1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Vision 20/20: Automation and advanced computing in clinical radiation oncology
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/1/10.1118/1.4842515
1.
1. L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, “Bioinformatics clouds for big data manipulation,” Biol. Direct. 7, 17 (2012).
2.
2. A. Fox, “Computer science. Cloud computing–What's in it for me as a scientist?,” Science 331, 406407 (2011).
http://dx.doi.org/10.1126/science.1198981
3.
3. K. Jorissen, W. Johnson, F. D. Vila, and J. J. Rehr, presented at the IEEE 8th International Conference on E-Science (e-Science), Chicago, IL, 2012 (unpublished).
4.
4. G. C. Kagadis, C. Kloukinas, K. Moore, J. Philbin, P. Papadimitroulas, C. Alexakos, P. G. Nagy, D. Visvikis, and W. R. Hendee, “Cloud computing in medical imaging,” Med. Phys. 40, 070901 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4811272
5.
5. C. Koch, “Compilation and synthesis in big data analytics,” Big Data (pp.6) (Springer, 2013).
http://dx.doi.org/10.1007/978-3-642-39467-6_2
6.
6. P. Mell and T. Grence, “The NIST definition of cloud computing,” Special Publication 800–145 (2011).
7.
8.
8. L. Parsonson, S. Grimm, A. Bajwa, L. Bourn, and L. Bai, “A cloud computing medical image analysis and collaboration platform,” in Cloud Computing and Services Science, edited by I. Ivanov (Springer Science + Business Media, New York, NY, 2012), pp. 207224.
9.
9. L. D. Stein, “The case for cloud computing in genome informatics,” Genome Biol. 11, 207 (2010).
http://dx.doi.org/10.1186/gb-2010-11-5-207
10.
10. C. Vecchiola, S. Pandey, and R. Buyya, presented at the 10th International Symposium on Pervasive Systems, Algorithms and Networks (ISPAN), Kaohsiung, 2009 (unpublished).
11.
11. J. Bert, H. Perez-Ponce, Z. E. Bitar, S. Jan, Y. Boursier, D. Vintache, A. Bonissent, C. Morel, D. Brasse, and D. Visvikis, “Geant4-based Monte Carlo simulations on GPU for medical applications,” Phys. Med. Biol. 58, 55935611 (2013).
http://dx.doi.org/10.1088/0031-9155/58/16/5593
12.
12. J. Bert, H. Perez-Ponce, S. Jan, E. Z. Bitar, V. Culpov, H. Chekatt, D. Benoit, D. Sarrut, Y. Boursier, D. Brasse, I. Buvat, C. Morel, and D. Visvikis, “Hybrid GATE: A GPU/CPU implementation for imaging and therapy applications,” in IEEE Medical Imaging Conference (IEEE, Anaheim, CA, 2012).
13.
13. X. Gu, X. Jia, and S. B. Jiang, “GPU-based fast gamma index calculation,” Phys. Med. Biol. 56, 14311441 (2011).
http://dx.doi.org/10.1088/0031-9155/56/5/014
14.
14. R. Jacques, R. Taylor, J. Wong, and T. McNutt, “Towards real-time radiation therapy: GPU accelerated superposition/convolution,” Comput. Methods Programs Biomed. 98, 285292 (2010).
http://dx.doi.org/10.1016/j.cmpb.2009.07.004
15.
15. R. Jacques, J. Wong, R. Taylor, and T. McNutt, “Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys. 38, 294305 (2011).
http://dx.doi.org/10.1118/1.3483785
16.
16. X. Jia, X. Gu, Y. J. Graves, M. Folkerts, and S. B. Jiang, “GPU-based fast Monte Carlo simulation for radiotherapy dose calculation,” Phys. Med. Biol. 56, 70177031 (2011).
http://dx.doi.org/10.1088/0031-9155/56/22/002
17.
17. X. Jia, J. Schumann, H. Paganetti, and S. B. Jiang, “GPU-based fast Monte Carlo dose calculation for proton therapy,” Phys. Med. Biol. 57, 77837797 (2012).
http://dx.doi.org/10.1088/0031-9155/57/23/7783
18.
18. X. A. Li, L. Ma, S. Naqvi, R. Shih, and C. Yu, “Monte Carlo dose verification for intensity-modulated arc therapy,” Phys. Med. Biol. 46, 22692282 (2001).
http://dx.doi.org/10.1088/0031-9155/46/9/301
19.
19. C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B. Jiang, “GPU-based ultrafast IMRT plan optimization,” Phys. Med. Biol. 54, 65656573 (2009).
http://dx.doi.org/10.1088/0031-9155/54/21/008
20.
20. G. Pratx and L. Xing, “GPU computing in medical physics: A review,” Med. Phys. 38, 26852697 (2011).
http://dx.doi.org/10.1118/1.3578605
21.
21. R. A. Siochi, E. C. Pennington, T. J. Waldron, and J. E. Bayouth, “Radiation therapy plan checks in a paperless clinic,” J. Appl. Clin. Med. Phys. 10(1), 2905 (2009).
22.
22. J. A. Stuart, C. K. Chen, K. L. Ma, and J. D. Owens, “Multi-GPU volume rendering using MapReduce,” in 19th ACM International Symposium on High Performance Distributed Computing (ACM, 2010), pp. 841848.
23.
23. D. Yang and K. L. Moore, “Automated radiotherapy treatment plan integrity verification,” Med. Phys. 39, 15421551 (2012).
http://dx.doi.org/10.1118/1.3683646
24.
24. D. Yang, Y. Wu, R. S. Brame, S. Yaddanapudi, D. Rangaraj, H. H. Li, S. M. Goddu, and S. Mutic, “Technical note: Electronic chart checks in a paperless radiation therapy clinic,” Med. Phys. 39, 47264732 (2012).
http://dx.doi.org/10.1118/1.4736825
25.
25. X. Zhang, X. Li, E. M. Quan, X. Pan, and Y. Li, “A methodology for automatic intensity-modulated radiation treatment planning for lung cancer,” Phys. Med. Biol. 56, 38733893 (2011).
http://dx.doi.org/10.1088/0031-9155/56/13/009
26.
26. B. King, J. Carlson, and G. Kane, “Implementation of tablet computers in a Radiation Oncology Clinic,” Int. J. Radiat. Oncol., Biol., Phys. 84, S158 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.07.407
27.
27. T. McNutt, J. Wong, J. Purdy, R. Valicenti, and T. DeWeese, “OncoSpace: A new paradigm for clinical research and decision support in radiation oncology,” in 10th International Conference on Computers in Radiotherapy, Amsterdam, The Netherlands (2010).
28.
28. G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
29.
29. L. E. Kun, B. G. Haffty, J. Bosma, J. L. Strife, and R. R. Hattery, “American Board of Radiology Maintenance of Certification - Part IV: Practice quality improvement for radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 68, 712 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.12.062
30.
30.NCRP Report No. 151, “Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities,” (National Council on Radiation Protection and Measurements, 2005), http://www.ncrponline.org/Publications/Press_Releases/151press.html.
31.
31. S. L. Tucker, L. Dong, J. M. Michalski, W. R. Bosch, K. Winter, J. D. Cox, J. A. Purdy, and R. Mohan, “Do intermediate radiation doses contribute to late rectal toxicity? An analysis of data from radiation therapy oncology group protocol 94-06,” Int. J. Radiat. Oncol., Biol., Phys. 84, 390395 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.11.073
32.
32. J. A. Efstathiou, D. S. Nassif, T. R. McNutt, C. B. Bogardus, W. Bosch, J. Carlin, R. C. Chen, H. Chou, D. Eggert, B. A. Fraass, J. Goldwein, K. E. Hoffman, K. Hotz, M. Hunt, M. Kessler, C. A. Lawton, C. Mayo, J. M. Michalski, S. Mutic, L. Potters, C. M. Rose, H. M. Sandler, G. Sharp, W. Tome, P. T. Tran, T. Wall, A. L. Zietman, P. E. Gabriel, and J. E. Bekelman, “Practice-based evidence to evidence-based practice: Building the National Radiation Oncology Registry,” J. Oncol. Pract. 9, e90e95 (2013).
http://dx.doi.org/10.1200/JOP.2013.001003
33.
33. J. Palta, J. A. Efstathiou, J. E. Bekelman, S. Mutic, C. R. Bogardus, T. R. McNutt, P. E. Gabriel, C. A. Lawton, A. L. Zietman, and C. M. Rose, “Developing a national radiation oncology registry: From acorns to oaks,” Pract. Radiat. Oncol. 2, 1017 (2012).
http://dx.doi.org/10.1016/j.prro.2011.06.002
34.
34. F. Azmandian, D. Kaeli, J. G. Dy, E. Hutchinson, M. Ancukiewicz, A. Niemierko, and S. B. Jiang, “Towards the development of an error checker for radiotherapy treatment plans: A preliminary study,” Phys. Med. Biol. 52, 65116524 (2007).
http://dx.doi.org/10.1088/0031-9155/52/21/012
35.
35. X. Zhu, Y. Ge, T. Li, D. Thongphiew, F. F. Yin, and Q. J. Wu, “A planning quality evaluation tool for prostate adaptive IMRT based on machine learning,” Med. Phys. 38, 719726 (2011).
http://dx.doi.org/10.1118/1.3539749
36.
36. C. Labbé, K. Thielemans, D. Belluzzo, V. Bettinardi, M. C. Gilardi, D. S. Hague, M. W. Jacobson, S. Kaiser, R. Levkovitz, T. Margalit, G. Mitra, C. Morel, T. J. Spinks, P. Valente, H. Zaidi, and A. Zverovich, presented at the Bildverarbeitung fur die Medizin: Algorithmen — Systeme — Anwendungen, Heidelberg, 1999 (unpublished).
37.
37. S. Srivastava, A. R. Rao, and V. Sheinin, “Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing,” in SPIE Medical Imaging, edited by N. J. Pelc, E. Samei, and R. M. Nishikawa (SPIE, Lake Buena Vista, FL, 2011), Vol. 796134.
38.
38. M. Goryawala, M. R. Guillen, M. Cabrerizo, A. Barreto, S. Gulec, T. C. Barot, R. R. Suthar, R. N. Bhatt, A. McGoron, and M. Adjouadi, “A 3-D liver segmentation method with parallel computing for selective internal radiation therapy,” IEEE Trans. Inf. Technol. Biomed. 16, 6269 (2012).
http://dx.doi.org/10.1109/TITB.2011.2171191
39.
39. X. Han, L. S. Hibbard, N. P. O’Connell, and V. Willcut, presented at the Medical Image Analysis for the Clinic: A Grand Challenge, CreateSpacem Seattle, 2010 (unpublished).
40.
40. M. Moscovitch and G. W. Phillips, “Radiation dosimetry using three-dimensional optical random access memories,” Nucl. Instrum. Methods Phys. Res. B 184, 207218 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00693-0
41.
41. T. Teke, A. M. Bergman, W. Kwa, B. Gill, C. Duzenli, and I. A. Popescu, “Monte Carlo based, patient-specific RapidArc QA using Linac log files,” Med. Phys. 37, 116123 (2010).
http://dx.doi.org/10.1118/1.3266821
42.
42. J. De Beenhouwer, S. Staelens, D. Kruecker, L. Ferrer, Y. D’Asseler, I. Lemahieu, and F. R. Rannou, “Cluster computing software for GATE simulations,” Med. Phys. 34, 19261933 (2007).
http://dx.doi.org/10.1118/1.2731993
43.
43. F. B. Brown, R. F. Barrett, T. E. Booth, J. S. Bull, L. J. Cox, R. A. Forster, T. J. Goorley, R. D. Mosteller, S. E. Post, R. E. Prael, E. C. Selcow, A. Sood, and J. Sweezy, “MCNP version 5,” (pp.8) (Los Alamos National Laboratory, 2002).
44.
44. R. L. Harrison, S. Shavala, P. N. Kumar, Y. Shao, R. Manjersshwar, T. K. Lewellen, and F. P. Jansen, “Accelearation of SimSET photon history generation,” in Nuclear Science Symposium Conference Record, November 10–16 (IEEE, Norfolk, VA, 2002).
45.
45. M. G. Thomason, R. F. Longton, J. Gregor, G. T. Smith, and R. K. Hutson, “Simulation of emission tomography using grid middleware for distributed computing,” Comput. Methods Programs Biomed. 75, 251258 (2004).
http://dx.doi.org/10.1016/j.cmpb.2004.02.003
46.
46. Y. K. Dewaraja, M. Ljungberg, A. Majumdar, A. Bose, and K. F. Koral, “A parallel Monte Carlo code for planar and SPECT imaging: Implementation, verification and applications in (131)I SPECT,” Comput. Methods Programs Biomed. 67, 115124 (2002).
http://dx.doi.org/10.1016/S0169-2607(01)00121-3
47.
47. MPI, “Open source high performance computing,” http://www.open-mpi.org/.
48.
48. Openpbs, “Enabling on demand computing,” http://www.openpbs.org.
49.
49. D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: The Condor experience,” Concurrency Comput.: Pract. Exper. 17, 323356 (2005).
http://dx.doi.org/10.1002/cpe.938
50.
50. C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E. Jeannot, Y. Legre, C. Loomis, I. Magnin, J. Montagnat, J. M. Moureaux, A. Osorio, X. Pennec, and R. Texier, “Grid-enabling medical image analysis,” J. Clin. Monit. Comput. 19, 339349 (2005).
http://dx.doi.org/10.1007/s10877-005-0679-9
51.
51. M. Mascagni and Y. Li, “Computational infrastructure for parallel, distributed, and grid-based Monte Carlo computations,” in Large Scale Scientific Computing, Lecture Notes in Computer Science Vol. 2907, edited by I. Lirkov (Springer-Verlag, Berlin, 2003).
52.
52. L. Maigne, D. Hill, P. Calvat, V. Breton, R. Reuillon, Y. Legre, and D. Donnarieix, “Parallelization of Monte Carlo simulations and submission to a grid environment,” Parallel Process. Lett. 14, 177196 (2004).
http://dx.doi.org/10.1142/S0129626404001829
53.
53. S. Camarasu-Pop, T. Glatard, R. Ferreira da Silva, P. Gueth, D. Sarrut, and H. Benoit-Cattin, “Monte Carlo simulation on heterogeneous distributed systems: A computing framework with parallel merging and checkpointing strategies,” FGCS, Future Gener. Comput. Syst. 29, 728738 (2013).
http://dx.doi.org/10.1016/j.future.2012.09.003
54.
54. S. Camarasu-Pop, T. Glatard, J. T. Moscicki, H. Benoit-Cattin, and D. Sarrut, “Dynamic partitioning of GATE Monte-Carlo simulations on EGEE,” J. Grid. Comput. 8, 241259 (2010).
http://dx.doi.org/10.1007/s10723-010-9153-0
55.
55.HPC-Europa2, “Pan-European research infrastructure on high performance computing,” http://www.hpc-europa.eu/.
56.
56.HPCS, “HPCS 2011: HPC in Medical Science,” 2011.
57.
57. M. Sawyer, “PlanetHPC: What's next for high-performance computing?,” 2011.
58.
58. B. Cabral, N. Can, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware,” in 1994 Symposium on Volume Visualization (ACM, New York, NY, 1994), pp. 9198.
59.
59. J. Philbin, F. Prior, and P. Nagy, “Will the next generation of PACS be sitting on a cloud?,” J. Digit Imaging 24, 179183 (2011).
http://dx.doi.org/10.1007/s10278-010-9331-4
60.
60. L. Santanam, C. Hurkmans, S. Mutic, C. van Vliet-Vroegindeweij, S. Brame, W. Straube, J. Galvin, P. Tripuraneni, J. Michalski, and W. Bosch, “Standardizing naming conventions in radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 83, 13441349 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.09.054
61.
61. K. L. Moore, R. S. Brame, D. A. Low, and S. Mutic, “Experience-based quality control of clinical intensity-modulated radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 81, 545551 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.11.030
62.
62. B. E. Nelms, G. Robinson, J. Markham, K. Velasco, S. Boyd, S. Narayan, J. Wheeler, and M. L. Sobczak, “Variation in external beam treatment plan quality: An inter-institutional study of planners and planning systems,” Pract. Radiat. Oncol. 2, 296305 (2012).
http://dx.doi.org/10.1016/j.prro.2011.11.012
63.
63. E. C. Ford, S. Terezakis, A. Souranis, K. Harris, H. Gay, S. Mutic, “Quality control quantification (QCQ): A tool to measure the value of quality control checks in radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 84, e263e269 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.04.036
64.
64. B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, M. Chuang, R. Taylor, R. Jacques, and T. McNutt, “Patient geometry-driven information retrieval for IMRT treatment plan quality control,” Med. Phys. 36, 54975505 (2009).
http://dx.doi.org/10.1118/1.3253464
65.
65. S. F. Petit, B. Wu, M. Kazhdan, A. Dekker, P. Simari, R. Kumar, R. Taylor, J. M. Herman, and T. McNutt, “Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma,” Radiother. Oncol. 102, 3844 (2012).
http://dx.doi.org/10.1016/j.radonc.2011.05.025
66.
66. B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, R. Jacques, R. Taylor, and T. McNutt, “Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 79, 12411247 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.05.026
67.
67. M. A. Gambacorta, C. Valentini, N. Dinapoli, L. Boldrini, N. Caria, M. C. Barba, G. C. Mattiucci, D. Pasini, B. Minsky, and V. Valentini, “Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system,” Acta Onocol. 52(8), 16761681 (2013).
http://dx.doi.org/10.3109/0284186X.2012.754989
68.
68. G. Rodrigues, A. Louie, G. Videtic, L. Best, N. Patil, A. Hallock, S. Gaede, J. Kempe, J. Battista, P. de Haan, and G. Bauman, “Categorizing segmentation quality using a quantitative quality assurance algorithm,” J. Med. Imaging Radiat. Oncol. 56, 668678 (2012).
http://dx.doi.org/10.1111/j.1754-9485.2012.02442.x
69.
69. J. Smith, “Electronic discovery: The challenges of reaching into the cloud,” Santa Clara Law Rev. 52, 15611587 (2012).
70.
70.IHE, “IHE-RO Wiki,” (IHE, 2013), http://www.ihe-ro.org/doku.php.
71.
71. W. Bogdanich, “Radiation offers new cures, and ways to do harm,” The New York Times, 2010.
72.
72. M. S. Huq, B. A. Fraass, P. B. Dunscombe, J. P. Gibbons Jr., G. S. Ibbott, P. M. Medin, A. Mundt, S. Mutic, J. R. Palta, B. R. Thomadsen, J. F. Williamson, and E. D. Yorke, “A method for evaluating quality assurance needs in radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 71, S170S173 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.06.081
73.
73. E. C. Ford, L. Fong de Los Santos, T. Pawlicki, S. Sutlief, and P. Dunscombe, “Consensus recommendations for incident learning database structures in radiation oncology,” Med. Phys. 39, 72727290 (2012).
http://dx.doi.org/10.1118/1.4764914
74.
74. S. A. Terezakis, K. M. Harris, E. Ford, J. Michalski, T. DeWeese, L. Santanam, S. Mutic, and H. Gay, “An evaluation of departmental radiation oncology incident reports: Anticipating a national reporting system,” Int. J. Radiat. Oncol., Biol., Phys. 85, 919923 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2012.09.013
75.
75. V. Gregoire, R. Jeraj, J. A. Lee, and B. O’Sullivan, “Radiotherapy for head and neck tumours in 2012 and beyond: Conformal, tailored, and adaptive?,” Lancet Oncol. 13, e292e300 (2012).
http://dx.doi.org/10.1016/S1470-2045(12)70237-1
76.
76. D. Yan, F. Vicini, J. Wong, and A. Martinez, “Adaptive radiation therapy,” Phys. Med. Biol. 42, 123132 (1997).
http://dx.doi.org/10.1088/0031-9155/42/1/008
77.
77. J. Staffurth, “A review of the clinical evidence for intensity-modulated radiotherapy,” Clin. Oncol. 22, 643657 (2010).
http://dx.doi.org/10.1016/j.clon.2010.06.013
78.
78. S. A. Bhide, K. L. Newbold, K. J. Harrington, and C. M. Nutting, “Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers,” Br. J. Radiol. 85, 487494 (2012).
http://dx.doi.org/10.1259/bjr/85942136
79.
79. A. Bujold, T. Craig, D. Jaffray, and L. A. Dawson, “Image-guided radiotherapy: Has it influenced patient outcomes?,” Semin. Radiat. Oncol. 22, 5061 (2012).
http://dx.doi.org/10.1016/j.semradonc.2011.09.001
80.
80. J. O. Deasy, S. M. Bentzen, A. Jackson, R. K. Ten Haken, E. D. Yorke, L. S. Constine, A. Sharma, and L. B. Marks, “Improving normal tissue complication probability models: The need to adopt a “data-pooling” culture,” Int. J. Radiat. Oncol., Biol., Phys. 76, S151S154 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.06.094
81.
81. A. Jackson, L. B. Marks, S. M. Bentzen, A. Eisbruch, E. D. Yorke, R. K. Ten Haken, L. S. Constine, and J. O. Deasy, “The lessons of QUANTEC: Recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome,” Int. J. Radiat. Oncol., Biol., Phys. 76, S155S160 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.08.074
82.
82. E. E. Furhang, J. Dolan, J. K. Sillanpaa, and L. B. Harrison, “Automating the initial physics chart checking process,” J. Appl. Clin. Med. Phys. 10, 129135 (2009).
http://dx.doi.org/10.1120/jacmp.v10i1.2855
83.
83. M. L. Kessler, D. L. McShan, M. A. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Laerence, and B. A. Fraass, “Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans,” Optim. Eng. 6, 421448 (2005).
http://dx.doi.org/10.1007/s11081-005-2066-2
84.
84. T. G. Purdie, R. E. Dinniwell, D. Letourneau, C. Hill, and M. B. Sharpe, “Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization,” Int. J. Radiat. Oncol., Biol., Phys. 81, 575583 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.11.016
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4842515
Loading
/content/aapm/journal/medphys/41/1/10.1118/1.4842515
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/1/10.1118/1.4842515
2013-12-17
2014-12-28

Abstract

This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/1/1.4842515.html;jsessionid=3e0q9v95nf86w.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/1/10.1118/1.4842515&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vision 20/20: Automation and advanced computing in clinical radiation oncology
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4842515
10.1118/1.4842515
SEARCH_EXPAND_ITEM