1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
MR-guided focused ultrasound surgery, present and future
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/8/10.1118/1.4811136
1.
1. H. E. Cline, J. F. Schenck, K. Hynynen, R. D. Watkins, S. P. Souza, and F. A. Jolesz, “MR-guided focused ultrasound surgery,” J. Comput. Assist. Tomogr. 16, 956965 (1992).
http://dx.doi.org/10.1097/00004728-199211000-00024
2.
2. K. Hynynen, A. Darkazanli, E. Unger, and J. F. Schenck, “MRI-guided noninvasive ultrasound surgery,” Med. Phys. 20, 107115 (1993).
http://dx.doi.org/10.1118/1.597093
3.
3. R. M. Arthur, W. L. Straube, J. W. Trobaugh, and E. G. Moros, “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia 21, 589600 (2005).
http://dx.doi.org/10.1080/02656730500159103
4.
4. S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 3342 (2001).
http://dx.doi.org/10.1016/S0301-5629(00)00279-9
5.
5. C. Maleke and E. E. Konofagou, “An all-ultrasound-based system for real-time monitoring and sonication of temperature change and ablation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 164167 (2006).
http://dx.doi.org/10.1109/IEMBS.2006.260845
6.
6. A. N. Guthkelch et al., “Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: Results of a phase I trial,” J. Neurooncol. 10, 271284 (1991).
http://dx.doi.org/10.1007/BF00177540
7.
7. T. Uchida, S. Shoji, M. Nakano, S. Hongo, M. Nitta, Y. Usui, and Y. Nagata, “High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after external beam radiation, brachytherapy or proton therapy,” BJU Int. 107, 378382 (2011).
http://dx.doi.org/10.1111/j.1464-410X.2010.09518.x
8.
8. M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound,” Biochem. Biophys. Res. Commun. 340, 10851090 (2006).
http://dx.doi.org/10.1016/j.bbrc.2005.12.112
9.
9. L. Grossman, C. Brock-Abraham, N. Carbone, E. Dodds, J. Kluger, A. Park, N. Rawlings, C. Suddath, F. Sun, M. Thompson, B. Walsh, and K. Webley, “The 50 best inventions,” Time (Time, Inc., New York, 2011).
10.
10. L. Whitaker, “Body & mind: Giving fibroids the heat,” Time (Time, Inc., New York, 2006).
11.
11. K. Hynynen, C. Damianou, A. Darkazanli, E. Unger, and J. F. Schenck, “The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery,” Ultrasound Med. Biol. 19, 9192 (1993).
http://dx.doi.org/10.1016/0301-5629(93)90022-G
12.
12. F. A. Jolesz and N. McDannold, “Current status and future potential of MRI-guided focused ultrasound surgery,” J. Magn. Reson. Imaging 27, 391399 (2008).
http://dx.doi.org/10.1002/jmri.21261
13.
13. C. J. Diederich, R. J. Stafford, W. H. Nau, E. C. Burdette, R. E. Price, and J. D. Hazle, “Transurethral ultrasound applicators with directional heating patterns for prostate thermal therapy: In vivo evaluation using magnetic resonance thermometry,” Med. Phys. 31, 405413 (2004).
http://dx.doi.org/10.1118/1.1639959
14.
14. T. S. Curry, J. E. Dowdey, and R. C. Murray, Christensen's Physics of Diagnostic Radiology, 4th ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 1990).
15.
15. N. B. Smith and A. Webb, Introduction to Medical Imaging: Physics, Engineering, and Clinical Applications. (Cambridge University Press, New York, 2011).
16.
16. G. T. Haar and C. Coussios, “High intensity focused ultrasound: Physical principles and devices,” Int. J. Hyperthermia 23, 89104 (2007).
http://dx.doi.org/10.1080/02656730601186138
17.
17. V. Zderic, A. Keshavarzi, M. A. Andrew, S. Vaezy, and R. W. Martin, “Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment,” Ultrasound Med. Biol. 30, 6166 (2004).
http://dx.doi.org/10.1016/j.ultrasmedbio.2003.09.003
18.
18. G. A. Ferraro, F. De Francesco, G. Nicoletti, F. Rossano, and F. D’Andrea, “Histologic effects of external ultrasound-assisted lipectomy on adipose tissue,” Aesthetic Plast. Surg. 32, 111115 (2008).
http://dx.doi.org/10.1007/s00266-007-9031-8
19.
19. M. L. Jewell, N. J. Solish, and C. S. Desilets, “Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound,” Aesthetic Plast. Surg. 35, 901912 (2011).
http://dx.doi.org/10.1007/s00266-011-9700-5
20.
20. S. E. Burgess, T. Iwamoto, D. J. Coleman, F. L. Lizzi, J. Driller, and A. Rosado, “Histologic changes in porcine eyes treated with high-intensity focused ultrasound,” Ann. Ophthalmol. 19, 133138 (1987).
21.
21. D. J. Coleman, F. L. Lizzi, J. H. Torpey, S. E. Burgess, J. Driller, A. Rosado, and H. T. Nguyen, “Treatment of experimental lens capsular tears with intense focused ultrasound,” Br. J. Ophthalmol. 69, 645649 (1985).
http://dx.doi.org/10.1136/bjo.69.9.645
22.
22. R. H. Silverman, B. Vogelsang, M. J. Rondeau, and D. J. Coleman, “Therapeutic ultrasound for the treatment of glaucoma,” Am. J. Ophthalmol. 111, 327337 (1991).
23.
23. B. D. de Senneville, C. Mougenot, B. Quesson, I. Dragonu, N. Grenier, and C. T. Moonen, “MR thermometry for monitoring tumor ablation,” Eur. Radiol. 17, 24012410 (2007).
http://dx.doi.org/10.1007/s00330-007-0646-6
24.
24. Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, and K. Kuroda, “A precise and fast temperature mapping using water proton chemical shift,” Magn. Reson. Med. 34, 814823 (1995).
http://dx.doi.org/10.1002/mrm.1910340606
25.
25. V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27, 376390 (2008).
http://dx.doi.org/10.1002/jmri.21265
26.
26. R. D. Peters, R. S. Hinks, and R. M. Henkelman, “Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry,” Magn. Reson. Med. 40, 454459 (1998).
http://dx.doi.org/10.1002/mrm.1910400316
27.
27. A. B. Holbrook, J. M. Santos, E. Kaye, V. Rieke, and K. B. Pauly, “Real-time MR thermometry for monitoring HIFU ablations of the liver,” Magn. Reson. Med. 63, 365373 (2010).
http://dx.doi.org/10.1002/mrm.22206
28.
28. B. D. de Senneville, S. Roujol, C. Moonen, and M. Ries, “Motion correction in MR thermometry of abdominal organs: A comparison of the referenceless vs. the multibaseline approach,” Magn. Reson. Med. 64, 13731381 (2010).
http://dx.doi.org/10.1002/mrm.22514
29.
29. B. Quesson, C. Laurent, G. Maclair, B. D. de Senneville, C. Mougenot, M. Ries, T. Carteret, A. Rullier, and C. T. Moonen, “Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney,” NMR Biomed. 24, 145153 (2011).
http://dx.doi.org/10.1002/nbm.1563
30.
30. K. Kuroda, K. Oshio, R. V. Mulkern, and F. A. Jolesz, “Optimization of chemical shift selective suppression of fat,” Magn. Reson. Med. 40, 505510 (1998).
http://dx.doi.org/10.1002/mrm.1910400402
31.
31. J. A. de Zwart, F. C. Vimeux, C. Delalande, P. Canioni, and C. T. Moonen, “Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation,” Magn. Reson. Med. 42, 5359 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199907)42:1<53::AID-MRM9>3.0.CO;2-S
32.
32. H. E. Cline, K. Hynynen, C. J. Hardy, R. D. Watkins, J. F. Schenck, and F. A. Jolesz, “MR temperature mapping of focused ultrasound surgery,” Magn. Reson. Med. 31, 628636 (1994).
http://dx.doi.org/10.1002/mrm.1910310608
33.
33. K. Hynynen, N. I. Vykhodtseva, A. H. Chung, V. Sorrentino, V. Colucci, and F. A. Jolesz, “Thermal effects of focused ultrasound on the brain: Determination with MR imaging,” Radiology 204, 247253 (1997).
34.
34. N. McDannold, C. Tempany, F. Jolesz, and K. Hynynen, “Evaluation of referenceless thermometry in MRI-guided focused ultrasound surgery of uterine fibroids,” J. Magn. Reson. Imaging 28, 10261032 (2008).
http://dx.doi.org/10.1002/jmri.21506
35.
35. J. Overgaard, “Historical perspectives of hyperthermia,” in Introduction to Hyperthermic Oncology, edited by J. Overgaard (Taylor & Francis, London, 1984), Vol. 2.
36.
36. H. Chen, X. Li, and M. Wan, “The inception of cavitation bubble clouds induced by high-intensity focused ultrasound,” Ultrasonics 44(1), e427e429 (2006).
http://dx.doi.org/10.1016/j.ultras.2006.05.021
37.
37. C. C. Coussios, C. H. Farny, G. Ter Haar, and R. A. Roy, “Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU),” Int. J. Hyperthermia 23, 105120 (2007).
http://dx.doi.org/10.1080/02656730701194131
38.
38. P. Hariharan, M. R. Myers, R. A. Robinson, S. H. Maruvada, J. Sliwa, and R. K. Banerjee, “Characterization of high intensity focused ultrasound transducers using acoustic streaming,” J. Acoust. Soc. Am. 123, 17061719 (2008).
http://dx.doi.org/10.1121/1.2835662
39.
39. M. R. Myers, P. Hariharan, and R. K. Banerjee, “Direct methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming,” J. Acoust. Soc. Am. 124, 17901802 (2008).
http://dx.doi.org/10.1121/1.2957937
40.
40. E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).
41.
41. V. Frenkel, J. Oberoi, M. J. Stone, M. Park, C. Deng, B. J. Wood, Z. Neeman, M. Horne III, and K. C. Li, “Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model,” Radiology 239, 8693 (2006).
http://dx.doi.org/10.1148/radiol.2391042181
42.
42. K. Hynynen, V. Colucci, A. Chung, and F. Jolesz, “Noninvasive arterial occlusion using MRI-guided focused ultrasound,” Ultrasound Med. Biol. 22, 10711077 (1996).
http://dx.doi.org/10.1016/S0301-5629(96)00143-3
43.
43. S. Vaezy and V. Zderic, “Hemorrhage control using high intensity focused ultrasound,” Int. J. Hyperthermia 23, 203211 (2007).
http://dx.doi.org/10.1080/02656730601169779
44.
44. V. G. Petin, V. P. Komarov, and V. G. Skvortzov, “Combined action of ultrasound and ionizing radiation on yeast cells,” Radiat. Environ. Biophys. 18, 4555 (1980).
http://dx.doi.org/10.1007/BF01324373
45.
45. J. Overgaard, “The biological bases for the clinical application of hyperthermia as an adjuvant to radiotherapy,” Prog. Clin. Biol. Res. 132D, 205216 (1983).
46.
46. M. D. Hurwitz, “Today's thermal therapy: Not your father's hyperthermia: Challenges and opportunities in application of hyperthermia for the 21st century cancer patient,” Am. J. Clin. Oncol. 33, 96100 (2010).
http://dx.doi.org/10.1097/COC.0b013e3181817a75
47.
47. Y. F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2, 827 (2011).
http://dx.doi.org/10.5306/wjco.v2.i1.8
48.
48. M. Ward, J. Wu, and J. F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am. 105, 29512957 (1999).
http://dx.doi.org/10.1121/1.426908
49.
49. N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31, 15271537 (2005).
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.010
50.
50. V. Frenkel and K. C. Li, “Potential role of pulsed-high intensity focused ultrasound in gene therapy,” Future Oncol. 2, 111119 (2006).
http://dx.doi.org/10.2217/14796694.2.1.111
51.
51. R. Wood and A. Loomis, “The physical and biological effects of high frequency sound waves of great intensity,” London Edinburgh Dublin Philos. Mag. J. Sci. 1927, 417436 (1927).
52.
52. J. G. Lynn and T. J. Putnam, “Histology of cerebral lesions produced by focused ultrasound,” Am. J. Pathol. 20, 637649 (1944).
53.
53. W. J. Fry, W. H. Mosberg Jr., J. W. Barnard, and F. J. Fry, “Production of focal destructive lesions in the central nervous system with ultrasound,” J, Neurosurg 11, 471478 (1954).
http://dx.doi.org/10.3171/jns.1954.11.5.0471
54.
54. P. P. Lele, “Production of deep focal lesions by focused ultrasound–Current status,” Ultrasonics 5, 105112 (1967).
http://dx.doi.org/10.1016/S0041-624X(67)80011-8
55.
55. F. J. Fry and L. K. Johnson, “Tumor irradiation with intense ultrasound,” Ultrasound Med. Biol. 4, 337341 (1978).
http://dx.doi.org/10.1016/0301-5629(78)90022-4
56.
56. L. Leksell, “The stereotaxic method and radiosurgery of the brain,” Acta Chir. Scand. 102, 316319 (1951).
57.
57. F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am. 63, 15761590 (1978).
http://dx.doi.org/10.1121/1.381852
58.
58. F. J. Fry, S. A. Goss, and J. T. Patrick, “Transkull focal lesions in cat brain produced by ultrasound,” J. Neurosurg. 54, 659663 (1981).
http://dx.doi.org/10.3171/jns.1981.54.5.0659
59.
59. K. Hynynen and F. A. Jolesz, “Demonstration of potential noninvasive ultrasound brain therapy through an intact skull,” Ultrasound Med. Biol. 24, 275283 (1998).
http://dx.doi.org/10.1016/S0301-5629(97)00269-X
60.
60. D. J. Phillips, S. W. Smith, O. T. Ramm, and F. L. Thurstone, “A phase compensation technique for B-mode echoencephalography,” in Ultrasound in Medicine, edited by D. White (Plenum Press, New York, 1975), pp. 395404.
61.
61. D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell, “Temperature distribution measurements in two-dimensional NMR imaging,” Med. Phys. 10, 321325 (1983).
http://dx.doi.org/10.1118/1.595307
62.
62. S. Madersbacher, M. Susani, and M. Marberger, “Thermal ablation of BPH with transrectal high-intensity focused ultrasound,” Prog. Clin. Biol. Res. 386, 473478 (1994).
63.
63. A. Gelet, J. Y. Chapelon, R. Bouvier, R. Souchon, C. Pangaud, A. F. Abdelrahim, D. Cathignol, and J. M. Dubernard, “Treatment of prostate cancer with transrectal focused ultrasound: Early clinical experience,” Eur. Urol. 29, 174183 (1996).
64.
64. J. Y. Chapelon, M. Ribault, F. Vernier, R. Souchon, and A. Gelet, “Treatment of localised prostate cancer with transrectal high intensity focused ultrasound,” Eur. J. Ultrasound 9, 3138 (1999).
http://dx.doi.org/10.1016/S0929-8266(99)00005-1
65.
65. H. E. Cline, K. Hynynen, R. D. Watkins, W. J. Adams, J. F. Schenck, R. H. Ettinger, W. R. Freund, J. P. Vetro, and F. A. Jolesz, “Focused US system for MR imaging-guided tumor ablation,” Radiology 194, 731737 (1995).
66.
66. G. T. Clement, J. White, and K. Hynynen, “Investigation of a large-area phased array for focused ultrasound surgery through the skull,” Phys. Med. Biol. 45, 10711083 (2000).
http://dx.doi.org/10.1088/0031-9155/45/4/319
67.
67. J. F. Aubry, M. Tanter, J. Gerber, J. L. Thomas, and M. Fink, “Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media,” J. Acoust. Soc. Am. 110, 4858 (2001).
http://dx.doi.org/10.1121/1.1377052
68.
68. F. Wu, Z. B. Wang, W. Z. Chen, H. Zhu, J. Bai, J. Z. Zou, K. Q. Li, C. B. Jin, F. L. Xie, and H. B. Su, “Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma,” Ann. Surg. Oncol. 11, 10611069 (2004).
http://dx.doi.org/10.1245/ASO.2004.02.026
69.
69. F. Wu, Z. B. Wang, W. Z. Chen, J. Bai, H. Zhu, and T. Y. Qiao, “Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy,” J. Urol. 170, 22372240 (2003).
http://dx.doi.org/10.1097/01.ju.0000097123.34790.70
70.
70. W. Chen, Z. Wang, F. Wu, H. Zhu, J. Zou, J. Bai, K. Li, and F. Xie, “High intensity focused ultrasound in the treatment of primary malignant bone tumor,” Zhonghua Zhong Liu Za Zhi 24, 612615 (2002).
71.
71. F. Wu, Z. B. Wang, H. Zhu, W. Z. Chen, J. Z. Zou, J. Bai, K. Q. Li, C. B. Jin, F. L. Xie, and H. B. Su, “Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: Initial experience,” Radiology 236, 10341040 (2005).
http://dx.doi.org/10.1148/radiol.2362041105
72.
72. F. Wu, W. Z. Chen, J. Bai, J. Z. Zou, Z. L. Wang, H. Zhu, and Z. B. Wang, “Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound,” Ultrasound Med. Biol. 27, 10991106 (2001).
http://dx.doi.org/10.1016/S0301-5629(01)00389-1
73.
73. W. Chen, Z. Wang, F. Wu, J. Bai, H. Zhu, J. Zou, K. Li, and F. Xie, “High intensity focused ultrasound alone for malignant solid tumors,” Zhonghua Zhong Liu Za Zhi 24, 278281 (2002).
74.
74. F. Wu, Z. B. Wang, W. Z. Chen, W. Wang, Y. Gui, M. Zhang, G. Zheng, Y. Zhou, G. Xu, M. Li, C. Zhang, H. Ye, and R. Feng, “Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview,” Ultrason. Sonochem. 11, 149154 (2004).
http://dx.doi.org/10.1016/j.ultsonch.2004.01.011
75.
75. S. Fujishiro, M. Mitsumori, Y. Nishimura, Y. Okuno, Y. Nagata, M. Hiraoka, T. Sano, T. Marume, and N. Takayama, “Increased heating efficiency of hyperthermia using an ultrasound contrast agent: A phantom study,” Int. J. Hyperthermia 14, 495502 (1998).
http://dx.doi.org/10.3109/02656739809018250
76.
76. T. Yu, G. Wang, K. Hu, P. Ma, J. Bai, and Z. Wang, “A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: A rabbit kidney study,” Urol. Res. 32, 1419 (2004).
http://dx.doi.org/10.1007/s00240-003-0362-x
77.
77. Z. M. Lenard, N. J. McDannold, F. M. Fennessy, E. A. Stewart, F. A. Jolesz, K. Hynynen, and C. M. Tempany, “Uterine leiomyomas: MR imaging-guided focused ultrasound surgery–imaging predictors of success,” Radiology 249, 187194 (2008).
http://dx.doi.org/10.1148/radiol.2491071600
78.
78. K. Funaki, H. Fukunishi, T. Funaki, K. Sawada, Y. Kaji, and T. Maruo, “Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: Relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images,” Am. J. Obstet. Gynecol. 196, 184e1184e6 (2007).
http://dx.doi.org/10.1016/j.ajog.2006.08.030
79.
79. F. A. Taran, C. M. Tempany, L. Regan, Y. Inbar, A. Revel, and E. A. Stewart, “Magnetic resonance-guided focused ultrasound (MRgFUS) compared with abdominal hysterectomy for treatment of uterine leiomyomas,” Ultrasound Obstet. Gynecol. 34, 572578 (2009).
http://dx.doi.org/10.1002/uog.7435
80.
80. S. Zaher, W. M. Gedroyc, and L. Regan, “Patient suitability for magnetic resonance guided focused ultrasound surgery of uterine fibroids,” Eur. J. Obstet. Gynecol. Reprod. Biol. 143, 98102 (2009).
http://dx.doi.org/10.1016/j.ejogrb.2008.12.011
81.
81. C. Ripamonti and F. Fulfaro, “Malignant bone pain: Pathophysiology and treatments,” Curr. Rev. Pain. 4, 187196 (2000).
http://dx.doi.org/10.1007/s11916-000-0078-3
82.
82. R. Catane, A. Beck, Y. Inbar, T. Rabin, N. Shabshin, S. Hengst, R. M. Pfeffer, A. Hanannel, O. Dogadkin, B. Liberman, and D. Kopelman, “MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases–Preliminary clinical experience,” Ann. Oncol. 18, 163167 (2007).
http://dx.doi.org/10.1093/annonc/mdl335
83.
83. D. Gianfelice, C. Gupta, W. Kucharczyk, P. Bret, D. Havill, and M. Clemons, “Palliative treatment of painful bone metastases with MR imaging–Guided focused ultrasound,” Radiology 249, 355363 (2008).
http://dx.doi.org/10.1148/radiol.2491071523
84.
84. B. Liberman, D. Gianfelice, Y. Inbar, A. Beck, T. Rabin, N. Shabshin, G. Chander, S. Hengst, R. Pfeffer, A. Chechick, A. Hanannel, O. Dogadkin, and R. Catane, “Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A multicenter study,” Ann. Surg. Oncol. 16, 140146 (2009).
http://dx.doi.org/10.1245/s10434-008-0011-2
85.
85. T. D. Khokhlova, M. S. Canney, D. Lee, K. I. Marro, L. A. Crum, V. A. Khokhlova, and M. R. Bailey, “Magnetic resonance imaging of boiling induced by high intensity focused ultrasound,” J. Acoust. Soc. Am. 125, 24202431 (2009).
http://dx.doi.org/10.1121/1.3081393
86.
86. V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski, and L. A. Crum, “Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom,” J. Acoust. Soc. Am. 119, 18341848 (2006).
http://dx.doi.org/10.1121/1.2161440
87.
87. S. D. Sokka, R. King, and K. Hynynen, “MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh,” Phys. Med. Biol. 48, 223241 (2003).
http://dx.doi.org/10.1088/0031-9155/48/2/306
88.
88. B. Werner, A. Morel, E. Zadicario, D. Jeanmonod, and E. Martin, “Transcranial MR-guided high intensity focused ultrasound for non-invasive functional neurosurgery,” AIP Conf. Proc. 1215, 101104 (2010).
http://dx.doi.org/10.1063/1.3367106
89.
89. E. Makariou and A. D. Patsalides, “Intracranial calcifiations,” Appl. Radiol. 38, 4850 (2009).
90.
90. S. C. Tang and G. T. Clement, “Standing-wave suppression for transcranial ultrasound by random modulation,” IEEE Trans. Biomed. Eng. 57, 203205 (2010).
http://dx.doi.org/10.1109/TBME.2009.2028653
91.
91. E. Hipp, A. Partanen, G. S. Karczmar, and X. Fan, “Safety limitations of MR-HIFU treatment near interfaces: a phantom validation,” J. Appl. Clin. Med. Phys. 13, 168175 (2012).
http://dx.doi.org/10.1120/jacmp.v13i2.3739
92.
92. M. A. O’Reilly, Y. Huang, and K. Hynynen, “The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model,” Phys. Med. Biol. 55, 52515267 (2010).
http://dx.doi.org/10.1088/0031-9155/55/18/001
93.
93. M. Daffertshofer, A. Gass, P. Ringleb, M. Sitzer, U. Sliwka, T. Els, O. Sedlaczek, W. J. Koroshetz, and M. G. Hennerici, “Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: Results of a phase II clinical trial,” Stroke 36, 14411446 (2005).
http://dx.doi.org/10.1161/01.STR.0000170707.86793.1a
94.
94. C. Baron, J. F. Aubry, M. Tanter, S. Meairs, and M. Fink, “Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis,” Ultrasound Med. Biol. 35, 11481158 (2009).
http://dx.doi.org/10.1016/j.ultrasmedbio.2008.11.014
95.
95. A. Shaw and G. ter Haar, “Requirements for measurement standards in high intensity focused ultrasound (HIFU) fields,” National Physics Laboratory, Report DQL AC 015, 7–71 (2006).
96.
96. A. Shaw and M. Hodnett, “Calibration and measurement issues for therapeutic ultrasound,” Ultrasonics 48, 234252 (2008).
http://dx.doi.org/10.1016/j.ultras.2007.10.010
97.
97. M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19, 267294 (2003).
http://dx.doi.org/10.1080/0265673031000119006
98.
98. K. R. Gorny, N. J. Hangiandreou, G. K. Hesley, B. S. Gostout, K. P. McGee, and J. P. Felmlee, “MR guided focused ultrasound: Technical acceptance measures for a clinical system,” Phys. Med. Biol. 51, 31553173 (2006).
http://dx.doi.org/10.1088/0031-9155/51/12/011
99.
99. M. Gyongy and C. C. Coussios, “Passive spatial mapping of inertial cavitation during HIFU exposure,” IEEE Trans. Biomed. Eng. 57, 4856 (2010).
http://dx.doi.org/10.1109/TBME.2009.2026907
100.
100. F. Burdin, N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm, and H. Delmas, “Characterisation of the acoustic cavitation cloud by two laser techniques,” Ultrason. Sonochem. 6, 4351 (1999).
http://dx.doi.org/10.1016/S1350-4177(98)00035-2
101.
101. A. J. Coleman, M. J. Choi, and J. E. Saunders, “Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy,” Ultrasound Med. Biol. 22, 10791087 (1996).
http://dx.doi.org/10.1016/S0301-5629(96)00118-4
102.
102. R. O. Cleveland, O. A. Sapozhnikov, M. R. Bailey, and L. A. Crum, “A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro,” J. Acoust. Soc. Am. 107, 17451758 (2000).
http://dx.doi.org/10.1121/1.428572
103.
103. J. Gateau, J. F. Aubry, M. Pernot, M. Fink, and M. Tanter, “Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 517532 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1836
104.
104. A. Waldman, J. H. Rees, C. S. Brock, M. D. Robson, P. D. Gatehouse, and G. M. Bydder, “MRI of the brain with ultra-short echo-time pulse sequences,” Neuroradiology 45, 887892 (2003).
http://dx.doi.org/10.1007/s00234-003-1076-z
105.
105. S. Okada, Y. Ohaki, K. Inoue, T. Kawamura, T. Hayashi, T. Kato, and T. Kumazaki, “Calcifications in mucinous and serous cystic ovarian tumors,” J. Nihon Med. Sch. 72, 2933 (2005).
http://dx.doi.org/10.1272/jnms.72.29
106.
106. S. M. Ribeiro, S. A. Ajzen, and J. C. Trindade, “Comparison of imaging methods for diagnosis of renal tumors and their calcifications,” Rev. Assoc. Med. Bras. 50, 403412 (2004).
http://dx.doi.org/10.1590/S0104-42302004000400031
107.
107. H. Imhof and P. Frank, “Pancreatic calcifications in malignant islet cell tumors,” Radiology 122, 333337 (1977).
108.
108. J. Dziukowa, “Importance of radiologically detectable calcifications in the diagnosis of thyroid tumors,” Pol. Med. J. 11, 890897 (1972).
109.
109. D. Schiffer, F. Sibour, and C. Vesco, “Pathogenesis and significance of calcifications in cerebral tumors,” Minerva Neurochir. 5, 129130 (1961).
110.
110. R. Leborgne, “Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas,” Am. J. Roentgenol. Radium. Ther 65, 111 (1951).
111.
111. S. A. Sapareto, “Thermal isoeffect dose: Addressing the problem of thermotolerance,” Int. J. Hyperthermia 3, 297305 (1987).
http://dx.doi.org/10.3109/02656738709140400
112.
112. M. J. Borrelli, L. L. Thompson, C. A. Cain, and W. C. Dewey, “Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 degrees C to 57.0 degrees C,” Int. J. Radiat. Oncol. Biol. Phys. 19, 389399 (1990).
http://dx.doi.org/10.1016/0360-3016(90)90548-X
113.
113. J. Pearce, “Mathematical models of laser-induced tissue thermal damage,” Int. J. Hyperthermia 27, 741750 (2011).
http://dx.doi.org/10.3109/02656736.2011.580822
114.
114. J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” Proc. SPIE 7181, 718104 (2009).
http://dx.doi.org/10.1117/12.807999
115.
115. ICRP, “1990 Recommendations of the international commission on radiological protection. ICRP Publication 60,” Ann. ICRP 21, 1201 (1991).
116.
116. G. G. Raab and D. H. Parr, “From medical invention to clinical practice: The reimbursement challenge facing new device procedures and technology–Part 2: Coverage,” J. Am. Coll. Radiol. 3, 772777 (2006).
http://dx.doi.org/10.1016/j.jacr.2006.02.028
117.
117. G. G. Raab and D. H. Parr, “From medical invention to clinical practice: the reimbursement challenge facing new device procedures and technology–part 3: Payment,” J. Am. Coll. Radiol. 3, 842850 (2006).
http://dx.doi.org/10.1016/j.jacr.2006.02.027
118.
118. M. Warmuth, T. Johansson, and P. Mad, “Systematic review of the efficacy and safety of high-intensity focussed ultrasound for the primary and salvage treatment of prostate cancer,” Eur. Urol. 58, 803815 (2010).
http://dx.doi.org/10.1016/j.eururo.2010.09.009
119.
119. S. H. Benedict, G. De Meerleer, C. G. Orton, and J. Stancanello, “Point/counterpoint. High intensity focused ultrasound may be superior to radiation therapy for the treatment of early stage prostate cancer,” Med. Phys. 38, 39093912 (2011).
http://dx.doi.org/10.1118/1.3561500
120.
120. K. Hynynen, O. Pomeroy, D. N. Smith, P. E. Huber, N. J. McDannold, J. Kettenbach, J. Baum, S. Singer, and F. A. Jolesz, “MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: A feasibility study,” Radiology 219, 176185 (2001).
121.
121. D. Gianfelice, A. Khiat, M. Amara, A. Belblidia, and Y. Boulanger, “MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings,” Breast Cancer Res. Treat. 82, 93101 (2003).
http://dx.doi.org/10.1023/B:BREA.0000003956.11376.5b
122.
122. F. Wu, Z. B. Wang, H. Zhu, W. Z. Chen, J. Z. Zou, J. Bai, K. Q. Li, C. B. Jin, F. L. Xie, and H. B. Su, “Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer,” Breast Cancer Res. Treat. 92, 5160 (2005).
http://dx.doi.org/10.1007/s10549-004-5778-7
123.
123. H. Furusawa, K. Namba, H. Nakahara, C. Tanaka, Y. Yasuda, E. Hirabara, M. Imahariyama, and K. Komaki, “The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS),” Breast Cancer 14, 5558 (2007).
http://dx.doi.org/10.2325/jbcs.14.55
124.
124. D. B. Zippel and M. Z. Papa, “The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review,” Breast Cancer 12, 3238 (2005).
http://dx.doi.org/10.2325/jbcs.12.32
125.
125. D. R. Brenin, “Focused ultrasound ablation for the treatment of breast cancer,” Ann. Surg. Oncol. 18, 30883094 (2011).
http://dx.doi.org/10.1245/s10434-011-2011-x
126.
126. B. C. McCormick, “The politics and the ethics of breast cancer,” Brachytherapy 2, 119120 (2003).
http://dx.doi.org/10.1016/S1538-4721(03)00102-8
127.
127. S. Crouzet, X. Rebillard, D. Chevallier, P. Rischmann, G. Pasticier, G. Garcia, O. Rouviere, J. Y. Chapelon, and A. Gelet, “Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients,” Eur. Urol. 58, 559566 (2010).
http://dx.doi.org/10.1016/j.eururo.2010.06.037
128.
128. T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228233 (2006).
http://dx.doi.org/10.1111/j.1442-2042.2006.01272.x
129.
129. E. Zacharakis, H. U. Ahmed, A. Ishaq, R. Scott, R. Illing, A. Freeman, C. Allen, and M. Emberton, “The feasibility and safety of high-intensity focused ultrasound as salvage therapy for recurrent prostate cancer following external beam radiotherapy,” BJU Int. 102, 786792 (2008).
http://dx.doi.org/10.1111/j.1464-410X.2008.07775.x
130.
130. V. Chalasani, C. H. Martinez, D. Lim, and J. Chin, “Salvage HIFU for recurrent prostate cancer after radiotherapy,” Prostate Cancer Prostatic Dis. 12, 124129 (2009).
http://dx.doi.org/10.1038/pcan.2008.53
131.
131. G. Pasticier, O. Chapet, L. Badet, J. M. Ardiet, L. Poissonnier, F. J. Murat, X. Martin, and A. Gelet, “Salvage radiotherapy after high-intensity focused ultrasound for localized prostate cancer: early clinical results,” Urology 72, 13051309 (2008).
http://dx.doi.org/10.1016/j.urology.2008.02.064
132.
132. E. Liatsikos, B. Bynens, R. Rabenalt, P. Kallidonis, M. Do, and J. U. Stolzenburg, “Treatment of patients after failed high intensity focused ultrasound and radiotherapy for localized prostate cancer: salvage laparoscopic extraperitoneal radical prostatectomy,” J. Endourol. 22, 22952298 (2008).
http://dx.doi.org/10.1089/end.2008.9713
133.
133. V. E. de Meijer, C. Verhoef, J. W. Kuiper, I. P. Alwayn, G. Kazemier, and J. N. Ijzermans, “Radiofrequency ablation in patients with primary and secondary hepatic malignancies,” J. Gastrointest. Surg. 10, 960973 (2006).
http://dx.doi.org/10.1016/j.gassur.2006.03.003
134.
134. G. T. Haar, D. Sinnett, and I. Rivens, “High intensity focused ultrasound–a surgical technique for the treatment of discrete liver tumours,” Phys. Med. Biol. 34, 17431750 (1989).
http://dx.doi.org/10.1088/0031-9155/34/11/021
135.
135. W. E. Moore, R. M. Lopez, D. E. Matthews, P. W. Sheets, M. R. Etchison, A. S. Hurwitz, A. A. Chalian, F. J. Fry, D. W. Vane, and J. L. Grosfeld, “Evaluation of high-intensity therapeutic ultrasound irradiation in the treatment of experimental hepatoma,” J. Pediatr. Surg. 24, 3033 (1989).
http://dx.doi.org/10.1016/S0022-3468(89)80295-7
136.
136. R. Yang, C. R. Reilly, F. J. Rescorla, P. R. Faught, N. T. Sanghvi, F. J. Fry, T. D. Franklin Jr., L. Lumeng, and J. L. Grosfeld, “High-intensity focused ultrasound in the treatment of experimental liver cancer,” Arch. Surg. 126, 10021009 (1991).
http://dx.doi.org/10.1001/archsurg.1991.01410320088012
137.
137. R. Yang, N. T. Sanghvi, F. J. Rescorla, C. A. Galliani, F. J. Fry, S. L. Griffith, and J. L. Grosfeld, “Extracorporeal liver ablation using sonography-guided high-intensity focused ultrasound,” Invest. Radiol. 27, 796803 (1992).
http://dx.doi.org/10.1097/00004424-199210000-00009
138.
138. L. Chen, I. Rivens, G. ter Haar, S. Riddler, C. R. Hill, and J. P. Bensted, “Histological changes in rat liver tumours treated with high-intensity focused ultrasound,” Ultrasound Med. Biol. 19, 6774 (1993).
http://dx.doi.org/10.1016/0301-5629(93)90019-K
139.
139. J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931935 (2004).
http://dx.doi.org/10.1016/j.ultras.2004.01.089
140.
140. C. X. Li, G. L. Xu, Z. Y. Jiang, J. J. Li, G. Y. Luo, H. B. Shan, R. Zhang, and Y. Li, “Analysis of clinical effect of high-intensity focused ultrasound on liver cancer,” World J. Gastroenterol. 10, 22012204 (2004).
141.
141. T. A. Leslie, J. E. Kennedy, R. O. Illing, G. R. Ter Haar, F. Wu, R. R. Phillips, P. J. Friend, I. S. Roberts, D. W. Cranston, and M. R. Middleton, “High-intensity focused ultrasound ablation of liver tumours: Can radiological assessment predict the histological response?,” Br. J. Radiol. 81, 564571 (2008).
http://dx.doi.org/10.1259/bjr/27118953
142.
142. E. A. Stewart, W. M. Gedroyc, C. M. Tempany, B. J. Quade, Y. Inbar, T. Ehrenstein, A. Shushan, J. T. Hindley, R. D. Goldin, M. David, M. Sklair, and J. Rabinovici, “Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a noninvasive thermoablative technique,” Am. J. Obstet. Gynecol. 189, 4854 (2003).
http://dx.doi.org/10.1067/mob.2003.345
143.
143. B. Quesson, M. Merle, M. O. Kohler, C. Mougenot, S. Roujol, B. D. de Senneville, and C. T. Moonen, “A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver,” Med. Phys. 37, 25332540 (2010).
http://dx.doi.org/10.1118/1.3413996
144.
144. D. Jeanmonod, M. Magnin, and A. Morel, “Chronic neurogenic pain and the medial thalamotomy,” Schweiz Rundsch Med. Prax 83, 702707 (1994).
145.
145. L. Steiner, D. Forster, L. Leksell, B. A. Meyerson, and J. Boethius, “Gammathalamotomy in intractable pain,” Acta Neurochir. Suppl. (Wien) 52, 173184 (1980).
http://dx.doi.org/10.1007/BF01402072
146.
146. D. Jeanmonod, B. Werner, A. Morel, L. Michels, E. Zadicario, G. Schiff, and E. Martin, “Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain,” Neurosurg. Focus 32, E1 (2012).
http://dx.doi.org/10.3171/2011.10.FOCUS11248
147.
147. E. Martin, D. Jeanmonod, A. Morel, E. Zadicario, and B. Werner, “High-intensity focused ultrasound for noninvasive functional neurosurgery,” Ann. Neurol. 66, 858861 (2009).
http://dx.doi.org/10.1002/ana.21801
148.
148. J. Elias, D. Huss, M. Khaled, S. Monteith, and R. Frysinger, paper presented at the a new paradigm for noninvasive lesioning and neuromodulation. Congress of Neurological Surgeons 2011 Annual Meeting Abstract, 2011 (unpublished).
149.
149. J. A. Boockvar, A. Telfeian, G. H. Baltuch, B. Skolnick, T. Simuni, M. Stern, M. L. Schmidt, and J. Q. Trojanowski, “Long-term deep brain stimulation in a patient with essential tremor: clinical response and postmortem correlation with stimulator termination sites in ventral thalamus. Case report,” J. Neurosurg. 93, 140144 (2000).
http://dx.doi.org/10.3171/jns.2000.93.1.0140
150.
150. S. Deiner and J. Hagen, “Parkinson's disease and deep brain stimulator placement,” Anesthesiol. Clin. 27, 391415 (2009).
http://dx.doi.org/10.1016/j.anclin.2009.07.005
151.
151. D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56, 722732 (2005).
http://dx.doi.org/10.1227/01.NEU.0000156473.57196.7E
152.
152. D. Kondziolka, D. Whiting, A. Germanwala, and M. Oh, “Hardware-related complications after placement of thalamic deep brain stimulator systems,” Stereotact. Funct. Neurosurg. 79, 228233 (2002).
http://dx.doi.org/10.1159/000070836
153.
153. K. A. Sillay, P. S. Larson, and P. A. Starr, “Deep brain stimulator hardware-related infections: incidence and management in a large series,” Neurosurgery 62, 360366366367 (2008).
http://dx.doi.org/10.1227/01.neu.0000316002.03765.33
154.
154. J. M. Schwalb, H. A. Riina, B. Skolnick, J. L. Jaggi, T. Simuni, and G. H. Baltuch, “Revision of deep brain stimulator for tremor. Technical note,” J. Neurosurg. 94, 10101012 (2001).
http://dx.doi.org/10.3171/jns.2001.94.6.1010
155.
155. S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. Li, and B. J. Wood, “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res. 13, 27222727 (2007).
http://dx.doi.org/10.1158/1078-0432.CCR-06-2443
156.
156. J. A. Tashjian, M. W. Dewhirst, D. Needham, and B. L. Viglianti, “Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques,” Int. J. Hyperthermia 24, 7990 (2008).
http://dx.doi.org/10.1080/02656730701840147
157.
157. A. M. Ponce, Z. Vujaskovic, F. Yuan, D. Needham, and M. W. Dewhirst, “Hyperthermia mediated liposomal drug delivery,” Int. J. Hyperthermia 22, 205213 (2006).
http://dx.doi.org/10.1080/02656730600582956
158.
158. K. Kooiman, M. Emmer, M. Foppen-Harteveld, A. van Wamel, and N. de Jong, “Increasing the endothelial layer permeability through ultrasound-activated microbubbles,” IEEE Trans. Biomed. Eng. 57, 2932 (2010).
http://dx.doi.org/10.1109/TBME.2009.2030335
159.
159. R. Seip, C. T. Chin, C. S. Hall, B. I. Raju, A. Ghanem, and K. Tiemann, “Targeted ultrasound-mediated delivery of nanoparticles: On the development of a new HIFU-based therapy and imaging device,” IEEE Trans. Biomed. Eng. 57, 6170 (2010).
http://dx.doi.org/10.1109/TBME.2009.2028874
160.
160. P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging. 5, 160174 (2006).
161.
161. D. Needham and M. W. Dewhirst, “The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors,” Adv. Drug. Deliv. Rev. 53, 285305 (2001).
http://dx.doi.org/10.1016/S0169-409X(01)00233-2
162.
162. M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103, 1171911723 (2006).
http://dx.doi.org/10.1073/pnas.0604318103
163.
163. A. L. Klibanov, “Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging,” Med. Biol. Eng. Comput. 47, 875882 (2009).
http://dx.doi.org/10.1007/s11517-009-0498-0
164.
164. J. R. Eisenbrey, M. C. Soulen, and M. A. Wheatley, “Delivery of encapsulated Doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents,” IEEE Trans. Biomed. Eng. 57, 2428 (2010).
http://dx.doi.org/10.1109/TBME.2009.2030497
165.
165. A. L. Klibanov, T. I. Shevchenko, B. I. Raju, R. Seip, and C. T. Chin, “Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: A tool for targeted drug delivery,” J. Controlled Release 148, 1317 (2010).
http://dx.doi.org/10.1016/j.jconrel.2010.07.115
166.
166. A. R. Jayaweera, N. Edwards, W. P. Glasheen, F. S. Villanueva, R. D. Abbott, and S. Kaul, “In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells,” Circ. Res. 74, 11571165 (1994).
http://dx.doi.org/10.1161/01.RES.74.6.1157
167.
167. A. V. Patil, J. J. Rychak, A. L. Klibanov, and J. A. Hossack, “Real-time technique for improving molecular imaging and guiding drug delivery in large blood vessels: In vitro and ex vivo results,” Mol. Imaging 10, 238247 (2011).
http://dx.doi.org/10.2310/7290.2011.00002
168.
168. N. J. Abbott and I. A. Romero, “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today 2, 106113 (1996).
http://dx.doi.org/10.1016/1357-4310(96)88720-X
169.
169. A. Misra, S. Ganesh, A. Shahiwala, and S. P. Shah, “Drug delivery to the central nervous system: A review,” J. Pharm. Pharm. Sci. 6, 252273 (2003).
170.
170. J. T. Patrick, M. N. Nolting, S. A. Goss, K. A. Dines, J. L. Clendenon, M. A. Rea, and R. F. Heimburger, “Ultrasound and the blood-brain barrier,” Adv. Exp. Med. Biol. 267, 369381 (1990).
http://dx.doi.org/10.1007/978-1-4684-5766-7_36
171.
171. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology 220, 640646 (2001).
http://dx.doi.org/10.1148/radiol.2202001804
172.
172. G. Trubestein, C. Engel, F. Etzel, A. Sobbe, H. Cremer, and U. Stumpff, “Thrombolysis by ultrasound,” Clin. Sci. Mol. Med. Suppl. 3, 697s698s (1976).
173.
173. R. Medel, R. W. Crowley, M. S. McKisic, A. S. Dumont, and N. F. Kassell, “Sonothrombolysis: An emerging modality for the management of stroke,” Neurosurgery 65, 979993 (2009).
http://dx.doi.org/10.1227/01.NEU.0000350226.30382.98
174.
174. A. V. Alexandrov, A. W. Wojner, and J. C. Grotta, “CLOTBUST: Design of a randomized trial of ultrasound-enhanced thrombolysis for acute ischemic stroke,” J. Neuroimaging 14, 108112 (2004).
175.
175. A. V. Alexandrov, C. A. Molina, J. C. Grotta, Z. Garami, S. R. Ford, J. Alvarez-Sabin, J. Montaner, M. Saqqur, A. M. Demchuk, L. A. Moye, M. D. Hill, and A. W. Wojner, “Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke,” N. Engl. J. Med. 351, 21702178 (2004).
http://dx.doi.org/10.1056/NEJMoa041175
176.
176.Prevalence of disabilities and associated health conditions among adults–United States, 1999,” MMWR Morb Mortal Wkly Rep 50, 120125 (2001).
177.
177. W. Rosamond, K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S. M. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. O’Donnell, V. Roger, P. Sorlie, J. Steinberger, T. Thom, M. Wilson, and Y. Hong, “Heart disease and stroke statistics–2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 117, e25e146 (2008).
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187998
178.
178. P. W. Madsen Jr. and J. W. Gersten, “The effect of ultrasound on conduction velocity of peripheral nerve,” Arch. Phys. Med. Rehabil. 42, 645649 (1961).
179.
179. R. R. Young and E. Henneman, “Reversible block of nerve conduction by ultrasound,” Arch. Neurol. 4, 8389 (1961).
http://dx.doi.org/10.1001/archneur.1961.00450070085009
180.
180. J. L. Foley, J. W. Little, F. L. Starr III, C. Frantz, and S. Vaezy, “Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain,” Ultrasound Med. Biol. 30, 11991207 (2004).
http://dx.doi.org/10.1016/j.ultrasmedbio.2004.07.004
181.
181. J. L. Foley, J. W. Little, and S. Vaezy, “Image-guided high-intensity focused ultrasound for conduction block of peripheral nerves,” Ann. Biomed. Eng. 35, 109119 (2007).
http://dx.doi.org/10.1007/s10439-006-9162-0
182.
182. J. Van Zundert, P. Vanelderen, A. Kessels, and M. van Kleef, “Radiofrequency treatment of facet-related pain: Evidence and controversies,” Curr. Pain Headache Rep. 16, 1925 (2012).
http://dx.doi.org/10.1007/s11916-011-0237-8
183.
183. H. H. Kampinga and E. Dikomey, “Hyperthermic radiosensitization: Mode of action and clinical relevance,” Int. J. Radiat. Biol. 77, 399408 (2001).
http://dx.doi.org/10.1080/09553000010024687
184.
184. O. S. Nielsen, “Effect of fractionated hyperthermia on hypoxic cells in vitro,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 39, 7382 (1981).
http://dx.doi.org/10.1080/09553008114550091
185.
185. G. Arcangeli, C. Nervi, A. Cividalli, and G. A. Lovisolo, “Problem of sequence and fractionation in the clinical application of combined heat and radiation,” Cancer Res. 44, 4857s4863s (1984).
186.
186. A. Jernberg, M. R. Edgren, R. Lewensohn, H. Wiksell, and A. Brahme, “Cellular effects of high-intensity focused continuous wave ultrasound alone and in combination with x-rays,” Int. J. Radiat. Biol. 77, 127135 (2001).
http://dx.doi.org/10.1080/0955300010000791
187.
187. C. T. Moonen, “Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound,” Clin. Cancer Res. 13, 34823489 (2007).
http://dx.doi.org/10.1158/1078-0432.CCR-07-0204
188.
188. D. P. Madio, P. van Gelderen, D. DesPres, A. W. Olson, J. A. de Zwart, T. W. Fawcett, N. J. Holbrook, M. Mandel, and C. T. Moonen, “On the feasibility of MRI-guided focused ultrasound for local induction of gene expression,” J. Magn. Reson. Imaging 8, 101104 (1998).
http://dx.doi.org/10.1002/jmri.1880080120
189.
189. R. Bekeredjian, P. A. Grayburn, and R. V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol. 45, 329335 (2005).
http://dx.doi.org/10.1016/j.jacc.2004.08.067
190.
190. R. Bekeredjian, S. Behrens, J. Ruef, E. Dinjus, E. Unger, M. Baum, and H. F. Kuecherer, “Potential of gold-bound microtubules as a new ultrasound contrast agent,” Ultrasound Med. Biol. 28, 691695 (2002).
http://dx.doi.org/10.1016/S0301-5629(02)00502-1
191.
191. A. A. Rahim, S. L. Taylor, N. L. Bush, G. R. ter Haar, J. C. Bamber, and C. D. Porter, “Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound,” J. Gene Med. 8, 13471357 (2006).
http://dx.doi.org/10.1002/jgm.962
192.
192. P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther. 10, 16001607 (2003).
http://dx.doi.org/10.1038/sj.gt.3302045
193.
193. Y. Liu, T. Kon, C. Li, and P. Zhong, “High intensity focused ultrasound-induced gene activation in sublethally injured tumor cells in vitro,” J. Acoust. Soc. Am 118, 33283336 (2005).
http://dx.doi.org/10.1121/1.2041247
194.
194. Y. Liu, T. Kon, C. Li, and P. Zhong, “High intensity focused ultrasound-induced gene activation in solid tumors,” J. Acoust. Soc. Am. 120, 492501 (2006).
http://dx.doi.org/10.1121/1.2205129
195.
195. L. C. Phillips, A. L. Klibanov, B. R. Wamhoff, and J. A. Hossack, “Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery,” Ultrasound Med. Biol. 36, 14701480 (2010).
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.06.010
196.
196. C. Plathow, F. Lohr, G. Divkovic, G. Rademaker, N. Farhan, P. Peschke, I. Zuna, J. Debus, C. D. Claussen, H. U. Kauczor, C. Y. Li, J. Jenne, and P. Huber, “Focal gene induction in the liver of rats by a heat-inducible promoter using focused ultrasound hyperthermia: preliminary results,” Invest. Radiol. 40, 729735 (2005).
http://dx.doi.org/10.1097/01.rli.0000184763.62578.06
197.
197. J. L. Tlaxca, J. J. Rychak, P. B. Ernst, P. R. Konkalmatt, T. I. Shevchenko, T. T. Pizzaro, J. Rivera-Nieves, A. L. Klibanov, and M. B. Lawrence, “Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease,” J. Controlled Release 165, 216225 (2013).
http://dx.doi.org/10.1016/j.jconrel.2012.10.021
198.
198. D. J. Engel, R. Muratore, K. Hirata, R. Otsuka, K. Fujikura, K. Sugioka, C. Marboe, F. L. Lizzi, and S. Homma, “Myocardial lesion formation using high-intensity focused ultrasound,” J. Am. Soc. Echocardiogr. 19, 932937 (2006).
http://dx.doi.org/10.1016/j.echo.2006.02.012
199.
199. A. Metzner, K. R. Chun, K. Neven, A. Fuernkranz, F. Ouyang, M. Antz, R. Tilz, T. Zerm, B. Koektuerk, E. Wissner, I. Koester, S. Ernst, S. Boczor, K. H. Kuck, and B. Schmidt, “Long-term clinical outcome following pulmonary vein isolation with high-intensity focused ultrasound balloon catheters in patients with paroxysmal atrial fibrillation,” Europace 12, 188193 (2010).
http://dx.doi.org/10.1093/europace/eup416
200.
200. F. J. Fry, H. W. Ades, and W. J. Fry, “Production of reversible changes in the central nervous system by ultrasound,” Science 127, 8384 (1958).
http://dx.doi.org/10.1126/science.127.3289.83
201.
201. P. C. Rinaldi, J. P. Jones, F. Reines, and L. R. Price, “Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation,” Brain Res. 558, 3642 (1991).
http://dx.doi.org/10.1016/0006-8993(91)90711-4
202.
202. W. J. Tyler, Y. Tufail, M. Finsterwald, M. L. Tauchmann, E. J. Olson, and C. Majestic, “Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound,” PLoS One 3, e3511 (2008).
http://dx.doi.org/10.1371/journal.pone.0003511
203.
203. Y. Tufail, A. Yoshihiro, S. Pati, M. M. Li, and W. J. Tyler, “Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound,” Nat. Protoc. 6, 14531470 (2011).
http://dx.doi.org/10.1038/nprot.2011.371
204.
204. M. O. Kohler, C. Mougenot, B. Quesson, J. Enholm, B. Le Bail, C. Laurent, C. T. Moonen, and G. J. Ehnholm, “Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry,” Med. Phys. 36, 35213535 (2009).
http://dx.doi.org/10.1118/1.3152112
205.
205. R. Agarwal, M. Bergey, S. Sonnad, H. Butowsky, M. Bhargavan, and M. H. Bleshman, “Inpatient CT and MRI utilization: Trends in the academic hospital setting,” J. Am. Coll. Radiol. 7, 949955 (2010).
http://dx.doi.org/10.1016/j.jacr.2010.08.015
206.
206. Y. Korogi and M. Takahashi, “Cost containment and diffusion of MRI: oil and water?. Japanese experience,” Eur. Radiol. 7(5), 256258 (1997).
http://dx.doi.org/10.1007/PL00006904
207.
207. W. R. Hendee and E. R. Ritenour, Medical Imaging Physics, 4th ed. (Wiley-Liss, New York, 2002).
208.
208. J. F. Aubry, M. Tanter, M. Pernot, J. L. Thomas, and M. Fink, “Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans,” J. Acoust. Soc. Am. 113, 8493 (2003).
http://dx.doi.org/10.1121/1.1529663
209.
209. K. Hynynen and D. DeYoung, “Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia,” Int. J. Hyperthermia 4, 267279 (1988).
http://dx.doi.org/10.3109/02656738809051103
210.
210. C. W. Connor and K. Hynynen, “Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery,” IEEE Trans. Biomed. Eng. 51, 16931706 (2004).
http://dx.doi.org/10.1109/TBME.2004.831516
211.
211. N. B. Smith, J. M. Temkin, F. Shapiro, and K. Hynynen, “Thermal effects of focused ultrasound energy on bone tissue,” Ultrasound Med. Biol. 27, 14271433 (2001).
http://dx.doi.org/10.1016/S0301-5629(01)00454-9
212.
212. J. F. Lehmann, G. D. Brunne, A. J. Martinis, and J. A. McMillan, “Ultrasonic effects as demonstrated in live pigs with surgical metallic implants,” Arch. Phys. Med. Rehabil. 40, 483488 (1959).
213.
213. S. W. Yoon, C. Lee, S. H. Cha, J. S. Yu, Y. J. Na, K. A. Kim, S. G. Jung, and S. J. Kim, “Patient selection guidelines in MR-guided focused ultrasound surgery of uterine fibroids: A pictorial guide to relevant findings in screening pelvic MRI,” Eur. Radiol. 18, 29973006 (2008).
http://dx.doi.org/10.1007/s00330-008-1086-7
214.
214. J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynyen, N. McDannold, Y. Inbar, Y. Itzchak, J. Rabinovici, H. S. Kim, J. F. Geschwind, G. Hesley, B. Gostout, T. Ehrenstein, S. Hengst, M. Sklair-Levy, A. Shushan, and F. Jolesz, “MRI guidance of focused ultrasound therapy of uterine fibroids: Early results,” AJR Am. J. Roentgenol. 183, 17131719 (2004).
http://dx.doi.org/10.2214/ajr.183.6.01831713
215.
215. H. L. Liu, N. McDannold, and K. Hynynen, “Focal beam distortion and treatment planning in abdominal focused ultrasound surgery,” Med. Phys. 32, 12701280 (2005).
http://dx.doi.org/10.1118/1.1895525
216.
216. H. L. Liu, C. L. Hsu, S. M. Huang, and Y. W. Hsi, “Focal beam distortion and treatment planning for transrib focused ultrasound thermal therapy: A feasibility study using a two-dimensional ultrasound phased array,” Med. Phys. 37, 848860 (2010).
http://dx.doi.org/10.1118/1.3298009
217.
217. M. Tanter, M. Pernot, J.-F. Aubry, G. Montaldo, F. Marquet, and M. Fink, “Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound,” Int. J. Hyperthermia 23, 141151 (2007).
http://dx.doi.org/10.1080/02656730701209996
218.
218. Y. Yao and E. S. Ebbini, “Refocusing dual-mode ultrasound arrays in the presence of strongly scattering obstacles,” IEEE Ultrasonics Symposium, 239242 (2004).
http://dx.doi.org/10.1109/ULTSYM.2004.1417711
219.
219. L. Zhang, W. Z. Chen, Y. J. Liu, X. Hu, K. Zhou, L. Chen, S. Peng, H. Zhu, H. L. Zou, J. Bai, and Z. B. Wang, “Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus,” Eur. J. Radiol. 73, 396403 (2010).
http://dx.doi.org/10.1016/j.ejrad.2008.11.002
220.
220. X. Fan and K. Hynynen, “Ultrasound surgery using multiple sonications–treatment time considerations,” Ultrasound Med. Biol. 22, 471482 (1996).
http://dx.doi.org/10.1016/0301-5629(96)00026-9
221.
221. D. R. Daum and K. Hynynen, “Thermal dose optimization via temporal switching in ultrasound surgery,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 208215 (1998).
http://dx.doi.org/10.1109/58.646926
222.
222. J. K. Enholm, M. O. Kohler, B. Quesson, C. Mougenot, C. T. Moonen, and S. D. Sokka, “Improved volumetric MR-HIFU ablation by robust binary feedback control,” IEEE Trans. Biomed. Eng. 57, 103113 (2010).
http://dx.doi.org/10.1109/TBME.2009.2034636
223.
223. D. Melodelima, W. A. N’Djin, H. Parmentier, M. Rivoire, and J. Y. Chapelon, “Toric HIFU transducer for large thermal ablation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 230233 (2007).
http://dx.doi.org/10.1109/IEMBS.2007.4352265
224.
224. V. Zderic, J. Foley, W. Luo, and S. Vaezy, “Prevention of post-focal thermal damage by formation of bubbles at the focus during high intensity focused ultrasound therapy,” Med. Phys. 35, 42924299 (2008).
http://dx.doi.org/10.1118/1.2975149
225.
225. R. L. Clarke and G. R. ter Haar, “Temperature rise recorded during lesion formation by high-intensity focused ultrasound,” Ultrasound Med. Biol. 23, 299306 (1997).
http://dx.doi.org/10.1016/S0301-5629(96)00198-6
226.
226. N. A. Watkin, G. R. ter Haar, and I. Rivens, “The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery,” Ultrasound Med. Biol. 22, 483491 (1996).
http://dx.doi.org/10.1016/0301-5629(95)02062-4
227.
227. R. G. Holt and R. A. Roy, “Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material,” Ultrasound Med. Biol. 27, 13991412 (2001).
http://dx.doi.org/10.1016/S0301-5629(01)00438-0
228.
228. N. J. McDannold, N. I. Vykhodtseva, and K. Hynynen, “Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits,” Radiology 241, 95106 (2006).
http://dx.doi.org/10.1148/radiol.2411051170
229.
229. D. Kopelman, Y. Inbar, A. Hanannel, D. Freundlich, S. Vitek, R. Schmidt, A. Sokolov, O. A. Hatoum, and J. Rabinovici, “Magnetic resonance-guided focused ultrasound surgery using an enhanced sonication technique in a pig muscle model,” Eur. J. Radiol. 59, 190197 (2006).
http://dx.doi.org/10.1016/j.ejrad.2006.04.018
230.
230. P. R. Stauffer, C. J. Diederich, and M. H. Seegenschmiedt, “Interstitial heating technologies,” in Principles and Practices of Thermoradiotherapy and Thermochemotherapy, edited by M. H. Seegenschmiedt, P. Fessenden, and C. C. Vernon (Springer-Verlag, Berlin, 1995).
231.
231. C. Lafon, D. Melodelima, R. Salomir, and J. Y. Chapelon, “Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound,” Int. J. Hyperthermia 23, 153163 (2007).
http://dx.doi.org/10.1080/02656730601173029
232.
232. C. Lafon, J. Y. Chapelon, F. Prat, F. Gorry, J. Margonari, Y. Theillere, and D. Cathignol, “Design and preliminary results of an ultrasound applicator for interstitial thermal coagulation,” Ultrasound Med. Biol. 24, 113122 (1998).
http://dx.doi.org/10.1016/S0301-5629(97)00203-2
233.
233. C. Lafon, L. de, Y. Theillere, F. Prat, J. Y. Chapelon, and D. Cathignol, “Optimizing the shape of ultrasound transducers for interstitial thermal ablation,” Med. Phys. 29, 290297 (2002).
http://dx.doi.org/10.1118/1.1445416
234.
234. T. D. Mast, P. G. Barthe, I. R. Makin, M. H. Slayton, C. P. Karunakaran, M. T. Burgess, A. Alqadah, and S. M. Rudich, “Treatment of rabbit liver cancer in vivo using miniaturized image-ablate ultrasound arrays,” Ultrasound Med. Biol. 37, 16091621 (2011).
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.850
235.
235. I. R. Makin, T. D. Mast, W. Faidi, M. M. Runk, P. G. Barthe, and M. H. Slayton, “Miniaturized ultrasound arrays for interstitial ablation and imaging,” Ultrasound Med. Biol. 31, 15391550 (2005).
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.008
236.
236. N. R. Owen, J. Y. Chapelon, G. Bouchoux, R. Berriet, G. Fleury, and C. Lafon, “Dual-mode transducers for ultrasound imaging and thermal therapy,” Ultrasonics 50, 216220 (2010).
http://dx.doi.org/10.1016/j.ultras.2009.08.009
237.
237. D. Melodelima, F. Prat, J. Fritsch, Y. Theillere, and D. Cathignol, “Treatment of esophageal tumors using high intensity intraluminal ultrasound: First clinical results,” J. Trans. Med. 6, 28 (2008).
http://dx.doi.org/10.1186/1479-5876-6-28
238.
238. D. Melodelima, R. Salomir, J. Y. Chapelon, Y. Theillere, C. Moonen, and D. Cathignol, “Intraluminal high intensity ultrasound treatment in the esophagus under fast MR temperature mapping: in vivo studies,” Magn. Reson. Med. 54, 975982 (2005).
http://dx.doi.org/10.1002/mrm.20638
239.
239. A. B. Ross, C. J. Diederich, W. H. Nau, H. Gill, D. M. Bouley, B. Daniel, V. Rieke, K. Butts, and G. Sommer, “Highly directional transurethral ultrasound applicators with rotational control for MRI guided prostatic thermal therapy,” Phys. Med. Biol. 49, 189204 (2004).
http://dx.doi.org/10.1088/0031-9155/49/2/002
240.
240. R. Chopra, N. Baker, V. Choy, A. Boyes, K. Tang, D. Bradwell, and M. J. Bronskill, “MRI-compatible transurethral ultrasound system for the treatment of localized prostate cancer using rotational control,” Med. Phys. 35, 13461357 (2008).
http://dx.doi.org/10.1118/1.2841937
241.
241. R. Chopra, M. Burtnyk, W. A. N’Djin, and M. Bronskill, “MRI-controlled transurethral ultrasound therapy for localised prostate cancer,” Int. J. Hyperthermia 26, 804821 (2010).
http://dx.doi.org/10.3109/02656736.2010.503670
242.
242. A. B. Ross, C. J. Diederich, W. H. Nau, V. Rieke, R. K. Butts, G. Sommer, H. Gill, and D. M. Bouley, “Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy,” Med. Phys. 32, 15551565 (2005).
http://dx.doi.org/10.1118/1.1924314
243.
243. A. M. Kinsey, C. J. Diederich, V. Rieke, W. H. Nau, K. B. Pauly, D. Bouley, and G. Sommer, “Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: In vivo evaluation under MR guidance,” Med. Phys. 35, 20812093 (2008).
http://dx.doi.org/10.1118/1.2900131
244.
244. K. B. Pauly, C. J. Diederich, V. Rieke, D. Bouley, J. Chen, W. H. Nau, A. B. Ross, A. M. Kinsey, and G. Sommer, “Magnetic resonance-guided high-intensity ultrasound ablation of the prostate,” Top. Magn. Reson. Imaging 17, 195207 (2006).
http://dx.doi.org/10.1097/RMR.0b013e31803774dd
245.
245. R. Chopra, C. Luginbuhl, F. S. Foster, and M. J. Bronskill, “Multifrequency ultrasound transducers for conformal interstitial thermal therapy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 881889 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1214507
246.
246. K. Siddiqui, R. Chopra, S. Vedula, L. Sugar, M. Haider, A. Boyes, M. Musquera, M. Bronskill, and L. Klotz, “MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies,” Urology 76, 15061511 (2010).
http://dx.doi.org/10.1016/j.urology.2010.04.046
247.
247. H. Fosmire, K. Hynynen, G. W. Drach, B. Stea, P. Swift, and J. R. Cassady, “Feasibility and toxicity of transrectal ultrasound hyperthermia in the treatment of locally advanced adenocarcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys 26, 253259 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90205-A
248.
248. M. D. Hurwitz, J. L. Hansen, S. Prokopios-Davos, J. Manola, Q. Wang, B. A. Bornstein, K. Hynynen, and I. D. Kaplan, “Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: long-term results from Dana-Farber Cancer Institute study 94-153,” Cancer 117, 510516 (2011).
http://dx.doi.org/10.1002/cncr.25619
249.
249. N. B. Smith, N. K. Merrilees, M. Dahleh, and K. Hynynen, “Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease,” Int. J. Hyperthermia 17, 271282 (2001).
http://dx.doi.org/10.1080/02656730010025841
250.
250. J. H. Wootton, I. C. Hsu, and C. J. Diederich, “Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma,” Med. Phys. 38, 598 (2011).
http://dx.doi.org/10.1118/1.3512803
251.
251. T. Juang, J. Wootton, I. C. Hsu, and C. Diederich, “Treatment delivery platform for conformal catheter-based ultrasound hyperthermia,” Proc. SPIE 7181, 718109 (2009).
http://dx.doi.org/10.1117/12.808339
252.
252. W. H. Nau, C. J. Diederich, and E. C. Burdette, “Evaluation of multielement catheter-cooled interstitial ultrasound applicators for high-temperature thermal therapy,” Med. Phys. (USA) 28, 15251534 (2001).
http://dx.doi.org/10.1118/1.1381550
253.
253. M. Kangasniemi, C. J. Diederich, R. E. Price, R. J. Stafford, D. F. Schomer, L. E. Olsson, P. D. Tyreus, W. H. Nau, and J. D. Hazle, “Multiplanar MR temperature-sensitive imaging of cerebral thermal treatment using interstitial ultrasound applicators in a canine model,” J. Magn. Reson. Imaging 16, 522531. (2002).
http://dx.doi.org/10.1002/jmri.10191
254.
254. W. H. Nau, C. J. Diederich, A. B. Ross, K. Butts, V. Rieke, D. M. Bouley, H. Gill, B. Daniel, and G. Sommer, “MRI-guided interstitial ultrasound thermal therapy of the prostate: A feasibility study in the canine model,” Med. Phys. 32, 733743 (2005).
http://dx.doi.org/10.1118/1.1861163
255.
255. E. G. Moros, R. B. Roemer, and K. Hynynen, “Pre-focal plane high-temperature regions induced by scanning focused ultrasound beams,” Int. J. Hyperthermia 6, 351366 (1990).
http://dx.doi.org/10.3109/02656739009141143
256.
256. P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
257.
257. W. A. Grissom, V. Rieke, A. B. Holbrook, Y. Medan, M. Lustig, J. Santos, M. V. McConnell, and K. B. Pauly, “Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs,” Med. Phys. 37, 50145026 (2010).
http://dx.doi.org/10.1118/1.3475943
258.
258. S. H. Benedict, K. M. Yenice, D. Followill, J. M. Galvin, W. Hinson, B. Kavanagh, P. Keall, M. Lovelock, S. Meeks, L. Papiez, T. Purdie, R. Sadagopan, M. C. Schell, B. Salter, D. J. Schlesinger, A. S. Shiu, T. Solberg, D. Y. Song, V. Stieber, R. Timmerman, W. A. Tome, D. Verellen, L. Wang, and F. F. Yin, “Stereotactic body radiation therapy: The report of AAPM Task Group 101,” Med. Phys. 37, 40784101 (2010).
http://dx.doi.org/10.1118/1.3438081
259.
259. L. InSightec, ExAblate 2000 MR Guided Focused Ultrasound Surgery Operator's Manual, Rev 04/08 ed. (InSightec, Ltd., Tirat Carmel, 2008).
260.
260. R. Salomir, J. Palussiere, F. C. Vimeux, J. A. de Zwart, B. Quesson, M. Gauchet, P. Lelong, J. Pergrale, N. Grenier, and C. T. Moonen, “Local hyperthermia with MR-guided focused ultrasound: spiral trajectory of the focal point optimized for temperature uniformity in the target region,” J. Magn. Reson. Imaging 12, 571583 (2000).
http://dx.doi.org/10.1002/1522-2586(200010)12:4<571::AID-JMRI9>3.0.CO;2-2
261.
261. P. J. White, G. T. Clement, and K. Hynynen, “Longitudinal and shear mode ultrasound propagation in human skull bone,” Ultrasound Med. Biol. 32, 10851096 (2006).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.03.015
262.
262. G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol. 47, 12191236 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/301
263.
263. R. J. McGough, M. L. Kessler, E. S. Ebbini, and C. A. Cain, “Treatment planning for hyperthermia with ultrasound phased arrays,” IEEE Trans. Ultrason. Ferroelectr. 43, 10741084 (1996).
http://dx.doi.org/10.1109/58.542051
264.
264. K. Hynynen, “The role of nonlinear ultrasound propagation during hyperthermia treatments,” Med. Phys. 18, 11561163 (1991).
http://dx.doi.org/10.1118/1.596626
265.
265. A. Pulkkinen and K. Hynynen, “Computational aspects in high intensity ultrasonic surgery planning,” Comput. Med. Imaging Graph. 34, 6978 (2010).
http://dx.doi.org/10.1016/j.compmedimag.2009.08.001
266.
266. M. D. Harpen, “Basic nonlinear acoustics: An introduction for radiological physicists,” Med. Phys. 33, 32413247 (2006).
http://dx.doi.org/10.1118/1.2207128
267.
267. K. Kuroda, D. Kokuryo, E. Kumamoto, K. Suzuki, Y. Matsuoka, and B. Keserci, “Optimization of self-reference thermometry using complex field estimation,” Magn. Reson. Med. 56, 835843 (2006).
http://dx.doi.org/10.1002/mrm.21016
268.
268. V. Rieke, K. K. Vigen, G. Sommer, B. L. Daniel, J. M. Pauly, and K. Butts, “Referenceless PRF shift thermometry,” Magn. Reson. Med. 51, 12231231 (2004).
http://dx.doi.org/10.1002/mrm.20090
269.
269. V. Rieke, A. M. Kinsey, A. B. Ross, W. H. Nau, C. J. Diederich, G. Sommer, and K. B. Pauly, “Referenceless MR thermometry for monitoring thermal ablation in the prostate,” IEEE Trans. Med. Imaging 26, 813821 (2007).
http://dx.doi.org/10.1109/TMI.2007.892647
270.
270. B. D. de Senneville, C. Mougenot, and C. T. Moonen, “Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound,” Magn. Reson. Med. 57, 319330 (2007).
http://dx.doi.org/10.1002/mrm.21124
271.
271. K. K. Vigen, B. L. Daniel, J. M. Pauly, and K. Butts, “Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion,” Magn. Reson. Med. 50, 10031010 (2003).
http://dx.doi.org/10.1002/mrm.10608
272.
272. M. Ries, B. D. de Senneville, S. Roujol, Y. Berber, B. Quesson, and C. Moonen, “Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues,” Magn. Reson. Med. 64, 17041712 (2010).
http://dx.doi.org/10.1002/mrm.22548
273.
273. K. Nehrke, P. Bornert, J. Groen, J. Smink, and J. C. Bock, “On the performance and accuracy of 2D navigator pulses,” Magn. Reson. Imaging 17, 11731181 (1999).
http://dx.doi.org/10.1016/S0730-725X(99)00043-0
274.
274. D. B. Plewes, I. Betty, S. N. Urchuk, and I. Soutar, “Visualizing tissue compliance with MR imaging,” J. Magn. Reson. Imaging 5, 733738 (1995).
http://dx.doi.org/10.1002/jmri.1880050620
275.
275. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45, 14371447 (2000).
http://dx.doi.org/10.1088/0031-9155/45/6/303
276.
276. N. McDannold and S. E. Maier, “Magnetic resonance acoustic radiation force imaging,” Med. Phys. 35, 37483758 (2008).
http://dx.doi.org/10.1118/1.2956712
277.
277. M. Radicke, A. Engelbertz, B. Habenstein, M. Lewerenz, O. Oehms, P. Trautner, B. Weber, S. Wrede, and K. Maier, “New image contrast method in magnetic resonance imaging via ultrasound,” Hyperfine Interact. 181, 2126 (2008).
http://dx.doi.org/10.1007/s10751-008-9628-6
278.
278. E. E. Konofagou and K. Hynynen, “Localized harmonic motion imaging: Theory, simulations and experiments,” Ultrasound Med. Biol. 29, 14051413 (2003).
http://dx.doi.org/10.1016/S0301-5629(03)00953-0
279.
279. L. Curiel and K. Hynynen, “Localized harmonic motion imaging for focused ultrasound surgery targeting,” Ultrasound Med. Biol. 37, 12301239 (2011).
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.013
280.
280. C. Maleke and E. E. Konofagou, “Harmonic motion imaging for focused ultrasound (HMIFU): A fully integrated technique for sonication and monitoring of thermal ablation in tissues,” Phys. Med. Biol. 53, 17731793 (2008).
http://dx.doi.org/10.1088/0031-9155/53/6/018
281.
281. J. Du, G. Hamilton, A. Takahashi, M. Bydder, and C. B. Chung, “Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone,” Magn. Reson. Med. 58, 10011009 (2007).
http://dx.doi.org/10.1002/mrm.21397
282.
282. M. F. McNitt-Gray, “AAPM/RSNA physics tutorial for residents: Topics in CT. Radiation dose in CT,” Radiographics 22, 15411553 (2002).
http://dx.doi.org/10.1148/rg.226025128
283.
283. P. D. Gatehouse and G. M. Bydder, “Magnetic resonance imaging of short T2 components in tissue,” Clin. Radiol. 58, 119 (2003).
http://dx.doi.org/10.1053/crad.2003.1157
284.
284. I. L. Reichert, M. D. Robson, P. D. Gatehouse, T. He, K. E. Chappell, J. Holmes, S. Girgis, and G. M. Bydder, “Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences,” Magn. Reson. Imaging. 23, 611618 (2005).
http://dx.doi.org/10.1016/j.mri.2005.02.017
285.
285. M. D. Robson and G. M. Bydder, “Clinical ultrashort echo time imaging of bone and other connective tissues,” NMR Biomed. 19, 765780 (2006).
http://dx.doi.org/10.1002/nbm.1100
286.
286. J. Du, M. Carl, M. Bydder, A. Takahashi, C. B. Chung, and G. M. Bydder, “Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone,” J. Magn. Reson. 207, 304311 (2010).
http://dx.doi.org/10.1016/j.jmr.2010.09.013
287.
287. W. C. Bae, P. C. Chen, C. B. Chung, K. Masuda, D. D’Lima, and J. Du, “Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties,” J. Bone Miner. Res. 27, 848857 (2012).
http://dx.doi.org/10.1002/jbmr.1535
288.
288. D. Arora, D. Cooley, T. Perry, J. Guo, A. Richardson, J. Moellmer, R. Hadley, D. Parker, M. Skliar, and R. B. Roemer, “MR thermometry-based feedback control of efficacy and safety in minimum-time thermal therapies: Phantom and in-vivo evaluations,” Int. J. Hyperthermia 22, 2942 (2006).
http://dx.doi.org/10.1080/02656730500412411
289.
289. D. Arora, M. A. Minor, M. Skliar, and R. B. Roemer, “Control of thermal therapies with moving power deposition field,” Phys. Med. Biol. 51, 12011219 (2006).
http://dx.doi.org/10.1088/0031-9155/51/5/011
290.
290. A. Dhiraj, C. Daniel, P. Trent, S. Mikhail, and B. R. Robert, “Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation,” Phys. Med. Biol. 50, 19191935 (2005).
http://dx.doi.org/10.1088/0031-9155/50/8/019
291.
291. A. B. Holbrook, P. Ghanouni, J. M. Santos, Y. Medan, and K. Butts Pauly, “In vivo MR acoustic radiation force imaging in the porcine liver,” Med. Phys. 38, 50815089 (2011).
http://dx.doi.org/10.1118/1.3622610
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/8/10.1118/1.4811136
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Examples of currently available commercial MR-guided focused ultrasound systems. (a) Insightec OR MR-guided system (image courtesy of InSightec Ltd.). (b) Philips Sonalleve MR-guided system (image courtesy of Philips Medical Systems).

Image of FIG. 2.

Click to view

FIG. 2.

MR-guided focused ultrasound for uterine fibroids. Images document the treatment of a fibroid patient treated in two MRgFUS sessions approximately 1 week apart. (a) Preprocedure: axial T1 spin-echo image of a patient with a large (∼542 cm) uterine fibroid. Image shows some hetereogeneity of the fibroid, as well as some possible necrotic areas. (b) Postprocedure 1: axial, postcontrast, fat suppressed, fast spoiled gradient echo pulse sequence. Image shows large nonperfused volume in the center of the fibroid. Volume calculations estimate that 63% of fibroid volume was nonperfused. (c) Postprocedure 2: axial, postcontrast, fat suppressed, fast spoiled gradient echo pulse sequence. Image shows the remaining volume of the lesion is now nonperfused. Approximately 100% of the fibroid volume was ablated. [Images courtesy of the University of Virginia Department of Radiology].

Image of FIG. 3.

Click to view

FIG. 3.

Fluorescence microphotographs of two fragments (control and ultrasound-treated) of a swine artery after intravenous administration of DiI fluorescent-dye impregnated microbubbles (Ref. ) (a) Fluorescence observed in the control fragment of the artery after microbubble administration. (b) Fluorescence observed in the ultrasound-treated fragment after microbubble administration and insonation with radiation-force ultrasound, followed by a “destruction” pulse to locally destroy the microbubbles. (c) Ultrasound image of the artery at the end of the applied ultrasound sequence with the locations of the excised control (a) and ultrasound-treated (b) fragments. [Figures courtesy of Abhay Patil, Philips Healthcare, and John Hossack, University of Virginia] (Ref. ).

Image of FIG. 4.

Click to view

FIG. 4.

Contrast-enhanced T1-weighted MRI showing blood-brain barrier disruption induced in a brain volume in a macaque by focused ultrasound and microbubbles. The disruption was produced in a 1 cm volume using low-energy focused ultrasound pulses combined with a circulating microbubble ultrasound contrast agent. The sonications were applied transcranially using a clinical prototype MRI-guided focused ultrasound system (ExAblate 4000, InSightec). Note the lack of contrast enhancement in the ultrasound beam path. This noninvasive technique is being investigated to target the delivery of drugs that normally do not reach the brain due to the presence of the blood-brain barrier. [Image courtesy of Dr. Nathan McDannold, Brigham & Women's Hospital, Boston, MA.]

Image of FIG. 5.

Click to view

FIG. 5.

FUS/microbubble-mediated gene transcription (Ref. ). (a) A positively charged microbubble is complexed with a luciferase-encoding plasmid, and carries an antibody against a marker for Crohn's disease. Control bubbles carry a nonspecific Immunoglobulin G (IgG) antibody. Bubbles are injected intravenously and left to circulate for 2 days, with the targeted bubbles accumulating in the target intestinal inflammation zone and attaching to the Crohn's disease marker on the vascular endothelium. After the circulating bubbles exit the bloodstream, ultrasound is performed. Two days later, luciferin is injected, and optical imaging of the induced bioluminescence is performed. (b) Control vs experimental results. The left-hand figure shows an animal injected with control bubbles. Right hand figure shows animal injected with targeted antibody bubbles. Note the accumulation bubbles in the targeted animal, demonstrating transfection. [Image courtesy of Alexander Klibanov, University of Virginia] (Ref. ).

Image of FIG. 6.

Click to view

FIG. 6.

Examples of treatment planning systems for MRgFUS. (a) Treatment planning for the InSightec Exablate Neuro. Planning screens allow the operator to set treatment parameters, monitor beam paths per transducer, thermal lesion location, time/temperature graphs, and ultrasound frequency spectrum. [Image courtesy of the InSightec Ltd.] (b) Treatment planning for the Philips Sonalleve MRgFUS system. This system allows the operator to monitor real-time temperature rise at the target, as well as in near-field and far-field regions [Image courtesy of Philips Healthcare].

Image of FIG. 7.

Click to view

FIG. 7.

Color-coded temperature map overlaid on T2* weighted anatomical MR images of porcine kidneys demonstrating a real-time motion compensation technique (Ref. ). (a) Heating deposition without motion compensation. (b) Heating deposition with motion compensation. Notice the increase in heating magnitude and sharper temperature falloff. [Images courtesy of Mario Ries, Ph.D., Laboratory for Functional and Molecular Imaging, Bordeaux, France].

Image of FIG. 8.

Click to view

FIG. 8.

MR-ARFI: (a) MR-ARFI and (b) MR-thermometry images acquired in the porcine liver. Both images are small FOV EPI acquisitions superimposed on a larger FOV gradient echo image acquired a few minutes before. After visualization of the displacement focus on MR-ARFI to verify the target location (Ref. ), a steered HIFU ablation was performed with thermal monitoring, shown in the reduced FOV image on the right (Ref. ). MR-ARFI images require only 3 J of energy, whereas a low temperature rise test ablation would require upwards of 800 J of energy. [Images of courtesy of Dr. Andrew B. Holbrook and Dr. Kim Butts Pauly, Stanford University].

Tables

Generic image for table

Click to view

TABLE I.

Major components of a clinical high-intensity focused ultrasound surgery system.

Generic image for table

Click to view

TABLE II.

Current manufacturers of USgFUS and MRgFUS systems.

Generic image for table

Click to view

TABLE III.

Scientific organizations promoting the adoption of focused ultrasound technology.

Generic image for table

Click to view

TABLE IV.

Trials currently active or recruiting in the US clinical trials database (NCT) for breast cancer, functional neurosurgery, brain metastases, uterine fibroids, bone metastases, and prostate cancer.

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/8/10.1118/1.4811136
2013-07-11
2014-04-24

Abstract

MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20/20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/8/1.4811136.html;jsessionid=59i1ngf2wmbu3.x-aip-live-02?itemId=/content/aapm/journal/medphys/40/8/10.1118/1.4811136&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: MR-guided focused ultrasound surgery, present and future
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/8/10.1118/1.4811136
10.1118/1.4811136
SEARCH_EXPAND_ITEM