Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/9/10.1118/1.4817475
1.
1. D. Lipsitz, R. J. Higgins, G. D. Kortz, P. J. Dickinson, A. W. Bollen, D. K. Naydan, and R. A. Lecouteur, “Glioblastoma multiforme: Clinical findings, magnetic resonance imaging, and pathology in five dogs,” Vet. Pathol. 40, 659669 (2003).
http://dx.doi.org/10.1354/vp.40-6-659
2.
2. E. G. Van Meir, C. G. Hadjipanayis, A. D. Norden, H. K. Shu, P. Y. Wen, and J. J. Olson, “Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma,” Ca-Cancer J. Clin. 60(3), 166193 (2010).
http://dx.doi.org/10.3322/caac.20069
3.
3. S. Drabycz, G. Roldán, P. de Robles, D. Adler, J. B. McIntyre, A. M. Magliocco, J. G. Cairncross, and J. R. Mitchell, “An analysis of image texture, tumor location, and mgmt promoter methylation in glioblastoma using magnetic resonance imaging,” Neuroimage 49, 13981405 (2010).
http://dx.doi.org/10.1016/j.neuroimage.2009.09.049
4.
4. W. E. Phillips, R. P. Velthuizen, S. Phupanich, L. O. Hall, L. P. Clarke, and M. L. Silbiger, “Applications of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme,” J. Magn. Reson. Imaging 13, 277290 (1995).
http://dx.doi.org/10.1016/0730-725X(94)00093-I
5.
5. M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, R. Murtagh, and M. S. Silbiger, “Automatic tumor segmentation using knowledge-based techniques,” IEEE Trans. Med. Imaging 17, 187201 (1998).
http://dx.doi.org/10.1109/42.700731
6.
6. S. Ho, E. Bullitt, and G. Gerig, “Level set evolution with region competition: Automatic 3-d segmentation of brain tumors,” in Proceedings of the International Conference on Pattern Recognition, Quebec, Canada (IEEE Computer Society, Quebec City, QC, Canada, 2002), pp. 532535.
7.
7. J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille, “Efficient multilevel brain tumor segmentation with integrated Bayesian model classification,” IEEE Trans. Med. Imaging 27, 629640 (2008).
http://dx.doi.org/10.1109/TMI.2007.912817
8.
8. S. Dube, J. J. Corso, A. Yuille, T. F. Cloughesy, S. El-Saden, and U. Sinha, “Hierarchical segmentation of malignant gliomas via integrated contextual filter response,” Proc. SPIE 6914, 69143Y (2008).
http://dx.doi.org/10.1117/12.770769
9.
9. J. Liu, J. Udupa, D. Odhner, D. Hackney, and G. Moonis, “A system for brain tumor volume estimation via MR imaging and fuzzy connectedness,” Comput. Med. Imaging Graph 29, 2134 (2005).
http://dx.doi.org/10.1016/j.compmedimag.2004.07.008
10.
10. L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. R. Murtagh, “Automatic segmentation of non-enhancing brain tumors in magnetic resonance images,” Artif. Intell. Med. 21, 4363 (2001).
http://dx.doi.org/10.1016/S0933-3657(00)00073-7
11.
11. M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, “A brain tumor segmentation framework based on outlier detection,” Med. Image Anal. 8, 275283 (2004).
http://dx.doi.org/10.1016/j.media.2004.06.007
12.
12. Z. Beevi and M. Sathik, “A robust segmentation approach for noisy medical images using fuzzy clustering with spatial probability,” Int. Arab J. Inf. Technol. 9(1), 7483 (2012).
13.
13. H. Khotanloua, O. Colliotb, J. Atifc, and I. Bloch, “3d braintumor segmentationin MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models,” Fuzzy Sets Syst. 160, 14571473 (2009).
http://dx.doi.org/10.1016/j.fss.2008.11.016
14.
14. M. M. Ahmed and D. B. Mohamad, “Segmentation of brain MR images for tumor extraction by combining k-means clustering and Perona–Malik anisotropic diffusion model,” Int. J. Image Process. 2(1), 2734 (2008).
15.
15. J. C. Bezdek, L. O. Hall, and L. P. Clarke, “Review of MR image segmentation techniques using pattern recognition,” Med. Phys. 20, 10331048 (1993).
http://dx.doi.org/10.1118/1.597000
16.
16. S. Vinitski, C. F. Gonzalez, R. Knobler, D. Andrews, T. Iwanaga, and M. Curtis, “Fast tissue segmentation based on a 4d feature map in characterization of intracranial lesions fast tissue segmentation based on a 4d feature map in characterization of intracranial lesions,” J. Magn. Reson Imaging 9, 768776 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2586(199906)9:6<768::AID-JMRI3>3.0.CO;2-2
17.
17. S. K. Warfield, M. R. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive template moderated spatially varying statistical classification,” Med. Image Anal. 4(1), 4355 (2000).
http://dx.doi.org/10.1016/S1361-8415(00)00003-7
18.
18. M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz, and R. Kikinis, “Automated segmentation of MR images of brain tumors,” Radiology 218, 586591 (2001).
19.
19. M. Prastawa, E. Bullitt, N. Moon, K. V. Leemput, and G. Gerig, “Automatic brain tumor segmentation by subject specific modification of atlas priors,” Acad. Radiol. 10, 13411348 (2003).
http://dx.doi.org/10.1016/S1076-6332(03)00506-3
20.
20. K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “Automated model-based bias field correction of MR images of the brain,” IEEE Trans. Med. Imaging 18(10), 885896 (1999).
http://dx.doi.org/10.1109/42.811268
21.
21. N. Moon, E. Bullitt, K. Van Leemput, and G. Gerig, “Automatic brain and tumor segmentation,” Proceedings of the Medical Image Computing and Computer-Assisted Intervention (Springer, Tokyo, Japan, 2002), pp. 372379.
22.
22. J. Zhang, K. Ma, M. H. Er, and V. Chong, “Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine,” in International Workshop on Advanced Image Technology (IEEE, Singapore, 2004), p. 207211.
23.
23. M. Schmidt, I. Levner, and R. Greiner, “Segmenting brain tumors using alignment-based features,” in Fourth International Conference on Machine Learning and Applications (IEEE, Los Angeles, CA, 2005).
24.
24. C. H. Lee, M. Schmidt, A. Murtha, A. Bistritz, J. Sander, and R. Greiner, “Segmenting brain tumor with conditional random fields and support vector machines,” in Proceedings of Workshop on Computer Vision for Biomedical Image Applications at International Conference on Computer Vision (Springer, Beijing, China, 2005).
25.
25. R. Ayachi and N. B. Amor, “Brain tumor segmentation using support vector machines,” in ECSQARU '09: Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Berlin, Heidelberg (Springer-Verlag, Germany, 2009), pp. 736747.
26.
26. N. Zhang, S. Ruan, S. Lebonvallet, Q. Liao, and Y. Zhu, “Multi-kernel sSVM based classification for brain tumor segmentation of MRI multi-sequence,” in ICIP’09: Proceedings of the 16th IEEE International Conference on Image Processing, Piscataway, NJ, USA (IEEE Press, Piscataway, NJ, 2009), pp. 33373340.
27.
27. K. Popuria, D. Cobzasb, M. Jagers, and S. L. Shaha, “3d variational brain tumor segmentation on a clustered feature set,” in Proceedings of SPIE Medical Imaging (2009), Vol. 7258, pp. 72591N72591N.
28.
28. S. Taheri, S. H. Ong, and V. F. H. Chong, “Level-set segmentation of brain tumors using a threshold-based speed function,” Image Vision Comput. 28(1), 2637 (2010).
http://dx.doi.org/10.1016/j.imavis.2009.04.005
29.
29. J. J. Corso, A. L. Yuille, N. L. Sicotte, and A. W. Toga, “Detection and segmentation of pathological structures by the extended graph-shifts algorithm,” in Proceedings Medical Image Computing and Computer Aided Intervention (MICCAI) (Springer, Australia, 2007), Vol. 1, pp. 985994.
30.
30. S. Chandra, R. Bhat, and H. Singh, “A PSO based method for detection of brain tumors from MRI,” in Nature and Biologically Inspired Computing (IEEE, India, 2009), pp. 666671.
31.
31. Q. Ain, I. Mehmood, S. Naqi, and M. Jaffar, “Bayesian classification using DCT features for brain tumor detection,” in Knowledge-Based and Intelligent Information and Engineering Systems, Lecture Notes in Computer Science Vol. 6276, edited by R. Setchi, I. Jordanov, R. Howlett, and L. Jain (Springer, Berlin/Heidelberg, 2010), pp. 340349.
32.
32. A. Lashkari, “A neural network based method for brain abnormality detection in MR images using Gabor wavelets,” Int. J. Comput. Appl. 4(7), 18 (2010).
33.
33. J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226239 (1998).
http://dx.doi.org/10.1109/34.667881
34.
34. R. Ghaemi, M. N. Sulaiman, H. Ibrahim, and N. Mustapha, “A survey: Clustering ensembles techniques,” World Acad. Sci, Eng. Technol. 26, 636645 (2009).
35.
35. L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 17681783 (2006).
http://dx.doi.org/10.1109/TPAMI.2006.233
36.
36. P. Wattuya, K. Rothaus, J. S. Praßni, and X. Jiang, “A randomwalker based approach to combining multiple segmentations,” Proceedings of International Conference of Pattern Recognition (ICPR), Tampa, USA (IEEE, Tampa, FL, 2008).
37.
37. T. Rohlfing, D. B. Russakoff, and C. R. Maurer Jr., “Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation,” IEEE Trans. Med. Imaging 23(8), 983994 (2004).
http://dx.doi.org/10.1109/TMI.2004.830803
38.
38. S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and performance level estimation (staple): An algorithm for the validation of image segmentation,” IEEE Trans. Med. Imag. 23, 903921 (2004).
http://dx.doi.org/10.1109/TMI.2004.828354
39.
39. R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, “Automatic anatomical brain MRI segmentation combining label propagation and decision fusion,” Neuroimage 33, 115126 (2006).
http://dx.doi.org/10.1016/j.neuroimage.2006.05.061
40.
40. P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, “Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy,” Neuroimage 46, 726738 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2009.02.018
41.
41. V. Vezhnevets and V. Konouchine, “Growcut: Interactive multi-label n-d image segmentation by cellular,” GraphiCon Proceedings (Russia, 2005), pp. 150156 [online].
42.
42. R. O. Duda, P. E. Hart, and D. H. Stork, Pattern Classification (Wiley Interscience, New York, 2000).
43.
43. J. Huo, E. M. van Rikxoort, K. Okada, H. J. Kim, W. Pope, J. Goldin, and M. Brown, “Confidence-based ensemble for gbm brain tumor segmentation,” Proceedings of the SPIE Medical Imaging (SPIE, 2011), pp. 79622P79622P.
44.
44. N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. Syst. Man Cybern. 9, 6266 (1979).
http://dx.doi.org/10.1109/TSMC.1979.4310076
45.
45. S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. J. Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, and P. M. Matthews, “Advances in functional and structural MR image analysis and implementation as FSL,” Neuroimage 23, S208S219 (2004).
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
46.
46. J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method for automatic correction of intensity nonuniformity in MRI data,” IEEE Trans. Med. Imaging 17, 8797 (1998).
http://dx.doi.org/10.1109/42.668698
47.
47. C. J. van Rijsbergen, Information Retrieval (Butterworth, Newton, MA, 1979).
48.
48. W. B. Pope, Q. Xia, V. E. Paton, A. Das, J. Hambleton, H. J. Kim, J. Huo, M. S. Brown, J. Goldin, and T. Cloughesy, “Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab,” Neurology 76(5), 432437 (2011).
http://dx.doi.org/10.1212/WNL.0b013e31820a0a8a
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/9/10.1118/1.4817475
Loading
/content/aapm/journal/medphys/40/9/10.1118/1.4817475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/9/10.1118/1.4817475
2013-08-20
2016-09-30

Abstract

Ensemble segmentation methods combine the segmentation results of individual methods into a final one, with the goal of achieving greater robustness and accuracy. The goal of this study was to develop an ensemble segmentation framework for glioblastoma multiforme tumors on single-channel T1w postcontrast magnetic resonance images.

Three base methods were evaluated in the framework: fuzzy connectedness, GrowCut, and voxel classification using support vector machine. A confidence map averaging (CMA) method was used as the ensemble rule.

The performance is evaluated on a comprehensive dataset of 46 cases including different tumor appearances. The accuracy of the segmentation result was evaluated using the -measure between the semiautomated segmentation result and the ground truth.

The results showed that the CMA ensemble result statistically approximates the best segmentation result of all the base methods for each case.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/9/1.4817475.html;jsessionid=DU11QckLgVP162rzpyHyq6TA.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/9/10.1118/1.4817475&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/9/10.1118/1.4817475&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/9/10.1118/1.4817475'
Right1,Right2,Right3,