Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/8/10.1118/1.4812430
1.
1. D. J. Brenner and E. J. Hall, “Computed tomography–an increasing source of radiation exposure,” N. Engl. J. Med. 357, 22772284 (2007).
http://dx.doi.org/10.1056/NEJMra072149
2.
2. R. Smith-Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. Berrington de Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Arch. Intern. Med. 169, 20782086 (2009).
http://dx.doi.org/10.1001/archinternmed.2009.427
3.
3. A. Berrington de Gonzalez, M. Mahesh, K. P. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the United States in 2007,” Arch. Intern Med. 169, 20712077 (2009).
http://dx.doi.org/10.1001/archinternmed.2009.440
4.
4. AAPM CT Summit, “Scan parameter optimization,” (2010) (available URL: http://www.aapm.org/meetings/2010CTS/default.asp). Date accessed 1/10/2011.
5.
5. W. R. Hendee, G. J. Becker, J. P. Borgstede, J. Bosma, W. J. Casarella, B. A. Erickson, C. D. Maynard, J. H. Thrall, and P. E. Wallner, “Addressing overutilization in medical imaging,” Radiology 257, 240245 (2010).
http://dx.doi.org/10.1148/radiol.10100063
6.
6. A. Apel, J. G. Fletcher, J. L. Fidler, D. M. Hough, L. Yu, L. S. Guimaraes, M. E. Bellemann, C. H. McCollough, D. R. Holmes 3rd, and C. D. Eusemann, “Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets,” Eur. Radiol. 21, 644652 (2010).
http://dx.doi.org/10.1007/s00330-010-1947-8
7.
7. L. S. Guimaraes, J. G. Fletcher, W. S. Harmsen, L. Yu, H. Siddiki, Z. Melton, J. E. Huprich, D. Hough, R. Hartman, and C. H. McCollough, “Appropriate patient selection at abdominal dual-energy CT using 80 kV: Relationship between patient size, image noise, and image quality,” Radiology 257, 732742 (2010).
http://dx.doi.org/10.1148/radiol.10092016
8.
8. International Commission on Radiation Units and Measurements, “Medical imaging – The assessment of image quality,’’ Report 54, (International Commission on Radiation Units and Measurements, Bethesda, MD, 1996), pp. 188.
9.
9. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. U.S.A. 90, 97589765 (1993).
http://dx.doi.org/10.1073/pnas.90.21.9758
10.
10. J. Beutel, H. Kundel, and R. Van Metter, Handbook of medical imaging: Physics and psychophysics (SPIE, Bellingham, WA, 2000).
11.
11. K. J. Myers and H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 24472457 (1987).
http://dx.doi.org/10.1364/JOSAA.4.002447
12.
12. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 11, 12371242 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001237
13.
13. C. K. Abbey and H. H. Barrett, “Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 18, 473488 (2001).
http://dx.doi.org/10.1364/JOSAA.18.000473
14.
14. M. Eckstein, J. Bartroff, C. Abbey, J. Whiting, and F. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express 11, 460475 (2003).
http://dx.doi.org/10.1364/OE.11.000460
15.
15. M. P. Eckstein, C. K. Abbey, and J. S. Whiting, “Human vs model observers in anatomic backgrounds,” Proc. SPIE 3340, 1626 (1998).
http://dx.doi.org/10.1117/12.306180
16.
16. S. Richard and J. H. Siewerdsen, “Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images,” Med. Phys. 35, 50435053 (2008).
http://dx.doi.org/10.1118/1.2988161
17.
17. A. E. Burgess, F. L. Jacobson, and P. F. Judy, “Human observer detection experiments with mammograms and power-law noise,” Med. Phys. 28, 419437 (2001).
http://dx.doi.org/10.1118/1.1355308
18.
18. A. S. Chawla, E. Samei, R. S. Saunders, J. Y. Lo, and J. A. Baker, “A mathematical model platform for optimizing a multiprojection breast imaging system,” Med. Phys. 35, 13371345 (2008).
http://dx.doi.org/10.1118/1.2885367
19.
19. A. S. Chawla, E. Sarnei, R. Saunders, C. Abbey, and D. Delong, “Effect of dose reduction on the detection of mammographic lesions: A mathematical observer model analysis,” Med. Phys. 34, 33853398 (2007).
http://dx.doi.org/10.1118/1.2756607
20.
20. M. L. Hill, J. G. Mainprize, and M. J. Yaffe, “An observer model for lesion detectability in contrast-enhanced digital mammography,” Digit. Mammogr. 6136, 720727 (2010).
http://dx.doi.org/10.1007/978-3-642-13666-5_97
21.
21. P. Bonetto, J. Qi, and R. M. Leahy, “Covariance approximation for fast and accurate computation of channelized Hotelling observer statistics,” IEEE Trans. Nucl. Sci. 47, 15671572 (2000).
http://dx.doi.org/10.1109/23.873017
22.
22. H. C. Gifford, M. A. King, D. J. de Vries, and E. J. Soares, “Channelized hotelling and human observer correlation for lesion detection in hepatic SPECT imaging,” J. Nucl. Med. 41, 514521 (2000).
23.
23. H. C. Gifford, R. G. Wells, and M. A. King, “A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images,” IEEE Trans. Nucl. Sci. 46, 10321037 (1999).
http://dx.doi.org/10.1109/23.790820
24.
24. S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 36013617 (2007).
http://dx.doi.org/10.1088/0031-9155/52/12/017
25.
25. C. Lartizien, P. E. Kinahan, and C. Comtat, “Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography,” Acad. Radiol. 11, 637648 (2004).
http://dx.doi.org/10.1016/j.acra.2004.03.002
26.
26. M. D. Tisdall and M. S. Atkins, “Using human and model performance to compare MRI reconstructions,” IEEE Trans. Med. Imaging 25, 15101517 (2006).
http://dx.doi.org/10.1109/TMI.2006.881374
27.
27. D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 44594471 (2007).
http://dx.doi.org/10.1118/1.2790586
28.
28. G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 19481965 (2010).
http://dx.doi.org/10.1118/1.3352586
29.
29. S. Park, R. Jennings, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 62536270 (2010).
http://dx.doi.org/10.1118/1.3488910
30.
30. P. F. Judy, R. G. Swensson, and M. Szulc, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 1323 (1981).
http://dx.doi.org/10.1118/1.594903
31.
31. K. L. Boedeker and M. F. McNitt-Gray, “Application of the noise power spectrum in modern diagnostic MDCT: Part II. Noise power spectra and signal to noise,” Phys. Med. Biol. 52, 40474061 (2007).
http://dx.doi.org/10.1088/0031-9155/52/14/003
32.
32. A. Wunderlich and F. Noo, “Image covariance and lesion detectability in direct fan-beam x-ray computed tomography,” Phys. Med. Biol. 53, 24712493 (2008).
http://dx.doi.org/10.1088/0031-9155/53/10/002
33.
33. L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (9pp.) (2013).
http://dx.doi.org/10.1118/1.4794498
34.
34. M. P. Eckstein, B. Pham, and C. K. Abbey, “Effect of image compression for model and human observers in signal-known-statistically tasks,” Proc. SPIE. 4686, 1324 (2002).
http://dx.doi.org/10.1117/12.462673
35.
35. H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice LROC studies,” IEEE Trans. Med. Imaging 24, 160169 (2005).
http://dx.doi.org/10.1109/TMI.2004.839362
36.
36. L. M. Popescu and R. M. Lewitt, “Small nodule detectability evaluation using a generalized scan-statistic model,” Phys. Med. Biol. 51, 62256244 (2006).
http://dx.doi.org/10.1088/0031-9155/51/23/020
37.
37. Y. Zhang, B. Pham, and M. P. Eckstein, “Evaluation of JPEG 2000 encoder options: Human and model observer detection of variable signals in X-ray coronary angiograms,” IEEE Trans. Med. Imaging 23, 613632 (2004).
http://dx.doi.org/10.1109/TMI.2004.826359
38.
38. R. G. Swensson, “Unified measurement of observer performance in detecting and localizing target objects on images,” Med. Phys. 23, 17091725 (1996).
http://dx.doi.org/10.1118/1.597758
39.
39. ACR Electronic Practice Guideline, “ACR Technical standard for electronic practice of medical imaging,” (2007) [See http://gm.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/med_phys/electronic_practice.aspx].
40.
40. A. Wunderlich and F. Noo, “A nonparametric procedure for comparing the areas under correlated LROC curves,” IEEE. Trans. Med. Imaging 31, 20502061 (2012).
http://dx.doi.org/10.1109/TMI.2012.2205015
41.
41. L. M. Popescu, “Nonparametric ROC and LROC analysis,” Med. Phys. 34, 15561564 (2007).
http://dx.doi.org/10.1118/1.2717407
42.
42. M. K. Whitaker, E. Clarkson, and H. H. Barrett, “Estimating random signal parameters from noisy images with nuisance parameters: Linear and scanning-linear methods,” Opt. Express 16, 81508173 (2008).
http://dx.doi.org/10.1364/OE.16.008150
43.
43. C. K. Abbey, F. Bochud, “Modeling visual detection tasks in correlated image noise with linear model observers,” in Handbook of Medical Imaging: Physics and Psychophysics, edited by J. Beutel, H. Kundel, and R. Van Metter (SPIE, Bellingham, WA, 2000), Vol. 1.
44.
44. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, Hoboken, NJ, 2004).
45.
45. Y. Zhang, C. K. Abbey, and M. P. Eckstein, “Adaptive detection mechanisms in globally statistically nonstationary-oriented noise,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 23, 15491558 (2006).
http://dx.doi.org/10.1364/JOSAA.23.001549
46.
46. A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617627 (1988).
http://dx.doi.org/10.1364/JOSAA.5.000617
47.
47. Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 33123322 (2007).
http://dx.doi.org/10.1118/1.2756603
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/8/10.1118/1.4812430
Loading
/content/aapm/journal/medphys/40/8/10.1118/1.4812430
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/8/10.1118/1.4812430
2013-07-10
2016-09-27

Abstract

The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.

Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.

In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the average performance of the human observers and the model observer performance.

In CT imaging of different sizes of low-contrast lesions (−15 HU), the performance of CHO with Gabor channels was highly correlated with human observer performance for the detection and localization tasks with uncertain lesion location in CT imaging at four clinically relevant dose levels. This suggests the ability of Gabor CHO model observers to meaningfully assess CT image quality for the purpose of optimizing scan protocols and radiation dose levels in detection and localization tasks for low-contrast lesions.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/8/1.4812430.html;jsessionid=v5FOCoeyglJepV7zewXQkGtG.x-aip-live-02?itemId=/content/aapm/journal/medphys/40/8/10.1118/1.4812430&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/8/10.1118/1.4812430&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/8/10.1118/1.4812430'
Right1,Right2,Right3,