Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. Rayleigh, “A photographic spectrum of the aurora of May 13–15, 1921, and laboratory studies in connection with it,” Proc. R. Soc. London, Ser. A 101, 114124 (1922).
2. M. Faraday, “Experimental researches in electricity—Twelfth series,” Philos. Trans. R. Soc. London 128, 83123 (1838).
3. M. Plücker, “XLVI. Observations on the electrical discharge through rarefied gases,” Philos. Mag. 16, 408418 (1858).
4. G. S. Fulcher, “The production of light by cathode rays,” Astrophys. J. 34, 388396 (1911).
5. P. Lewis, “The effect of certain impurities on the spectra of some gases,” Astrophys. J. 10, 137163 (1899).
6. F. Arqueros, J. R. Hörandel, and B. Keilhauer, “Air fluorescence relevant for cosmic-ray detection—Review of pioneering measurements,” Nucl. Instrum. Methods Phys. Res. A 597, 2331 (2008).
7. A. N. Bunner, Ph.D. dissertation, Cornell University, 1967.
8. R. Abbasi, T. Abu-Zayyad, K. Belov, J. Belz, Z. Cao, M. Dalton, Y. Fedorova, P. Hüntemeyer, B. F. Jones, C. C. H. Jui, E. C. Loh, N. Manago, K. Martens, J. N. Matthews, M. Maestas, D. Rodriguez, J. Smith, P. Sokolsky, R. W. Springer, J. Thomas, S. Thomas, P. Chen, C. Field, C. Hast, R. Iverson, J. S. T. Ng, A. Odian, K. Reil, D. Walz, D. R. Bergman, G. Thomson, A. Zech, F. Y. Chang, C. C. Chen, C. W. Chen, M. A. Huang, W. Y. P. Hwang, and G. L. Lin, “Air fluorescence measurements in the spectral range 300–420 nm using a 28.5 GeV electron beam,” Astropart. Phys. 29, 7786 (2008).
9. Y. Murase, Y. Homma, and M. Takiue, “Effect of air luminescence counts on determination of 222-Rn by liquid scintillation counting,” Int. J. Rad. Appl. Instrum. A 40, 295298 (1989).
10. Y. Murase, Y. Homma, M. Takiue, and T. Aburai, “Determination of air luminescence spectra for alpha-emitters with liquid scintillation spectrometers,” Int. J. Rad. Appl. Instrum. A 40, 291294 (1989).
11. M. Takiue and H. Ishikawa, “α-ray measurement due to air luminescence employing a liquid scintillation spectrometer,” Nucl. Instrum. Methods 159, 139143 (1979).
12. P. Panta, A. Chmielewski, Z. Zimek, M. Paduch, and K. Tomaszewski, “Application of nitrogen fluorescence for the dosimetry of electron beam,” Rad. Phys. Chem. 46, 12591262 (1995).
13. A. Cohn and G. Caledonia, “Spatial distribution of the fluorescent radiation emission caused by an electron beam,” J. Appl. Phys. 41, 37673775 (1970).
14. B. Brocklehurst, “Mechanisms of excitation of luminescence in nitrogen gas by fast electrons,” J. Chem. Phys. 46, 29762991 (1967).
15. S. Dondes, P. Harteck, and C. Kunz, “A spectroscopic study of alpha-ray-induced luminescence in gases: Part I,” Radiat. Res. 27, 174210 (1966).
16. M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, “Photon yields from nitrogen gas and dry air excited by electrons,” Astropart. Phys. 20, 293309 (2003).
17. M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, “New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays,” Astropart. Phys. 22, 235248 (2004).
18. N. Sakaki, Y. Watanabe, M. Nagano, and K. Kobayakawa, “Fluorescence in air excited by electrons from a 90Sr source,” Nucl. Instrum. Methods Phys. Res. A 597, 8893 (2008).
19. T. Waldenmaier, J. Blümer, and H. Klages, “Spectral resolved measurement of the nitrogen fluorescence emissions in air induced by electrons,” Astropart. Phys. 29, 205222 (2008).
20. H. Morii, K. Mizouchi, T. Nomura, N. Sasao, T. Sumida, M. Kobayashi, Y. Murayama, and R. Takashima, “Quenching effects in nitrogen gas scintillation,” Nucl. Instrum. Methods Phys. Res. A 526, 399408 (2004).
21. P. A. Cherenkov, “Visible emission of clean liquids by action of γ radiation,” Dokl. Akad. Nauk SSSR 2, 451454 (1934).
22. A. K. Glaser, S. C. Davis, D. M. McClatchy, R. Zhang, B. W. Pogue, and D. J. Gladstone, “Projection imaging of photon beams by the Cerenkov effect,” Med. Phys. 40, 012101 (14pp.) (2013).
23. A. K. Glaser, S. C. Davis, W. H. Voigt, R. Zhang, B. W. Pogue, and D. J. Gladstone, “Projection imaging of photon beams using Cerenkov-excited fluorescence,” Phys. Med. Biol. 58, 601619 (2013).
24. R. Zhang, C. J. Fox, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Superficial dosimetry imaging of Cerenkov emission in electron beam radiotherapy of phantoms,” Phys. Med. Biol. 58, 54775493 (2013).
25. X. Mei, J. Rowlands, and G. Pang, “Electronic portal imaging based on Cerenkov radiation: A new approach and its feasibility,” Med. Phys. 33, 42584269 (2006).
26. H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: A feasibility experimental study,” J. Nucl. Med. 53, 15791584 (2012).
27. H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS One 5, e9470 (2010).
28. R. Robertson, M. Germanos, C. Li, G. Mitchell, S. Cherry, and M. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54, N355N365 (2009).
29. J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys. 38, 41274132 (2011).
30. R. Zhang, S. C. Davis, J. L. Demers, A. K. Glaser, D. J. Gladstone, T. V. Esipova, S. A. Vinogradov, and B. W. Pogue, “Oxygen tomography by Cerenkov-excited phosphorescence during external beam irradiation,” J. Biomed. Opt. 18, 050503 (3pp.) (2013).
31. H. Neuenschwander, T. Mackie, and P. Reckwerdt, “MMC-a high-performance Monte Carlo code for electron beam treatment planning,” Phys. Med. Biol. 40, 543574 (1995).
32. A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett. 37, 11931195 (2012).
33. R. T. Hoppe, “Mycosis fungoides: Radiation therapy,” Dermatol. Ther. 16, 347354 (2003).
34. C. Karzmark, R. Loevinger, R. Steele, and M. Weissbluth, “A technique for large-field, superficial electron therapy,” Radiology 74, 633644 (1960).
35. I. Tamm and I. Frank, “Coherent radiation of fast electrons in a medium,” Dokl. Akad. Nauk SSSR 14, 107112 (1937).

Data & Media loading...


Article metrics loading...



To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner.

Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm.

Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r2 = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r2 = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment.

Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd