1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Cloud computing in medical imaging
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/7/10.1118/1.4811272
1.
1. P. Mell and T. Grence, “The NIST definition of cloud computing,” Special Publication 800–145 (2011).
2.
2. I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-degree compared,” in Grid Computing Environments Workshop, GCE ‘08 (IEEE, Austin, TX, 2008), pp. 110.
3.
3. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: Towards a cloud definition,” ACM SIGCOMM Comput. Commun. Rev. 39, 5055 (2009).
http://dx.doi.org/10.1145/1496091.1496100
4.
4. M. Armbrust et al., “A view of cloud computing,” Commun. ACM 53, 5058 (2010).
http://dx.doi.org/10.1145/1721654.1721672
5.
5. K. P. Andriole and R. Khorasani, “Cloud computing: What is it and could it be useful?,” J. Am. Coll. Radiol. 7, 252254 (2010).
http://dx.doi.org/10.1016/j.jacr.2010.01.009
6.
6. L. Wang, G. von Laszewski, A. Younge, and X. He, “Cloud computing: A perspective study,” New Gener. Comput. 28, 137146 (2010).
http://dx.doi.org/10.1007/s00354-008-0081-5
7.
7. Q. Ling, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,” in Cloud Computing (Springer, Berlin-Heidelberg, 2009), pp. 626631.
8.
8. EUCALYPTUS, “EUCALYPTUS open source software license agreement,” http://www.eucalyptus.com/licenses/eucalyptus-software-license-agreement.
9.
9. Nebula, “About the OpenNebula.org Project,” http://opennebula.org/about:about.
10.
10. G. C. Kagadis, C. Alexakos, S. G. Langer, and T. French, “Using an open-source PACS virtual machine for a digital angiography unit: Methods and initial impressions,” J. Digit. Imaging 25, 8190 (2012).
http://dx.doi.org/10.1007/s10278-011-9401-2
11.
12.
12. R. Allan, “Cloud and Web 2.0 resources for supporting research,” http://tyne.dl.ac.uk/NWGrid/Clouds/.
13.
13. CNN, “Amazon EC2 outage downs Reddit, Quora,” http://money.cnn.com/2011/04/21/technology/amazon_server_outage/index.htm.
15.
15. J. McKendrick, “Cloud computing's vendor lock-in problem: Why the industry is taking a step backward,” http://www.forbes.com/sites/joemckendrick/2011/11/20/cloud-computings-vendor-lock-in-problem-why-the-industry-is-taking-a-step-backwards/.
16.
16. B. Darrow, “Fear of lock-in dampers cloud adoption,” http://gigaom.com/2013/02/26/fear-of-lock-in-dampens-cloud-adoption/.
17.
17.Forrester, A. Reichman, R. Whiteley III, and E. Chi, “File storage costs less in the cloud than in-house,” http://www.forrester.com/File+Storage+Costs+Less+In+The+Cloud+Than+InHouse/fulltext/-/E-RES57696?objectid=RES57696.
18.
18. R. Vanover, “How to determine if cloud storage is a cost savings,” TechRepublic, http://www.techrepublic.com/blog/networking/how-to-determine-if-cloud-storage-is-a-cost-savings/6408.
19.
19. P. K. Kijewski, “Radiology IT: Applications integration vs. consolidation,” J. Digit. Imaging 24, 814822 (2011).
http://dx.doi.org/10.1007/s10278-010-9342-1
20.
20. L. A. Silva, C. Costa, and J. L. Oliveira, “A PACS archive architecture supported on cloud services,” Int. J. Comput. Assist. Radiol. Surg. 7, 349358 (2012).
http://dx.doi.org/10.1007/s11548-011-0625-x
21.
21. P. G. Nagy, “The future of PACS,” Med. Phys. 34, 26762682 (2007).
http://dx.doi.org/10.1118/1.2743097
22.
22. Informatics in Medical Imaging, edited by G. C. Kagadis and S. G. Langer, 1st ed. (CRC Press, Boca Raton, Fl, 2012).
23.
23. P. Aguiar et al., “Geometrical and Monte Carlo projectors in 3D PET reconstruction,” Med. Phys. 37, 56915702 (2010).
http://dx.doi.org/10.1118/1.3501884
24.
24. D. Wallach, F. Lamare, G. Kontaxakis, and D. Visvikis, “Super-resolution in respiratory synchronized positron emission tomography,” IEEE. Trans. Med. Imaging 31, 438448 (2012).
http://dx.doi.org/10.1109/TMI.2011.2171358
25.
25. J. Yan, B. Planeta-Wilson, and R. E. Carson, “Direct 4-D PET list mode parametric reconstruction with a novel EM algorithm,” IEEE. Trans. Med. Imaging 31, 22132223 (2012).
http://dx.doi.org/10.1109/TMI.2012.2212451
26.
26. T. Shepherd et al., “Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy,” IEEE. Trans. Med. Imaging 31, 20062024 (2012).
http://dx.doi.org/10.1109/TMI.2012.2202322
27.
27. A. Le Maitre et al., “Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications,” Proc. IEEE 97, 20262038 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2027925
28.
28. P. Papadimitroulas, et al., “Realistic pathological simulations of the NCAT and Zubal anthropomorphic models, based on clinical PET/CT data,” paper presented at the 54th annual meeting of the American Association of Physicists in Medicine, Charlotte, NC, 29 July–2 August, 2012;
28.P. Papadimitroulas, et al., Med. Phys. 39, 3645 (2012).
http://dx.doi.org/10.1118/1.4734805
29.
29. P. Papadimitroulas, G. Loudos, G. C. Nikiforidis, and G. C. Kagadis, “A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes,” Med. Phys. 39, 52385247 (2012).
http://dx.doi.org/10.1118/1.4737096
30.
30. D. Visvikis, M. Hatt, F. Tixier, and C. Cheze Le Rest, “The age of reason for FDG PET image-derived indices,” Eur. J. Nucl. Med. Mol. Imaging 39, 16701672 (2012).
http://dx.doi.org/10.1007/s00259-012-2239-0
31.
31. C. Toland, C. Meenan, M. Toland, N. Safdar, P. Vandermeer, and P. Nagy, “A suggested classification guide for PACS client applications: The five degrees of thickness,” J. Digit. Imaging 19(1), 7883 (2006).
http://dx.doi.org/10.1007/s10278-006-0930-z
32.
32. Adobe Systems Inc., “Flash Player,” http://www.adobe.com/uk/products/flashplayer.html.
33.
34.
34. Microsoft Corp., “Microsoft Silverlight,” http://www.microsoft.com/silverlight/.
35.
35. W3C, “HTML 5.1 Nightly,” Editor's draft, http://www.w3.org/html/wg/drafts/html/master/.
36.
36. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network computing,” IEEE. Internet Comput. 2, 3338 (1998).
http://dx.doi.org/10.1109/4236.656066
37.
37. A. Fox, “Computer science. Cloud computing–What's in it for me as a scientist?,” Science 331, 406407 (2011).
http://dx.doi.org/10.1126/science.1198981
38.
38. C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance Cloud Computing: A View of Scientific Applications,” in 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), (IEEE, Kaohsiung, 2009), pp. 416.
http://dx.doi.org/10.1109/I-SPAN.2009.150
39.
39. G. Brumfiel, “High-energy physics: Down the petabyte highway,” Nature (London) 469, 282283 (2011).
http://dx.doi.org/10.1038/469282a
40.
40. K. Jorissen, W. Johnson, F. D. Vila, and J. J. Rehr, “High-performance computing without commitment: SC2IT: A cloud computing interface that makes computational science available to non-specialists,” in 8th International Conference on E-Science (e-Science) (IEEE, Chicago, IL, 2012).
41.
41. L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, “Bioinformatics clouds for big data manipulation,” Biol. Direct. 7, 17 (2012).
http://dx.doi.org/10.1186/1745-6150-7-43
42.
42. A. Shanker, “Genome research in the cloud,” OMICS 16, 422428 (2012).
http://dx.doi.org/10.1089/omi.2012.0001
43.
43. R. Chow et al., “Controlling data in the cloud: Outsourcing computation without outsourcing control,” in ACM Workshop on Cloud Computing Security (CCSW ‘09) (ACM, 2009), pp. 8590.
44.
44. D. J. Abadi, “Data management in the cloud: Limitations and opportunities,” IEEE. Data Eng. Bull. 32, 312 (2009).
45.
45. EU, “European Union Directive on data protection,” in Official Journal of the European Communities (EU, Brussels, Belgium, 1995), Vol. L.281, pp. 3150.
46.
46. Stanford, “Internet research ethics, in Stanford Encyclopedia of Philosophy,” http://plato.stanford.edu/entries/ethics-internet-research.
47.
47. J. Timmermans, B. Stahl, V. Ikonen, and E. Bozdag, “The ethics of cloud computing,” http://www.academia.edu/646838/.
48.
48. J. Grimes, P. Jaeger, and J. Lin, “Weathering the storm: the policy implications of cloud computing,” http://nora.lis.uiuc.edu/images/iConferences/CloudAbstract13109FINAL.
49.
49. W. Pieters and A. van Cleeff, “The precautionary principle in a world of digital dependencies,” IEEE. Comput. 42, 5056 (2009).
http://dx.doi.org/10.1109/MC.2009.203
50.
50. L. M. Kaufman, “Data security in the world of cloud computing,” IEEE Secur. Privacy 7, 6164 (2009).
http://dx.doi.org/10.1109/MSP.2009.87
51.
51. F. Prior, M. L. Ingeholm, B. A. Levine, and L. Tarbox, “Potential impact of HITECH security regulations on medical imaging,” in 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, 2009, (IEEE, 2009), pp. 21572160.
http://dx.doi.org/10.1109/IEMBS.2009.5332507
52.
52. M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and privacy in cloud computing: A survey,” in 6th International Conference on Semantics Knowledge and Grid (SKG) (IEEE, Beijing, China, 2010), pp. 105112.
53.
53. R. Zhang and L. Liu, “Security models and requirements for healthcare application clouds,” in IEEE 3rd International Conference on Cloud Computing (CLOUD) (IEEE, 2010), pp. 268275.
54.
54. S. Subashini and V. Kavitha, “A survey on security issues in service delivery models of cloud computing,” J. Netw. Comput. Appl. 34, 111 (2011).
http://dx.doi.org/10.1016/j.jnca.2010.07.006
55.
55. S. G. Shini, T. Thomas, and K. Chithraranjan, “Cloud based medical image exchange-security challenges,” Proc. Eng. 38, 34543461 (2012).
http://dx.doi.org/10.1016/j.proeng.2012.06.399
56.
56. S. G. Langer, “Challenges for data storage in medical imaging research,” J. Digit. Imaging 24, 203207 (2011).
http://dx.doi.org/10.1007/s10278-010-9311-8
57.
57. J. Philbin, F. Prior, and P. Nagy, “Will the next generation of PACS be sitting on a cloud?,” J. Digit. Imaging 24, 179183 (2011).
http://dx.doi.org/10.1007/s10278-010-9331-4
58.
58. E. J. Schweitzer, “Reconciliation of the cloud computing model with US federal electronic health record regulations,” J. Am. Med. Inform. Assoc. 19, 161165 (2012).
http://dx.doi.org/10.1136/amiajnl-2011-000162
59.
59. B. R. Kandukuri, V. R. Paturi, and A. Rakshit, “Cloud security issues,” in International Conference on Services Computing – SCC ‘09 (IEEE, Bangalore, India, 2009), pp. 517520.
60.
60. C. Gentry, “Computing arbitrary functions of encrypted data,” Commun. ACM 53, 97105 (2010).
http://dx.doi.org/10.1145/1666420.1666444
61.
62.
62. C. Curino et al., “Relational cloud: A database-as-a-service for the cloud,” paper presented at the 5th Biennial Conference on Innovative Data Systems Research, Pacific Grove, CA, 2011, pp. 235241 (www.cidrdb.org).
63.
63. R. A. Popa, M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Protecting confidentiality with encrypted query processing,” paper presented at the SOSP ‘11 Proceedings of the twenty-third ACM Symposium on operating systems principles, Cascais, Portugal (ACM, New York, NY, 2011), pp. 85100.
http://dx.doi.org/10.1145/2043556.2043566
64.
64. D. Kovachev, D. Renzel, R. Klamma, and Y. Cao, “Mobile community cloud computing: Emerges and evolves,” in 11th International Conference on Mobile Data Management (MDM), 2010 (Aachen, Germany, 2010), pp. 393395.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4811272
Loading
/content/aapm/journal/medphys/40/7/10.1118/1.4811272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/7/10.1118/1.4811272
2013-06-21
2014-11-23

Abstract

Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/7/1.4811272.html;jsessionid=flp9lydboypw.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/7/10.1118/1.4811272&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cloud computing in medical imaging
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/7/10.1118/1.4811272
10.1118/1.4811272
SEARCH_EXPAND_ITEM