Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, “Bioinformatics clouds for big data manipulation,” Biol. Direct. 7, 17 (2012).
2. A. Fox, “Computer science. Cloud computing–What's in it for me as a scientist?,” Science 331, 406407 (2011).
3. K. Jorissen, W. Johnson, F. D. Vila, and J. J. Rehr, presented at the IEEE 8th International Conference on E-Science (e-Science), Chicago, IL, 2012 (unpublished).
4. G. C. Kagadis, C. Kloukinas, K. Moore, J. Philbin, P. Papadimitroulas, C. Alexakos, P. G. Nagy, D. Visvikis, and W. R. Hendee, “Cloud computing in medical imaging,” Med. Phys. 40, 070901 (11pp.) (2013).
5. C. Koch, “Compilation and synthesis in big data analytics,” Big Data (pp.6) (Springer, 2013).
6. P. Mell and T. Grence, “The NIST definition of cloud computing,” Special Publication 800–145 (2011).
8. L. Parsonson, S. Grimm, A. Bajwa, L. Bourn, and L. Bai, “A cloud computing medical image analysis and collaboration platform,” in Cloud Computing and Services Science, edited by I. Ivanov (Springer Science + Business Media, New York, NY, 2012), pp. 207224.
9. L. D. Stein, “The case for cloud computing in genome informatics,” Genome Biol. 11, 207 (2010).
10. C. Vecchiola, S. Pandey, and R. Buyya, presented at the 10th International Symposium on Pervasive Systems, Algorithms and Networks (ISPAN), Kaohsiung, 2009 (unpublished).
11. J. Bert, H. Perez-Ponce, Z. E. Bitar, S. Jan, Y. Boursier, D. Vintache, A. Bonissent, C. Morel, D. Brasse, and D. Visvikis, “Geant4-based Monte Carlo simulations on GPU for medical applications,” Phys. Med. Biol. 58, 55935611 (2013).
12. J. Bert, H. Perez-Ponce, S. Jan, E. Z. Bitar, V. Culpov, H. Chekatt, D. Benoit, D. Sarrut, Y. Boursier, D. Brasse, I. Buvat, C. Morel, and D. Visvikis, “Hybrid GATE: A GPU/CPU implementation for imaging and therapy applications,” in IEEE Medical Imaging Conference (IEEE, Anaheim, CA, 2012).
13. X. Gu, X. Jia, and S. B. Jiang, “GPU-based fast gamma index calculation,” Phys. Med. Biol. 56, 14311441 (2011).
14. R. Jacques, R. Taylor, J. Wong, and T. McNutt, “Towards real-time radiation therapy: GPU accelerated superposition/convolution,” Comput. Methods Programs Biomed. 98, 285292 (2010).
15. R. Jacques, J. Wong, R. Taylor, and T. McNutt, “Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys. 38, 294305 (2011).
16. X. Jia, X. Gu, Y. J. Graves, M. Folkerts, and S. B. Jiang, “GPU-based fast Monte Carlo simulation for radiotherapy dose calculation,” Phys. Med. Biol. 56, 70177031 (2011).
17. X. Jia, J. Schumann, H. Paganetti, and S. B. Jiang, “GPU-based fast Monte Carlo dose calculation for proton therapy,” Phys. Med. Biol. 57, 77837797 (2012).
18. X. A. Li, L. Ma, S. Naqvi, R. Shih, and C. Yu, “Monte Carlo dose verification for intensity-modulated arc therapy,” Phys. Med. Biol. 46, 22692282 (2001).
19. C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B. Jiang, “GPU-based ultrafast IMRT plan optimization,” Phys. Med. Biol. 54, 65656573 (2009).
20. G. Pratx and L. Xing, “GPU computing in medical physics: A review,” Med. Phys. 38, 26852697 (2011).
21. R. A. Siochi, E. C. Pennington, T. J. Waldron, and J. E. Bayouth, “Radiation therapy plan checks in a paperless clinic,” J. Appl. Clin. Med. Phys. 10(1), 2905 (2009).
22. J. A. Stuart, C. K. Chen, K. L. Ma, and J. D. Owens, “Multi-GPU volume rendering using MapReduce,” in 19th ACM International Symposium on High Performance Distributed Computing (ACM, 2010), pp. 841848.
23. D. Yang and K. L. Moore, “Automated radiotherapy treatment plan integrity verification,” Med. Phys. 39, 15421551 (2012).
24. D. Yang, Y. Wu, R. S. Brame, S. Yaddanapudi, D. Rangaraj, H. H. Li, S. M. Goddu, and S. Mutic, “Technical note: Electronic chart checks in a paperless radiation therapy clinic,” Med. Phys. 39, 47264732 (2012).
25. X. Zhang, X. Li, E. M. Quan, X. Pan, and Y. Li, “A methodology for automatic intensity-modulated radiation treatment planning for lung cancer,” Phys. Med. Biol. 56, 38733893 (2011).
26. B. King, J. Carlson, and G. Kane, “Implementation of tablet computers in a Radiation Oncology Clinic,” Int. J. Radiat. Oncol., Biol., Phys. 84, S158 (2012).
27. T. McNutt, J. Wong, J. Purdy, R. Valicenti, and T. DeWeese, “OncoSpace: A new paradigm for clinical research and decision support in radiation oncology,” in 10th International Conference on Computers in Radiotherapy, Amsterdam, The Netherlands (2010).
28. G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
29. L. E. Kun, B. G. Haffty, J. Bosma, J. L. Strife, and R. R. Hattery, “American Board of Radiology Maintenance of Certification - Part IV: Practice quality improvement for radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 68, 712 (2007).
30.NCRP Report No. 151, “Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities,” (National Council on Radiation Protection and Measurements, 2005),
31. S. L. Tucker, L. Dong, J. M. Michalski, W. R. Bosch, K. Winter, J. D. Cox, J. A. Purdy, and R. Mohan, “Do intermediate radiation doses contribute to late rectal toxicity? An analysis of data from radiation therapy oncology group protocol 94-06,” Int. J. Radiat. Oncol., Biol., Phys. 84, 390395 (2012).
32. J. A. Efstathiou, D. S. Nassif, T. R. McNutt, C. B. Bogardus, W. Bosch, J. Carlin, R. C. Chen, H. Chou, D. Eggert, B. A. Fraass, J. Goldwein, K. E. Hoffman, K. Hotz, M. Hunt, M. Kessler, C. A. Lawton, C. Mayo, J. M. Michalski, S. Mutic, L. Potters, C. M. Rose, H. M. Sandler, G. Sharp, W. Tome, P. T. Tran, T. Wall, A. L. Zietman, P. E. Gabriel, and J. E. Bekelman, “Practice-based evidence to evidence-based practice: Building the National Radiation Oncology Registry,” J. Oncol. Pract. 9, e90e95 (2013).
33. J. Palta, J. A. Efstathiou, J. E. Bekelman, S. Mutic, C. R. Bogardus, T. R. McNutt, P. E. Gabriel, C. A. Lawton, A. L. Zietman, and C. M. Rose, “Developing a national radiation oncology registry: From acorns to oaks,” Pract. Radiat. Oncol. 2, 1017 (2012).
34. F. Azmandian, D. Kaeli, J. G. Dy, E. Hutchinson, M. Ancukiewicz, A. Niemierko, and S. B. Jiang, “Towards the development of an error checker for radiotherapy treatment plans: A preliminary study,” Phys. Med. Biol. 52, 65116524 (2007).
35. X. Zhu, Y. Ge, T. Li, D. Thongphiew, F. F. Yin, and Q. J. Wu, “A planning quality evaluation tool for prostate adaptive IMRT based on machine learning,” Med. Phys. 38, 719726 (2011).
36. C. Labbé, K. Thielemans, D. Belluzzo, V. Bettinardi, M. C. Gilardi, D. S. Hague, M. W. Jacobson, S. Kaiser, R. Levkovitz, T. Margalit, G. Mitra, C. Morel, T. J. Spinks, P. Valente, H. Zaidi, and A. Zverovich, presented at the Bildverarbeitung fur die Medizin: Algorithmen — Systeme — Anwendungen, Heidelberg, 1999 (unpublished).
37. S. Srivastava, A. R. Rao, and V. Sheinin, “Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing,” in SPIE Medical Imaging, edited by N. J. Pelc, E. Samei, and R. M. Nishikawa (SPIE, Lake Buena Vista, FL, 2011), Vol. 796134.
38. M. Goryawala, M. R. Guillen, M. Cabrerizo, A. Barreto, S. Gulec, T. C. Barot, R. R. Suthar, R. N. Bhatt, A. McGoron, and M. Adjouadi, “A 3-D liver segmentation method with parallel computing for selective internal radiation therapy,” IEEE Trans. Inf. Technol. Biomed. 16, 6269 (2012).
39. X. Han, L. S. Hibbard, N. P. O’Connell, and V. Willcut, presented at the Medical Image Analysis for the Clinic: A Grand Challenge, CreateSpacem Seattle, 2010 (unpublished).
40. M. Moscovitch and G. W. Phillips, “Radiation dosimetry using three-dimensional optical random access memories,” Nucl. Instrum. Methods Phys. Res. B 184, 207218 (2001).
41. T. Teke, A. M. Bergman, W. Kwa, B. Gill, C. Duzenli, and I. A. Popescu, “Monte Carlo based, patient-specific RapidArc QA using Linac log files,” Med. Phys. 37, 116123 (2010).
42. J. De Beenhouwer, S. Staelens, D. Kruecker, L. Ferrer, Y. D’Asseler, I. Lemahieu, and F. R. Rannou, “Cluster computing software for GATE simulations,” Med. Phys. 34, 19261933 (2007).
43. F. B. Brown, R. F. Barrett, T. E. Booth, J. S. Bull, L. J. Cox, R. A. Forster, T. J. Goorley, R. D. Mosteller, S. E. Post, R. E. Prael, E. C. Selcow, A. Sood, and J. Sweezy, “MCNP version 5,” (pp.8) (Los Alamos National Laboratory, 2002).
44. R. L. Harrison, S. Shavala, P. N. Kumar, Y. Shao, R. Manjersshwar, T. K. Lewellen, and F. P. Jansen, “Accelearation of SimSET photon history generation,” in Nuclear Science Symposium Conference Record, November 10–16 (IEEE, Norfolk, VA, 2002).
45. M. G. Thomason, R. F. Longton, J. Gregor, G. T. Smith, and R. K. Hutson, “Simulation of emission tomography using grid middleware for distributed computing,” Comput. Methods Programs Biomed. 75, 251258 (2004).
46. Y. K. Dewaraja, M. Ljungberg, A. Majumdar, A. Bose, and K. F. Koral, “A parallel Monte Carlo code for planar and SPECT imaging: Implementation, verification and applications in (131)I SPECT,” Comput. Methods Programs Biomed. 67, 115124 (2002).
47. MPI, “Open source high performance computing,”
48. Openpbs, “Enabling on demand computing,”
49. D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: The Condor experience,” Concurrency Comput.: Pract. Exper. 17, 323356 (2005).
50. C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E. Jeannot, Y. Legre, C. Loomis, I. Magnin, J. Montagnat, J. M. Moureaux, A. Osorio, X. Pennec, and R. Texier, “Grid-enabling medical image analysis,” J. Clin. Monit. Comput. 19, 339349 (2005).
51. M. Mascagni and Y. Li, “Computational infrastructure for parallel, distributed, and grid-based Monte Carlo computations,” in Large Scale Scientific Computing, Lecture Notes in Computer Science Vol. 2907, edited by I. Lirkov (Springer-Verlag, Berlin, 2003).
52. L. Maigne, D. Hill, P. Calvat, V. Breton, R. Reuillon, Y. Legre, and D. Donnarieix, “Parallelization of Monte Carlo simulations and submission to a grid environment,” Parallel Process. Lett. 14, 177196 (2004).
53. S. Camarasu-Pop, T. Glatard, R. Ferreira da Silva, P. Gueth, D. Sarrut, and H. Benoit-Cattin, “Monte Carlo simulation on heterogeneous distributed systems: A computing framework with parallel merging and checkpointing strategies,” FGCS, Future Gener. Comput. Syst. 29, 728738 (2013).
54. S. Camarasu-Pop, T. Glatard, J. T. Moscicki, H. Benoit-Cattin, and D. Sarrut, “Dynamic partitioning of GATE Monte-Carlo simulations on EGEE,” J. Grid. Comput. 8, 241259 (2010).
55.HPC-Europa2, “Pan-European research infrastructure on high performance computing,”
56.HPCS, “HPCS 2011: HPC in Medical Science,” 2011.
57. M. Sawyer, “PlanetHPC: What's next for high-performance computing?,” 2011.
58. B. Cabral, N. Can, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware,” in 1994 Symposium on Volume Visualization (ACM, New York, NY, 1994), pp. 9198.
59. J. Philbin, F. Prior, and P. Nagy, “Will the next generation of PACS be sitting on a cloud?,” J. Digit Imaging 24, 179183 (2011).
60. L. Santanam, C. Hurkmans, S. Mutic, C. van Vliet-Vroegindeweij, S. Brame, W. Straube, J. Galvin, P. Tripuraneni, J. Michalski, and W. Bosch, “Standardizing naming conventions in radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 83, 13441349 (2012).
61. K. L. Moore, R. S. Brame, D. A. Low, and S. Mutic, “Experience-based quality control of clinical intensity-modulated radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 81, 545551 (2011).
62. B. E. Nelms, G. Robinson, J. Markham, K. Velasco, S. Boyd, S. Narayan, J. Wheeler, and M. L. Sobczak, “Variation in external beam treatment plan quality: An inter-institutional study of planners and planning systems,” Pract. Radiat. Oncol. 2, 296305 (2012).
63. E. C. Ford, S. Terezakis, A. Souranis, K. Harris, H. Gay, S. Mutic, “Quality control quantification (QCQ): A tool to measure the value of quality control checks in radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 84, e263e269 (2012).
64. B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, M. Chuang, R. Taylor, R. Jacques, and T. McNutt, “Patient geometry-driven information retrieval for IMRT treatment plan quality control,” Med. Phys. 36, 54975505 (2009).
65. S. F. Petit, B. Wu, M. Kazhdan, A. Dekker, P. Simari, R. Kumar, R. Taylor, J. M. Herman, and T. McNutt, “Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma,” Radiother. Oncol. 102, 3844 (2012).
66. B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, R. Jacques, R. Taylor, and T. McNutt, “Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 79, 12411247 (2011).
67. M. A. Gambacorta, C. Valentini, N. Dinapoli, L. Boldrini, N. Caria, M. C. Barba, G. C. Mattiucci, D. Pasini, B. Minsky, and V. Valentini, “Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system,” Acta Onocol. 52(8), 16761681 (2013).
68. G. Rodrigues, A. Louie, G. Videtic, L. Best, N. Patil, A. Hallock, S. Gaede, J. Kempe, J. Battista, P. de Haan, and G. Bauman, “Categorizing segmentation quality using a quantitative quality assurance algorithm,” J. Med. Imaging Radiat. Oncol. 56, 668678 (2012).
69. J. Smith, “Electronic discovery: The challenges of reaching into the cloud,” Santa Clara Law Rev. 52, 15611587 (2012).
70.IHE, “IHE-RO Wiki,” (IHE, 2013),
71. W. Bogdanich, “Radiation offers new cures, and ways to do harm,” The New York Times, 2010.
72. M. S. Huq, B. A. Fraass, P. B. Dunscombe, J. P. Gibbons Jr., G. S. Ibbott, P. M. Medin, A. Mundt, S. Mutic, J. R. Palta, B. R. Thomadsen, J. F. Williamson, and E. D. Yorke, “A method for evaluating quality assurance needs in radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 71, S170S173 (2008).
73. E. C. Ford, L. Fong de Los Santos, T. Pawlicki, S. Sutlief, and P. Dunscombe, “Consensus recommendations for incident learning database structures in radiation oncology,” Med. Phys. 39, 72727290 (2012).
74. S. A. Terezakis, K. M. Harris, E. Ford, J. Michalski, T. DeWeese, L. Santanam, S. Mutic, and H. Gay, “An evaluation of departmental radiation oncology incident reports: Anticipating a national reporting system,” Int. J. Radiat. Oncol., Biol., Phys. 85, 919923 (2013).
75. V. Gregoire, R. Jeraj, J. A. Lee, and B. O’Sullivan, “Radiotherapy for head and neck tumours in 2012 and beyond: Conformal, tailored, and adaptive?,” Lancet Oncol. 13, e292e300 (2012).
76. D. Yan, F. Vicini, J. Wong, and A. Martinez, “Adaptive radiation therapy,” Phys. Med. Biol. 42, 123132 (1997).
77. J. Staffurth, “A review of the clinical evidence for intensity-modulated radiotherapy,” Clin. Oncol. 22, 643657 (2010).
78. S. A. Bhide, K. L. Newbold, K. J. Harrington, and C. M. Nutting, “Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers,” Br. J. Radiol. 85, 487494 (2012).
79. A. Bujold, T. Craig, D. Jaffray, and L. A. Dawson, “Image-guided radiotherapy: Has it influenced patient outcomes?,” Semin. Radiat. Oncol. 22, 5061 (2012).
80. J. O. Deasy, S. M. Bentzen, A. Jackson, R. K. Ten Haken, E. D. Yorke, L. S. Constine, A. Sharma, and L. B. Marks, “Improving normal tissue complication probability models: The need to adopt a “data-pooling” culture,” Int. J. Radiat. Oncol., Biol., Phys. 76, S151S154 (2010).
81. A. Jackson, L. B. Marks, S. M. Bentzen, A. Eisbruch, E. D. Yorke, R. K. Ten Haken, L. S. Constine, and J. O. Deasy, “The lessons of QUANTEC: Recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome,” Int. J. Radiat. Oncol., Biol., Phys. 76, S155S160 (2010).
82. E. E. Furhang, J. Dolan, J. K. Sillanpaa, and L. B. Harrison, “Automating the initial physics chart checking process,” J. Appl. Clin. Med. Phys. 10, 129135 (2009).
83. M. L. Kessler, D. L. McShan, M. A. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Laerence, and B. A. Fraass, “Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans,” Optim. Eng. 6, 421448 (2005).
84. T. G. Purdie, R. E. Dinniwell, D. Letourneau, C. Hill, and M. B. Sharpe, “Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization,” Int. J. Radiat. Oncol., Biol., Phys. 81, 575583 (2011).

Data & Media loading...


Article metrics loading...



This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd