Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. H. McCollough, G. H. Chen, W. Kalender, S. Leng, E. Samei, K. Taguchi, G. Wang, L. Yu, and R. I. Pettigrew, “Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT,” Radiology 264, 567580 (2012).
2. D. J. Brenner and E. J. Hall, “Computed tomography–An increasing source of radiation exposure,” N. Engl. J. Med. 357, 22772284 (2007).
3. F. A. Mettler Jr., M. Bhargavan, K. Faulkner, D. B. Gilley, J. E. Gray, G. S. Ibbott, J. A. Lipoti, M. Mahesh, J. L. McCrohan, M. G. Stabin, B. R. Thomadsen, and T. T. Yoshizumi, “Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources–1950–2007,” Radiology 253, 520531 (2009).
4. NCRP report no. 160, Ionizing radiation exposure of the population of the United States (National Council on Radiation Protection and Measurements, Bethesda, MD, 2009).
5. BEIR VII report, Health Risks from Exposure to Low Levels of Ionizing Radiation. BEIR VII Phase 2 (National Academies Press, Washington, DC, 2006).
6. S. Leschka, P. Stolzmann, F. T. Schmid, H. Scheffel, B. Stinn, B. Marincek, H. Alkadhi, and S. Wildermuth, “Low kilovoltage cardiac dual-source CT: Attenuation, noise, and radiation dose,” Eur. Radiol. 18, 18091817 (2008).
7. T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süss, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16, 256268 (2006).
8. S. Achenbach, M. Marwan, D. Ropers, T. Schepis, T. Pflederer, K. Anders, A. Kuettner, W. G. Daniel, M. Uder, and M. Lell, “Coronary computed tomography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition,” Eur. Heart J. 31, 340346 (2010).
9. M. Lell, F. Hinkmann, E. Nkenke, B. Schmidt, P. Seidensticker, W. Kalender, M. Uder, and S. Achenbach, “Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system,” Eur. J. Radiol. 76, e6e12 (2010).
10. T. R. C. Johnson, B. Krauß, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, and B. Schmidt, “Material differentiaiton by dual energy CT: Initial experience,” Eur. Radiol. 17, 15101517 (2007).
11. A. Graser, T. R. Johnson, H. Chandarana, and M. Macari, “Dual energy CT: Preliminary observations and potential clinical applications in the abdomen,” Eur. Radiol. 19, 1323 (2009).
12. A. N. Primak, J. G. Fletcher, T. J. Vrtiska, O. P. Dzyubak, J. C. Lieske, M. E. Jackson, J. C. Williams Jr., and C. H. McCollough, “Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT,” Acad. Radiol. 14, 14411447 (2007).
13. International Commission on Radiological Protection, ICRP Publication 87. Managing patient dose in computed tomography (Pergamon, Elsevier Science, Oxford, 2000).
14. The Medical Imaging and Technology Alliance (MITA), XR-25 CT Dose Check Standard (National Electrical Manufacturers Association (NEMA), Rosslyn, VA, 2010).
15. C. Schabel, M. Fenchel, B. Schmidt, T. G. Flohr, C. Wuerslin, C. Thomas, A. Korn, I. Tsiflikas, C. D. Claussen, M. Heuschmid, and D. Ketelsen, “Clinical evaluation and potential radiation dose reduction of the novel sinogram-affirmed iterative reconstruction technique (SAFIRE) in abdominal computed tomography angiography,” Acad. Radiol. 20, 165172 (2013).
16. R. Smith-Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. Berrington de Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Arch. Intern Med. 169, 20782086 (2009).
17. A. Berrington de Gonzalez, M. Mahesh, K. P. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the United States in 2007,” Arch. Intern Med. 169, 20712077 (2009).
18. A. Schuhbaeck, S. Achenbach, C. Layritz, J. Eisentopf, F. Hecker, T. Pflederer, S. Gauss, J. Rixe, W. Kalender, W. G. Daniel, M. Lell, and D. Ropers, “Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction,” Eur. Radiol. 23, 597606 (2013).
19. T. G. Flohr, S. Leng, L. Yu, T. Aiimendinger, H. Bruder, M. Petersilka, C. D. Eusemann, K. Stierstorfer, B. Schmidt, and C. H. McCollough, “Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality,” Med. Phys. 36, 56415653 (2009).
20. D. Ketelsen, M. Buchgeister, M. Fenchel, B. Schmidt, T. G. Flohr, R. Syha, C. Thomas, I. Tsiflikas, C. D. Claussen, and M. Heuschmid, “Automated computed tomography dose-saving algorithm to protect radiosensitive tissues: Estimation of radiation exposure and image quality considerations,” Invest. Radiol. 47, 148152 (2012).
21. M. K. Kalra, M. Woisetschlager, N. Dahlstrom, S. Singh, M. Lindblom, G. Choy, P. Quick, B. Schmidt, M. Sedlmair, M. A. Blake, and A. Persson, “Radiation dose reduction with Sinogram Affirmed Iterative Reconstruction technique for abdominal computed tomography,” J. Comput. Assist. Tomogr. 36, 339346 (2012).
22. D. M. Hough, J. G. Fletcher, K. L. Grant, J. L. Fidler, L. Yu, J. R. Geske, R. E. Carter, R. Raupach, B. Schmidt, T. Flohr, and C. H. McCollough, “Lowering kilovoltage to reduce radiation dose in contrast-enhanced abdominal CT: Initial assessment of a prototype automated kilovoltage selection tool,” AJR, Am. J. Roentgenol. 199, 10701077 (2012).
23. D. R. Coles, M. A. Smail, I. S. Negus, P. Wilde, M. Oberhoff, K. R. Karsch, and A. Baumbach, “Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography,” J. Am. Coll. Cardiol. 47, 18401845 (2006).
24. J. C. O’Daniel, D. M. Stevens, and D. D. Cody, “Reducing radiation exposure from survey CT scans,” AJR, Am. J. Roentgenol. 185, 509515 (2005).
25. K. Perisinakis, J. Damilakis, A. Voloudaki, A. Papadakis, and N. Gourtsoyiannis, “Patient dose reduction in CT examinations by optimising scanogram acquisition,” Radiat. Prot. Dosim. 93, 173178 (2001).
26. B. R. Archer, S. Glaze, L. B. North, and S. C. Bushong, “Dosimeter placement in the Rando phantom,” Med. Phys. 4, 315318 (1977).
27. J. H. Kleck, J. B. Smathers, F. E. Holly, and L. T. Myers, “Anthropomorphic radiation therapy phantoms: A quantitative assessment of tissue substitutes,” Med. Phys. 17, 800806 (1990).
28. J. Zoetelief, H. W. Julius, and P. Christensen, Recommendations for patient dosimetry in diagnostic radiology using TLD, Report EUR 19604 EN, (European Commission, 2000).
29. W. Chen, D. Kolditz, M. Beister, R. Bohle, and W. A. Kalender, “Faast on-site Monte Carlo tool for dose calculations in CT applications,” Med. Phys. 39, 29852996 (2012).
30. P. Deak, M. van Straten, P. C. Shrimpton, M. Zankl, and W. A. Kalender, “Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography,” Eur. Radiol. 18, 759772 (2008).
31. International Commission on Radiological Protection, ICRP Publication 110: Adult Reference Computational Phantoms (Pergamon, Elsevier Science, Oxford, 2009).
32. International Commission on Radiological Protection, ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection (Pergamon, Elsevier Science, Oxford, 2007).
33. L. Struelens, F. Vanhavere, and K. Smans, “Experimental validation of Monte Carlo calculations with a voxelized Rando-Alderson phantom: A study on influence parameters,” Phys. Med. Biol. 53, 58315844 (2008).
34. M. J. Budoff, D. Dowe, J. G. Jollis, M. Gitter, J. Sutherland, E. Halmert, M. Scherer, R. Bellinger, A. Martin, R. Benton, and J. K. Min, “Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial,” J. Am. Coll. Cardiol. 52, 17241732 (2008).
35. B. Bischoff, F. Hein, T. Meyer, M. Krebs, M. Hadamitzky, S. Martinoff, A. Schomig, and J. Hausleiter, “Comparison of sequential and helical scanning for radiation dose and image quality: Results of the prospective multicenter study on radiation dose estimates of cardiac CT angiography (PROTECTION) I study,” AJR Am. J. Roentgenol. 194, 14951499 (2010).
36. J. Hausleiter, T. S. Meyer, E. Martuscelli, P. Spagnolo, H. Yamamoto, P. Carrascosa, T. Anger, L. Lehmkuhl, H. Alkadhi, S. Martinoff, M. Hadamitzky, F. Hein, B. Bischoff, M. Kuse, A. Schomig, and S. Achenbach, “Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: The multicenter, multivendor, randomized PROTECTION-III study,” JACC Cardiovasc. Imaging 5, 484493 (2012).
37. G. Vorobiof, S. Achenbach, and J. Narula, “Minimizing radiation dose for coronary CT angiography,” Cardiol. Clin. 30, 917 (2012).
38. K. Kilic, G. Erbas, M. Guryildirim, M. Arac, E. Ilgit, and B. Coskun, “Lowering the dose in head CT using adaptive statistical iterative reconstruction,” AJNR Am. J. Neuroradiol. 32, 15781582 (2011).
39. S. Baumueller, A. Winklehner, C. Karlo, R. Goetti, T. Flohr, E. W. Russi, T. Frauenfelder, and H. Alkadhi, “Low-dose CT of the lung: Potential value of iterative reconstructions,” Eur. Radiol. 22, 25972606 (2012).
40. P. J. Pickhardt, M. G. Lubner, D. H. Kim, J. Tang, J. A. Ruma, A. M. Del Rio, and G. H. Chen, “Abdominal CT with model-based iterative reconstruction (MBIR): Initial results of a prospective trial comparing ultralow-dose with standard-dose imaging,” AJR Am. J. Roentgenol. 199, 12661274 (2012).

Data & Media loading...


Article metrics loading...



With recently introduced technical innovations for CT systems, the dose of CT scan acquisitions has been substantially reduced; even effective dose values below 1 mSv have been reported. Due to this development, dose of the localizer radiograph may contribute substantially to dose of the whole CT examination. Since there are only limited data in the literature regarding patient dose for the different types of localizer radiographs, patient dose values were estimated in our study by measurements and Monte Carlo simulations and compared to dose values of typical CT examinations.

First, dose distributions were measured in anthropomorphic phantoms for three different body regions (head, thorax, abdomen-pelvic) and three positions of the x-ray tube (AP, PA, and lateral views); measured values were compared to simulated data using Monte Carlo techniques for validation purposes. Second, organ and effective dose values for the various investigated localizer radiograph scenarios were calculated and compared with published dose values for standard CT and low-dose CT examinations.

For the anthropomorphic phantom, deviations of the dose values between measured and calculated results were in the range of 15%. Organ and effective dose values showed a strong dependence on the tube position. The largest differences were observed for chest localizer radiographs in the female phantom for the dose to the breast (AP: 1.01 mGy vs PA: 0.24 mGy). Overall effective dose values were in the range of 0.04–0.42 mSv per localizer radiograph acquisition.

In view of the technical dose-reducing innovations in CT, localizer radiographs may substantially contribute to the total dose of the whole CT examination, particularly in the case of dedicated low-dose scans used, e.g., for young patients or screening purposes. Optimization of dose in localizer radiographs should be pursued further in the same way as it was done in CT.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd