and P. Bera, “Analysis of uncertainties in the IAEA/WHO TLD postal dose audit system,” Radiat. Meas. 43, 959963 (2008).
http://dx.doi.org/10.1016/j.radmeas.2008.01.011
53.
53. J. Van Dam and G. Marinello, Methods for in vivo Dosimetry in External Radiotherapy, ESTRO Booklet No.1, 2nd ed. (European Society for Radiation Oncology, ESTRO, Brussels, Belgium, 2006).
54.
54. L. A. DeWerd, L. J. Bartol, and S. D. Davis, “Thermoluminescent dosimetry,” in Clinical Dosimetry Measurements in Radiotherapy, edited by D. Rogers and J. Cygler, Medical Physics Monograph No. 34 (Medical Physics, Madison, WI, 2009), Chap. 24, pp. 815840.
55.
55. A. Roué, J. L. M. Venselaar, I. H. Ferreira, A. Bridier, and J. Van Dam, “Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources,” Radiother. Oncol. 83, 8693 (2007).
http://dx.doi.org/10.1016/j.radonc.2007.02.011
56.
56. P. Mobit, A. Nahum, and P. Mayles, “A Monte Carlo study of the quality dependence factors of common TLD materials in photon and electron beams,” Phys. Med. Biol. 43, 20152032 (1998).
http://dx.doi.org/10.1088/0031-9155/43/8/002
57.
57. P. A. Jursinic, “Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements,” Med. Phys. 34, 45944604 (2007).
http://dx.doi.org/10.1118/1.2804555
58.
58. A. Viamonte, L. A. R. da Rosa, L. A. Buckley, A. Cherpak, and J. E. Cygler, “Radiotherapy dosimetry using a commercial OSL system,” Med. Phys. 35, 12611266 (2008).
http://dx.doi.org/10.1118/1.2841940
59.
59. E. G. Yukihara and S. W. S. McKeever, “Optically stimulated luminescence (OSL) dosimetry in medicine,” Phys. Med. Biol. 53, R351R379 (2008).
http://dx.doi.org/10.1088/0031-9155/53/20/R01
60.
60. C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, and K. Tanderup, “Characterization of a fiber-coupled Al2O3: C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36, 708718 (2009).
http://dx.doi.org/10.1118/1.3063006
61.
61. C. Reft, “The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams,” Med. Phys. 36, 16901699 (2009).
http://dx.doi.org/10.1118/1.3097283
62.
62. R. Al-Senan and M. Hatab, “Characteristics of an OSLD in the diagnostic energy range,” Med. Phys. 38, 43964405 (2011).
http://dx.doi.org/10.1118/1.3602456
63.
63. I. Mrčela, T. Bokulić, J. Izewska, M. Budanec, A. Fröbe, and Z. Kusić, “Optically stimulated luminescence in-vivo dosimetry for radiotherapy: Physical characterization and clinical measurements in 60Co beams,” Phys. Med. Biol. 56, 60656082 (2011).
http://dx.doi.org/10.1088/0031-9155/56/18/018
64.
64. J. Kerns, S. Kry, N. Saho, and D. Followill, “Angular dependence of the nanodot OSL dosimeter,” Med. Phys. 38, 39553962 (2011).
http://dx.doi.org/10.1118/1.3596533
65.
65. P. A. Jursinic, “Changes in optical stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose,” Med. Phys. 37, 132140 (2010).
http://dx.doi.org/10.1118/1.3267489
66.
66. F. Araki, T. Ikegami, T. Ishidoya, and H. Kubo, “Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector,” Med. Phys. 30, 19761981 (2003).
http://dx.doi.org/10.1118/1.1587451
67.
67. F. Araki, N. Moribe, T. Shimonobou, and Y. Yamashita, “Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife,” Med. Phys. 31, 19801986 (2004).
http://dx.doi.org/10.1118/1.1758351
68.
68. H. Mizuno, T. Kanai, Y. Kusano, S. Ko, M. Ono, A. Fukumura, K. Abe, K. Nishizawa, M. Shimbo, S. Sakata, S. Ishikura, and H. Ikeda, “Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams,” Radiother. Oncol. 86, 258263 (2008).
http://dx.doi.org/10.1016/j.radonc.2007.10.024
69.
69. J.-E. Rah, U.-J. Hwang, H. Jeong, S.-Y. Lee, D.-H. Lee, D. H. Shin, M. Yoon, S. B. Lee, R. Lee, and S. Y. Park, “Clinical application of glass dosimeter for in vivo dose measurements of total body irradiation treatment technique,” Radiat. Meas. 46, 4045 (2011).
http://dx.doi.org/10.1016/j.radmeas.2010.08.013
70.
70. A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
http://dx.doi.org/10.1118/1.598407
71.
71. S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. LoSasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
http://dx.doi.org/10.1118/1.2736779
72.
72. S. Devic, J. Seuntjens, W. Abdel-Rahman, M. Olivares, and E. B. Podgorsak, “Accurate skin dose measurements using radiochromic film in clinical applications,” Med. Phys. 33, 11161123 (2006).
http://dx.doi.org/10.1118/1.2179169
73.
73. A. Bufacchi, A. Carosi, N. Adorante, S. Delle Canne, T. Malatesta, R. Capparella, R. Fragomeni, A. Bonanni, M. Leone, L. Marmiroli, and L. Begnozzi, “In vivo EBT radiochromic film dosimetry of electron beams for total skin electron therapy (TSET),” Phys. Med. Biol. 23, 6772 (2007).
http://dx.doi.org/10.1016/j.ejmp.2007.03.003
74.
74. P. Schiapparelli, D. Zefiro, F. Massone, and G. Taccini, “Total skin electron therapy (TSET): A reimplementation using radiochromic films and IAEA TRS-398 code of practice,” Med. Phys. 37, 35103517 (2010).
http://dx.doi.org/10.1118/1.3442301
75.
75. F. C. Su, C. Shi, and N. Papanikolaou, “Clinical application of GAFCHROMIC EBT film for in vivo dose measurements of total body irradiation radiotherapy,” Appl. Radiat. Isot. 66, 389394 (2008).
http://dx.doi.org/10.1016/j.apradiso.2007.09.015
76.
76. C. Scarantino, D. Suslander, C. Rini, G. Mann, and R. Black, “An implantable radiation dosimeter for use in external beam radiation therapy,” Med. Phys. 31, 26582671 (2004).
http://dx.doi.org/10.1118/1.1778809
77.
77. A. S. Beddar, M. Salehpour, T. M. Briere, H. Hamidian, and M. T. Gillin, “Preliminary evaluation of implantable MOSFET radiation dosimeters,” Phys. Med. Biol. 50, 141149 (2005).
http://dx.doi.org/10.1088/0031-9155/50/1/011
78.
78. R. D. Black, C. W. Scarantino, G. G. Mann, M. S. Anscher, R. D. Ornitz, and B. E. Nelms, “An analysis of an implantable dosimeter system for external beam therapy,” Int. J. Radiat. Oncol., Biol., Phys. 63, 290300 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.05.025
79.
79. T. M. Briere, M. T. Gillin, and A. S. Beddar, “Implantable MOSFET detectors: Evaluation of a new design,” Med. Phys. 34, 45854590 (2007).
http://dx.doi.org/10.1118/1.2799578
80.
80. R. Boellaard, M. Essers, M. van Herk, and B. J. Mijnheer, “A new method to obtain the midplane dose using portal in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 41, 465474 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00048-0
81.
81. A. Piermattei, F. Greco, L. Azario, A. Porcelli, S. Cilla, S. Zucca, A. Russo, E. Di Castro, M. Russo, R. Caivano, V. Fusco, A. Morganti, and A. Fidanzio, “A National project for in vivo dosimetry procedures in radiotherapy: First results,” Nucl. Instrum Methods Phys. Res. B 274, 4250 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.12.004
82.
82. L. G. Pacyna, M. Darby, and K. Prado, “Use of thermoluminescent dosimetry to verify dose compensation in total body irradiation,” Med. Dosim. 22, 319324 (1997).
http://dx.doi.org/10.1016/S0958-3947(97)00107-6
83.
83. M. A. Duch, M. Ginjaume, H. Chakkor, X. Ortega, N. Jornet, and M. Ribas, “Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques,” Radiother. Oncol. 47, 319324 (1998).
http://dx.doi.org/10.1016/S0167-8140(98)00013-9
84.
84. T. Kron, M. Butson, F. Hunt, and J. Denham, “TLD extrapolation for skin dose determination in vivo,” Radiother. Oncol. 41, 119123 (1996).
http://dx.doi.org/10.1016/S0167-8140(96)01795-1
85.
85. W. Parker and C. Freeman, “A simple technique for craniospinal radiotherapy in the supine position,” Radiother. Oncol. 78, 217222 (2006).
http://dx.doi.org/10.1016/j.radonc.2005.11.009
86.
86. J. Jin, E. Klein, F. Kong, and Z. Li, “An improved internal mammary irradiation technique in radiation treatment of locally advanced breast cancer,” J. Appl. Clin. Med. Phys. 6, 110 (2005).
http://dx.doi.org/10.1120/jacmp.v6i1.2079
87.
87. S. S. Tung, A. S. Shiu, G. Starkschall, W. H. Morrison, and K. R. Hogstrom, “Dosimetric evaluation of total scalp irradiation using a lateral electron-photon technique,” Int. J. Radiat. Oncol., Biol., Phys. 27, 153160 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90433-V
88.
88. C. Hurkmans, E. Scheepers, B. G. F. Springorum, and H. Uiterwaal, “Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators,” Int. J. Radiat. Oncol., Biol., Phys. 63, 282289 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.04.047
89.
89. S. Scarboro, D. Followill, R. Howell, and S. Kry, “Variations in photon energy spectra of a 6 MV beam and their impact on TLD response,” Med. Phys. 38, 26192628 (2011).
http://dx.doi.org/10.1118/1.3575419
90.
90. M. F. Chan, Y. Song, L. T. Dauer, J. Li, D. Huang, and C. Burman, “Estimating dose to implantable cardioverter-defibrillator outside the treatment field using a skin QED diode, optically stimulated luminescence dosimeters, and LiF thermoluminescent dosimeters,” Med. Dosim.. 37, 334338 (2012).
http://dx.doi.org/10.1016/j.meddos.2011.11.007
91.
91. S. Kry, M. Price, D. Followill, F. Mourtada, and M. Slaehpour, “The use of LiF (TLD-100) as an out-of-field dosimeter,” J. Appl. Clin. Med. Phys. 8, 17 (2007).
http://dx.doi.org/10.1120/jacmp.v8i4.2679
92.
92. S. Marcié, E. Charpiot, R.-J. Bensadoun, G. Ciais, J. Hérault, A. Costa, and J.-P. Gérard, “In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 16031606 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.12.034
93.
93. P. E. Engström, P. Haraldsson, T. Landberg, H. S. Hansen, S. A. Engelholm, and H. Nyström, “In vivo dose verification of IMRT treated head and neck cancer patients,” Acta Oncol. 44, 572578 (2005).
http://dx.doi.org/10.1080/02841860500218983
94.
94. F. M. Gagliardi, K. J. Roxby, P. E. Engström, and J. C. Crosbie, “Intra-cavitary dosimetry for IMRT head and neck treatment using thermoluminescent dosimeters in a naso-oesophageal tube,” Phys. Med. Biol. 54, 36493657 (2009).
http://dx.doi.org/10.1088/0031-9155/54/12/003
95.
95. R. Varadhan, J. Miller, B. Garrity, and M. Weber, “In vivo prostate IMRT dosimetry with MOSFET detectors using brass buildup caps,” J. Appl. Clin. Med. Phys. 7, 2232 (2006).
http://dx.doi.org/10.1120/jacmp.v7i4.2278
96.
96. A. J. Vinall, J. Williams, V. E. Currie, A. van Esch, and D. Huyskens, “Practical guidelines for routine intensity-modulated radiotherapy verification: Pre-treatment verification with portal dosimetry and treatment verification with in vivo dosimetry,” Br. J. Radiol. 83, 949957 (2010).
http://dx.doi.org/10.1259/bjr/31573847
97.
97. N. Kadesjö, T. Nyholm, and J. Olofsson, “A practical approach to diode based in vivo dosimetry for intensity modulated radiotherapy,” Radiother. Oncol. 98, 378381 (2011).
http://dx.doi.org/10.1016/j.radonc.2010.12.018
98.
98. M. van Zijtveld, M. Dirkx, M. Breuers, J. C. J. de Boer, and B. J. M. Heijmen, “Portal dose image prediction for in vivo treatment verification completely based on EPID measurements,” Med. Phys. 36, 946952 (2009).
http://dx.doi.org/10.1118/1.3070545
99.
99. S. M. J. J. G. Nijsten, B. J. Mijnheer, A. L. A. J. Dekker, Ph. Lambin, and A. W. H. Minken, “Routine individualized patient dosimetry using electronic portal imaging devices,” Radiother. Oncol. 83, 6575 (2007).
http://dx.doi.org/10.1016/j.radonc.2007.03.003
100.
100. W. van Elmpt, S. Nijsten, S. Petit, B. Mijnheer, P. Lambin, and A. Dekker, “3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 73, 15801587 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.11.051
101.
101. G. S. Ibbott, D. S. Followill, H. A. Molineu, J. R. Lowenstein, P. E. Alvarez, and J. E. Roll, “Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials,” Int. J. Radiat. Oncol., Biol., Phys. 71, S71S75 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.08.083
102.
102.IAEA Report, Investigation of an Accidental Exposure of Radiotherapy Patients in Panama/Report of a Team of Experts (International Atomic Energy Agency, IAEA, Vienna, Austria, 2001).
103.
103. M. V. Williams, and A. McKenzie, “Can we afford not to implement in vivo dosimetry?,” Br. J. Radiol. 81, 681684 (2008).
http://dx.doi.org/10.1259/bjr/27038322
104.
104. A. J. Munro, “Hidden danger, obvious opportunity: Error and risk in the management of cancer,” Br. J. Radiol. 80, 955966 (2007).
http://dx.doi.org/10.1259/bjr/12777683
105.
105. R. Bachelot-Narquin, “Measures taken by the French Health Minister to ensure safety in radiotherapy treatments,” Safety in External Radiotherapy, Controle Review No. 185, Paris, France, November 5–7, 2009 (available URL: http://www.conference-radiotherapy-asn.com/).
106.
106. J. Kruse, “On the insensitivity of single field planar dosimetry to IMRT inaccuracies,” Med. Phys. 37, 25162524 (2010).
http://dx.doi.org/10.1118/1.3425781
107.
107. B. Nelms, H. Zhen, and W. A. Tomé, “Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors,” Med. Phys. 38, 10371044 (2011).
http://dx.doi.org/10.1118/1.3544657
108.
108. P. Carrasco, N. Jornet, A. Lathorne, T. Eudaldo, A. Ruiz, and M. Ribas, “3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification,” Med. Phys. 39, 50405049 (2012).
http://dx.doi.org/10.1118/1.4736949
109.
109. H. Zhen, B. E. Nelms, and W. Tomé, “Moving from γ passing rates to patient DVH-based QA metrics in pretreatment dose QA,” Med. Phys. 38, 54775489 (2011).
http://dx.doi.org/10.1118/1.3633904
110.
110. C. Wu, K. E. Hosier, K. E. Beck, M. B. Radevic, J. Lehmann, H. A. Zhang, A. Kroner, S. C. Dutton, S. A. Rosenthal, J. K. Bareng, M. D. Logsdon, and D. R. Asche, “On using 3D γ-analysis for IMRT and VMAT pretreatment plan QA,” Med. Phys. 39, 30513059 (2012).
http://dx.doi.org/10.1118/1.4711755
111.
111. D. Verellen, M. De Ridder, N. Lindhout, K. Tournel, G. Soete, and G. Storme, “Innovations in image-guided radiotherapy,” Nat. Rev. Cancer 7, 949960 (2007).
http://dx.doi.org/10.1038/nrc2288
112.
112. AAPM, “The role of in-room kV X-ray imaging for patient setup and target localization,” AAPM Task Group 104 Report (American Association of Physicists in Medicine, College Park, MD, 2009).
113.
113. W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi, J. Pawelke, and F. Pönisch, “Charged hadron tumour therapy monitoring by means of PET,” Nucl. Instrum. Methods A. 525, 284288 (2004).
http://dx.doi.org/10.1016/j.nima.2004.03.128
114.
114. K. Parodi, H. Paganetti, E. Cascio, J. B. Flanz, A. A. Bonab, N. M. Alpert, K. Lohmann, and T. Bortfeld, “PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants,” Med. Phys. 34, 419435 (2007).
http://dx.doi.org/10.1118/1.2401042
115.
115. S. Vynckier, S. Derreumaux, F. Richard, A. Bol, C. Michel, and A. Wambersie, “Is it possible to verify directly a proton-treatment plan using positron emission tomography?,” Radiother. Oncol. 26, 275277 (1993).
http://dx.doi.org/10.1016/0167-8140(93)90271-9
116.
116. Y. Hishikawa, K. Kagawa, M. Murakami, H. Sakai, T. Akagi, and M. Abe, “Usefulness of positron-emission tomographic images after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 13881391 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02887-0
117.
117. K. Parodi, H. Paganetti, H. A. Shih, S. Michaud, J. S. Loeffler, T. F. DeLaney, N. J. Liebsch, J. E. Munzenrider, A. J. Fischman, A. Knopf, and T. Bortfeld, “Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 920934 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.01.063
118.
118. M. Moteabbed, S. Espana, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy,” Phys. Med. Biol. 56, 10631082 (2011).
http://dx.doi.org/10.1088/0031-9155/56/4/012
119.
119. J. C. Polf, S. Peterson, G. Ciangaru, M. Gillin, and S. Beddar, “Prompt gamma-ray emission from biological tissues during proton irradiation: A preliminary study,” Phys. Med. Biol. 54, 731743 (2009).
http://dx.doi.org/10.1088/0031-9155/54/3/017
120.
120. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, and L. Trache, “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
http://dx.doi.org/10.1088/0031-9155/54/22/N02
121.
121. C. H. Min, C. H. Kim, M. Y. Youn, and J. W. Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett. 89, 183517 (2006).
http://dx.doi.org/10.1063/1.2378561
122.
122. V. Bom, L. Joulaeizadeh, and F. Beekman, “Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit,” Phys. Med. Biol. 57, 297308 (2012).
http://dx.doi.org/10.1088/0031-9155/57/2/297
123.
123. J. Smeets, F. Roellinghoff, D. Prieels, F. Stichelbaut, A. Benilov, C. Fiorini, R. Peloso, M. Basilavecchia, T. Frizzi, and J. Dehaes, “Prompt gamma imaging with a slit camera for real-time range control in proton therapy,” Phys. Med. Biol. 57, 33713405 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/3371
124.
124. M. Frandes, A. Zoglauer, V. Maxim, and R. Prost, “A tracking Compton-scattering imaging system for hadron therapy monitoring,” IEEE Trans. Nucl. Sci. 57, 144150 (2010).
http://dx.doi.org/10.1109/TNS.2009.2031679
125.
125. T. Kormoll, F. Fiedler, S. Schone, J. Wustemann, K. Zuber, and W. Enghardt, “A compton imager for in-vivo dosimetry of proton beams-a design study,” Nucl. Instrum. Methods Phys. Res. A 626–627, 114119 (2010).
http://dx.doi.org/10.1016/j.nima.2010.10.031
126.
126. D. Mackin, S. Peterson, S. Beddar, and J. Polf, “Evaluation of a stochastic reconstruction algorithm for use in compton camera imaging and beam range verification from secondary gamma emission during proton therapy,” Phys. Med. Biol. 57, 35373553 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/3537
127.
127. J. C. Polf, S. Peterson, D. Robertson, and S. Beddar, “Measuring prompt gamma ray emission during proton radiotherapy for assessment of treatment delivery and patient response,” AIP Conf. Proc. 1336, 364368 (2011).
http://dx.doi.org/10.1063/1.3586121
128.
128. A. A. Swinnen, J. J. Verstraete, and D. P. Huyskens, “Feasibility study of entrance in vivo dose measurements with mailed thermoluminescence detectors,” Radiother. Oncol. 73, 8996 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.07.021
129.
129. International Commission on Radiation Units and Measurements, “Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT),” ICRU Report No. 83 (Oxford University Press, Oxford, UK, 2010).
130.
130. W. van Elmpt, S. Petit, D. De Ruysscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188194 (2010).
http://dx.doi.org/10.1016/j.radonc.2009.12.024
131.
131. C. Ling, P. Zhang, T. Etmektzoglou, J. Star-Lack, M. Sun, E. Shapiro, and M. Hunt, “Acquisition of MV-scatter-free kilovoltage CBCT images during RapidArc™ or VMAT,” Radiother. Oncol. 100, 145149 (2011).
http://dx.doi.org/10.1016/j.radonc.2011.07.010
132.
132. M. van Herk, L. Ploeger, and J.-J. Sonke, “A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation,” Radiother. Oncol. 100, 365369 (2011).
http://dx.doi.org/10.1016/j.radonc.2011.08.019
133.
133. S. Janek, R. Svensson, C. Jonsson, and A. Brahme, “Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy,” Phys. Med. Biol. 51, 57695783 (2006).
http://dx.doi.org/10.1088/0031-9155/51/22/004
134.
134. A. T. Hansen, S. B. Hansen, and J. B. Petersen, “The potential application of silver and positron emission tomography for in vivo dosimetry during radiotherapy,” Phys. Med. Biol. 53, 353360 (2008).
http://dx.doi.org/10.1088/0031-9155/53/2/004
135.
135. G. Busuoli, A. Cavallini, A. Fasso, and O. Rimondi, “Mixed radiation dosimetry with LiF (TLD-100),” Phys. Med. Biol. 15, 673681 (1970).
http://dx.doi.org/10.1088/0031-9155/15/4/007
136.
136. D. Youssian and Y. Horowitz, “Estimation of gamma dose in neutron dosimetry using peak 4 to peak 5 ratios in LiF:Mg,Ti (TLD-100/600),” Radiat. Prot. Dosim. 77, 151158 (1998).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a032305
137.
137. B. Mukherjee, J. Lambert, R. Hentschel, and J. Farr, “Explicit estimation of out-of-field neutron and gamma dose equivalents during proton therapy using thermoluminescence-dosimeters,” Radiat. Meas. 46, 19521955 (2011).
http://dx.doi.org/10.1016/j.radmeas.2011.07.026
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4811216
Loading
/content/aapm/journal/medphys/40/7/10.1118/1.4811216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/7/10.1118/1.4811216
2013-06-25
2014-09-17

Abstract

dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors’ opinion that all treatments with curative intent should be verified through dose measurements in combination with pretreatment checks.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/7/1.4811216.html;jsessionid=k2eifd8uq01f.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/7/10.1118/1.4811216&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys

Most read this month

Article
content/aapm/journal/medphys
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: In vivo dosimetry in external beam radiotherapy
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4811216
10.1118/1.4811216
SEARCH_EXPAND_ITEM