1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9, Canada
    2 Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5, Canada
    3 Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
    4 Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
    5 Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5, Canada
    a) Author to whom correspondence should be addressed. Electronic mail: Gregory.Czarnota@sunnybrook.ca; Telephone: 416-480-6100 × 7073; Fax: 416-480-6002.
    Med. Phys. 41, 012903 (2014); http://dx.doi.org/10.1118/1.4852875
/content/aapm/journal/medphys/41/1/10.1118/1.4852875
1.
1. S. H. Giordano, “Update on locally advanced breast cancer,” Oncologist 8, 521530 (2003).
http://dx.doi.org/10.1634/theoncologist.8-6-521
2.
2. Guidelines for the Management of Breast Cancer, 31st ed., EMRO Technical Publications Series (World Health Organization, Alexandria, Egypt, 2006), p. 44.
3.
3. J. H. Youk, E.-K. Kim, M. J. Kim, J. Y. Lee, and K. K. Oh, “Missed breast cancers at US-guided core needle biopsy: How to reduce them,” Radiographics 27, 7994 (2007).
http://dx.doi.org/10.1148/rg.271065029
4.
4. M. Insana and M. Oelze, “Advanced ultrasonic imaging techniques for breast cancer research,” Emerging Technologies in Breast Imaging and Mammography (American Scientific Publishers, Valencia, CA, 2006).
5.
5. M. L. Oelze, W. D. O’ Brien, J. P. Blue, and J. F. Zachary, “Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging,” IEEE Trans. Med. Imaging 23, 764771 (2004).
http://dx.doi.org/10.1109/TMI.2004.826953
6.
6. E. J. Feleppa, J. Mamou, C. R. Porter, and J. Machi, “Quantitative ultrasound in cancer imaging,” Semin. Oncol. 38, 136150 (2011).
http://dx.doi.org/10.1053/j.seminoncol.2010.11.006
7.
7. M. L. Oelze and J. F. Zachary, “Examination of cancer in mouse models using high-frequency quantitative ultrasound,” Ultrasound Med. Biol. 32, 16391648 (2006).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.05.006
8.
8. H. Nasief, I. Rosado-Mendez, J. Zagzebski, and T. Hall, “Quantitative ultrasound as an aid to differentiate benign from malignant breast masses,” in AIUM (American Institute of Ultrasound in Medicine) Annual Convention, New York, NY, 2013.
9.
9. F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 319329 (1987).
http://dx.doi.org/10.1109/T-UFFC.1987.26950
10.
10. D. J. Coleman, F. L. Lizzi, R. H. Silverman, L. Helson, J. H. Torpey, and M. J. Rondeau, “A model for acoustic characterization of intraocular tumors,” Invest. Ophthalmol. Visual Sci. 26, 545550 (1985).
11.
11. E. J. Feleppa, A. Kalisz, J. B. Sokil-Melgar, F. L. Lizzi, A. L. Rosado, M. C. Shao, W. R. Fair, M. S. Cookson, V. E. Reuter, and W. D. W. Heston, “Typing of prostate tissue by ultrasonic spectrum analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 609619 (1996).
http://dx.doi.org/10.1109/58.503779
12.
12. J. Mamou, A. Coron, M. Hata, J. Machi, E. Yanagihara, P. Laugier, and E. J. Feleppa, “Three-dimensional high-frequency characterization of cancerous lymph nodes,” Ultrasound Med. Biol. 36, 361375 (2010).
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.10.007
13.
13. M. Yang, T. M. Krueger, J. G. Miller, and M. R. Holland, “Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters,” Ultrason. Imaging 29, 122134 (2007).
http://dx.doi.org/10.1177/016173460702900204
14.
14. F. L. Lizzi, M. Astor, T. Liu, C. Deng, D. J. Coleman, and R. H. Silverman, “Ultrasonic spectrum analysis for tissue assays and therapy evaluation,” Int. J. Imaging Syst. Technol. 8, 310 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
15.
15. R. M. Vlad et al., “Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models,” Clin. Cancer Res. 15(6), 20672074 (2009).
http://dx.doi.org/10.1158/1078-0432.CCR-08-1970
16.
16. J. Lee, R. Karshafian, N. Papanicolau, A. Giles, M. C. Kolios, and G. J. Czarnota, “Quantitative ultrasound for the monitoring of novel microbubble and ultrasound radiosensitization,” Ultrasound Med. Biol. 38, 12121221 (2012).
http://dx.doi.org/10.1016/j.ultrasmedbio.2012.01.028
17.
17. L. L. Fellingham and F. G. Sommer, “Ultrasonic characterization of tissue structure in the in vivo human liver and spleen,” IEEE Trans. Sonics Ultrason. 31, 418428 (1984).
http://dx.doi.org/10.1109/T-SU.1984.31522
18.
18. K. Suzuki, N. Hayashi, Y. Sasaki, M. Kono, A. Kasahara, Y. Imai, H. Fusamoto, and T. Kamada, “Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound,” Hepatology 17, 10411046 (1993).
http://dx.doi.org/10.1002/hep.1840170616
19.
19. C. B. Machado, W. C. Pereira, M. Meziri, and P. Laugier, “Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals,” Ultrasound Med. Biol. 32, 649657 (2006).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.01.009
20.
20. U. Abeyratne and X. Tang, “Ultrasound scatter-spacing based diagnosis of focal diseases of the liver,” Biomed. Signal Process. Control 2, 915 (2007).
http://dx.doi.org/10.1016/j.bspc.2007.01.001
21.
21. Y. Bige, Z. Hanfeng, and W. Rong, “Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum,” Ultrasonics 44, 211215 (2006).
http://dx.doi.org/10.1016/j.ultras.2005.11.001
22.
22. K. A. Wear, R. F. Wagner, M. F. Insana, and T. J. Hall, “Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 5058 (1993).
http://dx.doi.org/10.1109/58.184998
23.
23. X. Tang and U. R. Abeyratne, “Wavelet transforms in estimating scatterer spacing from ultrasound echoes,” Ultrasonics 38, 688692 (2000).
http://dx.doi.org/10.1016/S0041-624X(99)00150-X
24.
24. J. Tsao and G.-S. Jiang, “Mean scatterer spacing estimation using wavelet spectrum,” Proc.-IEEE Ultrason. Symp. 3, 20902093 (2004).
25.
25. T. Varghese and K. D. Donohue, “Characterization of tissue microstructure scatterer distribution with spectral correlation,” Ultrason. Imaging 15, 238254 (1993).
http://dx.doi.org/10.1006/uimg.1993.1015
26.
26. Y.-Y. Liao, P.-H. Tsui, C.-H. Li, K.-J. Chang, W.-H. Kuo, C.-C. Chang, and C.-K. Yeh, “Classification of scattering media within benign and malignant breast tumors based on ultrasound texture-feature-based and Nakagami-parameter images,” Med. Phys. 38, 21982207 (2011).
http://dx.doi.org/10.1118/1.3566064
27.
27. S. H. Kim, B. K. Seo, J. Lee, S. J. Kim, K. R. Cho, K. Y. Lee, B.-K. Je, H. Y. Kim, Y.-S. Kim, and J.-H. Lee, “Correlation of ultrasound findings with histology, tumor grade, and biological markers in breast cancer,” Acta Oncol. 47, 15311538 (2008).
http://dx.doi.org/10.1080/02841860801971413
28.
28. H. J. Bloom and W. W. Richardson, “Histological grading and prognosis in breast cancer: A study of 1409 cases of which 359 have been followed for 15 years,” Br. J. Cancer 11, 359377 (1957).
http://dx.doi.org/10.1038/bjc.1957.43
29.
29. K. A. Topp, J. F. Zachary, and W. D. O’Brien, “Quantifying B-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter,” J. Ultrasound Med. 20, 605612 (2001).
30.
30. E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys. 5, 391394 (1978).
http://dx.doi.org/10.1118/1.594483
31.
31. S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice-Hall, Englewood Cliffs, NJ, 1998).
32.
32. C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 35, 16151628 (2009).
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.05.011
33.
33. M. F. Insana, R. F. Wagner, D. G. Brown, and T. J. Hall, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179192 (1990).
http://dx.doi.org/10.1121/1.399283
34.
34. L. X. Yao, J. A. Zagzebski, and E. L. Madsen, “Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors,” Ultrason. Imaging 12, 5870 (1990).
http://dx.doi.org/10.1016/0161-7346(90)90221-I
35.
35. J. J. Anderson, M. Herd, M. R. King, A. Haak, Z. T. Hafez, J. Song, M. L. Oelze, E. L. Madsen, J. Zagzebski, W. D. O’Brien, and T. J. Hall, “Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms,” Ultrason. Imaging 32, 4864 (2010).
http://dx.doi.org/10.1177/016173461003200104
36.
36. F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol. 12(10), 795808 (1986).
http://dx.doi.org/10.1016/0301-5629(86)90077-3
37.
37. N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, A. Kalinin, R. Pevzner, M. Tokarev, E. Holsapple, O. Rama, and R. Duncan, “Development of ultrasound tomography for breast imaging: Technical assessment,” Med. Phys. 32, 13751386 (2005).
http://dx.doi.org/10.1118/1.1897463
38.
38. M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: Image formation and interpretation,” Ultrason. Imaging 12, 245267 (1990).
http://dx.doi.org/10.1016/0161-7346(90)90002-F
39.
39. V. C. Anderson, “Sound scattering from a fluid sphere,” J. Acoust. Soc. Am. 22, 426431 (1950).
http://dx.doi.org/10.1121/1.1906621
40.
40. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3, 610621 (1973).
http://dx.doi.org/10.1109/TSMC.1973.4309314
41.
41. Y. Labyed and T. A. Bigelow, “A theoretical comparison of attenuation measurement techniques from backscattered ultrasound echoes,” J. Acoust. Soc. Am. 129, 23162324 (2011).
http://dx.doi.org/10.1121/1.3559677
42.
42. P. D. Edmonds, C. L. Mortensen, J. R. Hill, S. K. Holland, J. F. Jensen, P. Schattner, and A. D. Valdes, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13, 162185 (1991).
http://dx.doi.org/10.1016/0161-7346(91)90082-S
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4852875
Loading
/content/aapm/journal/medphys/41/1/10.1118/1.4852875
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/1/10.1118/1.4852875
2014-01-02
2014-10-22

Abstract

Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades.

Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues.

Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor grades further improved when the textural features of the effective scatterer diameter parametric map were combined with the mean value of the map (p = 0.004).

Overall, the binary classification results (tumor versus normal tissue) were more promising than tumor grade assessment. Combinations of advanced parameters can further improve the separation of tumors from normal tissue compared to the use of linear regression parameters. While the linear regression parameters were sufficient for characterizing breast tumors and normal breast tissues, advanced parameters and their textural features were required to better characterize tumor subtypes.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/1/1.4852875.html;jsessionid=3thrqr7fkllu2.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/1/10.1118/1.4852875&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4852875
10.1118/1.4852875
SEARCH_EXPAND_ITEM