1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/1/10.1118/1.4856055
1.
1. B. A. Simon, D. W. Kaczka, A. A. Bankier, and G. Parraga, “What can computed tomography and magnetic resonance imaging tell us about ventilation?” J. Appl. Physiol. 113, 647657 (2012).
http://dx.doi.org/10.1152/japplphysiol.00353.2012
2.
2. T. Guerrero, K. Sanders, E. Castillo, Y. Zhang, L. Bidaut, T. Pan, and R. Komaki, “Dynamic ventilation imaging from four-dimensional computed tomography,” Phys. Med. Biol. 51, 777791 (2006).
http://dx.doi.org/10.1088/0031-9155/51/4/002
3.
3. Y. Vinogradskiy, R. Castillo, E. Castillo, S. L. Tucker, Z. Liao, T. Guerrero, and M. K. Martel, “Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes,” Int. J. Radiat. Oncol., Biol., Phys. 86, 366371 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2013.01.004
4.
4. T. Yamamoto, S. Kabus, J. von Berg, C. Lorenz, and P. J. Keall, “Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 79, 279288 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.02.008
5.
5. M. S. Hofman, J. M. Beauregard, T. W. Barber, O. C. Neels, P. Eu, and R. J. Hicks, “68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: A pilot study with comparison to conventional scintigraphy,” J. Nucl. Med. 52, 15131519 (2011).
http://dx.doi.org/10.2967/jnumed.111.093344
6.
6. J. Callahan, M. S. Hofman, S. Siva, T. Kron, M. E. Schneider, D. Binns, P. Eu, and R. J. Hicks, “High-resolution imaging of pulmonary ventilation and perfusion with Ga-VQ respiratory gated (4-D) PET/CT,” Eur. J. Nucl. Med. Mol. Imaging (2013). [E-pub ahead of print].
http://dx.doi.org/10.1007/s00259-013-2607-4
7.
7. F.-M. Kong, R. Ten Haken, A. Eisbruch, and T. S. Lawrence, “Non-small cell lung cancer therapy-related pulmonary toxicity: An update on radiation pneumonitis and fibrosis,” Semin. Oncol. 32, 4254 (2005).
http://dx.doi.org/10.1053/j.seminoncol.2005.03.009
8.
8. S. S. Yom, Z. Liao, H. H. Liu, S. L. Tucker, C. S. Hu, X. Wei, X. Wang, S. Wang, R. Mohan, J. D. Cox, and R. Komaki, “Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 94102 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.12.031
9.
9. S. Sura, V. Gupta, E. Yorke, A. Jackson, H. Amols, and K. E. Rosenzweig, “Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: The Memorial Sloan-Kettering Cancer Center (MSKCC) experience,” Radiother. Oncol. 87, 1723 (2008).
http://dx.doi.org/10.1016/j.radonc.2008.02.005
10.
10. L. B. Marks, S. M. Bentzen, J. O. Deasy, F. M. Kong, J. D. Bradley, I. S. Vogelius, I. El Naqa, J. L. Hubbs, J. V. Lebesque, R. D. Timmerman, M. K. Martel, and A. Jackson, “Radiation dose-volume effects in the lung,” Int. J. Radiat. Oncol., Biol., Phys. 76, S70S76 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.06.091
11.
11. K. De Jaeger, Y. Seppenwoolde, L. J. Boersma, S. H. Muller, P. Baas, J. S. Belderbos, and J. V. Lebesque, “Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 55, 13311340 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04389-4
12.
12. P. A. Lind, L. B. Marks, D. Hollis, M. Fan, S. M. Zhou, M. T. Munley, T. D. Shafman, R. J. Jaszczak, and R. E. Coleman, “Receiver operating characteristic curves to assess predictors of radiation-induced symptomatic lung injury,” Int. J. Radiat. Oncol., Biol., Phys. 54, 340347 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02932-2
13.
13. D. Wang, J. Sun, J. Zhu, X. Li, Y. Zhen, and S. Sui, “Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy,” Radiat. Oncol. 7, 19 (2012).
http://dx.doi.org/10.1186/1748-717X-7-69
14.
14. I. W. Gayed, J. Chang, E. E. Kim, R. Nunez, B. Chasen, H. H. Liu, K. Kobayashi, Y. Zhang, Z. Liao, S. Gohar, M. Jeter, L. Henderson, W. Erwin, and R. Komaki, “Lung perfusion imaging can risk stratify lung cancer patients for the development of pulmonary complications after chemoradiation,” J. Thorac. Oncol. 3, 858864 (2008).
http://dx.doi.org/10.1097/JTO.0b013e31818020d5
15.
15. T. Kimura, I. Nishibuchi, Y. Murakami, M. Kenjo, Y. Kaneyasu, and Y. Nagata, “Functional image-guided radiotherapy planning in respiratory-gated intensity-modulated radiotherapy for lung cancer patients with chronic obstructive pulmonary disease,” Int. J. Radiat. Oncol., Biol., Phys. 82, e663e670 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.08.016
16.
16. S. M. McGuire, L. B. Marks, F. F. Yin, and S. K. Das, “A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung,” Phys. Med. Biol. 55, 403416 (2010).
http://dx.doi.org/10.1088/0031-9155/55/2/005
17.
17. B. P. Yaremko, T. M. Guerrero, J. Noyola-Martinez, R. Guerra, D. G. Lege, L. T. Nguyen, P. A. Balter, J. D. Cox, and R. Komaki, “Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance,” Int. J. Radiat. Oncol., Biol., Phys. 68, 562571 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.01.044
18.
18. K. Suga, “Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas,” Ann. Nucl. Med. 16, 303310 (2002).
http://dx.doi.org/10.1007/BF02988614
19.
19. J. Bayouth, K. Du, G. Christensen, B. Smith, J. Buatti, and J. Reinhardt, “Establishing a relationship between radiosensitivity of lung tissue and ventilation,” Int. J. Radiat. Oncol., Biol., Phys. 84, S31S32 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.07.086
20.
20. Y. Y. Vinogradskiy, R. Castillo, E. Castillo, A. Chandler, M. K. Martel, and T. Guerrero, “Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy,” Med. Phys. 39, 289298 (2012).
http://dx.doi.org/10.1118/1.3668056
21.
21. M. K. Fuld, R. B. Easley, O. I. Saba, D. Chon, J. M. Reinhardt, E. A. Hoffman, and B. A. Simon, “CT-measured regional specific volume change reflects regional ventilation in supine sheep,” J. Appl. Physiol. 104, 11771184 (2008).
http://dx.doi.org/10.1152/japplphysiol.00212.2007
22.
22. K. Ding, K. Cao, M. K. Fuld, K. Du, G. E. Christensen, E. A. Hoffman, and J. M. Reinhardt, “Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe-CT,” Med. Phys. 39, 50845098 (2012).
http://dx.doi.org/10.1118/1.4736808
23.
23. L. Mathew, A. Wheatley, R. Castillo, E. Castillo, G. Rodrigues, T. Guerrero, and G. Parraga, “Hyperpolarized (3)He magnetic resonance imaging: Comparison with four-dimensional x-ray computed tomography imaging in lung cancer,” Acad. Radiol. 19, 15461553 (2012).
http://dx.doi.org/10.1016/j.acra.2012.08.007
24.
24. R. Castillo, E. Castillo, J. Martinez, and T. Guerrero, “Ventilation from four-dimensional computed tomography: Density versus Jacobian methods,” Phys. Med. Biol. 55, 46614685 (2010).
http://dx.doi.org/10.1088/0031-9155/55/16/004
25.
25. R. Castillo, E. Castillo, M. McCurdy, D. R. Gomez, A. M. Block, D. Bergsma, S. Joy, and T. Guerrero, “Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis,” Phys. Med. Biol. 57, 18551871 (2012).
http://dx.doi.org/10.1088/0031-9155/57/7/1855
26.
26. T. Yamamoto, S. Kabus, J. von Berg, C. Lorenz, M. L. Goris, B. W. Loo Jr., and P. Keall, “Evaluation of four-dimensional (4D) computed tomography (CT) pulmonary ventilation imaging by comparison with single photon emission computed tomography (SPECT) scans for a lung cancer patient,” in Proceedings of the Third International Workshop on Pulmonary Image Analysis, MICCAI, Beijing, China, 2010 (2010), pp. 117128, http://www.lungworkshop.org/2010/proc2010/yamamoto.pdf.
27.
27. J. Palmer, U. Bitzen, B. Jonson, and M. Bajc, “Comprehensive ventilation/perfusion SPECT,” J. Nucl. Med. 42, 12881294 (2001).
28.
28. T. Yamamoto, S. Kabus, T. Klinder, C. Lorenz, J. von Berg, T. Blaffert, B. W. Loo Jr., and P. J. Keall, “Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions,” Phys. Med. Biol. 56, 22792298 (2011).
http://dx.doi.org/10.1088/0031-9155/56/7/023
29.
29. T. Yamamoto, S. Kabus, T. Klinder, J. von Berg, C. Lorenz, B. W. Loo Jr., and P. J. Keall, “Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics,” Med. Phys. 38, 13481358 (2011).
http://dx.doi.org/10.1118/1.3547719
30.
30. B. A. Simon, “Non-invasive imaging of regional lung function using x-ray computed tomography,” J. Clin. Monit. Comput. 16, 433442 (2000).
http://dx.doi.org/10.1023/A:1011444826908
31.
31. J. M. Reinhardt, K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and S. V. Bodas, “Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation,” Med. Image Anal. 12, 752763 (2008).
http://dx.doi.org/10.1016/j.media.2008.03.007
32.
32. K. Du, J. E. Bayouth, K. Ding, G. E. Christensen, K. Cao, and J. M. Reinhardt, “Reproducibility of intensity-based estimates of lung ventilation,” Med. Phys. 40, 063504 (18pp.) (2013).
http://dx.doi.org/10.1118/1.4805106
33.
33. J. B. Borges, I. Velikyan, B. Langstrom, J. Sorensen, J. Ulin, E. Maripuu, M. Sandstrom, C. Widstrom, and G. Hedenstierna, “Ventilation distribution studies comparing Technegas and ‘Gallgas' using 68GaCl3 as the label,” J. Nucl. Med. 52, 206209 (2011).
http://dx.doi.org/10.2967/jnumed.110.083881
34.
34. T. Isawa, B. T. Lee, and K. Hiraga, “High-resolution electron microscopy of technegas and pertechnegas,” Nucl. Med. Commun. 17, 147152 (1996).
http://dx.doi.org/10.1097/00006231-199602000-00009
35.
35. K. Latifi, T. Huang, V. Feygelman, M. M. Budzevich, E. G. Moros, T. J. Dilling, C. W. Stevens, W. Van Elmpt, A. Dekker, and G. G. Zhang, “Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data,” Phys. Med. Biol. 58, 76617672 (2013).
http://dx.doi.org/10.1088/0031-9155/58/21/7661
36.
36. J. M. Reinhardt, V. Chu, G. Hamarneh, and J. P. W. Pluim, “MATLAB-ITK interface for medical image filtering, segmentation, and registration,” Proc. SPIE 6144, 61443T (2006).
http://dx.doi.org/10.1117/12.652628
37.
37. P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” Neuroimage 31, 11161128 (2006).
http://dx.doi.org/10.1016/j.neuroimage.2006.01.015
38.
38. D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 24552464 (2003).
http://dx.doi.org/10.1118/1.1598711
39.
39. K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. J. de Hoop, M. A. Viergever, and J. P. Pluim, “Semi-automatic construction of reference standards for evaluation of image registration,” Med. Image Anal. 15, 7184 (2011).
http://dx.doi.org/10.1016/j.media.2010.07.005
40.
40. K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng, and J. Pluim, “Evaluation of methods for pulmonary image registration: The EMPIRE10 study,” in Grand Challenges in Medical Image Analysis 2010 (MICCAI, Beijing, China, 2010).
41.
41. T. Yamamoto, S. Kabus, J. von Berg, C. Lorenz, M. P. Chung, J. C. Hong, B. W. Loo Jr., and P. J. Keall, “Reproducibility of four-dimensional computed tomography-based lung ventilation imaging,” Acad. Radiol. 19, 15541565 (2012).
http://dx.doi.org/10.1016/j.acra.2012.07.006
42.
42. N. W. Morrell, B. K. Wignall, T. Biggs, and W. A. Seed, “Collateral ventilation and gas exchange in emphysema,” Am. J. Respir. Crit. Care Med. 150, 635641 (1994).
http://dx.doi.org/10.1164/ajrccm.150.3.8087331
43.
43. T. Yamamoto, U. Langner, B. W. Loo, J. Shen, and P. J. Keall, “Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients,” Int. J. Radiat Oncol., Biol., Phys. 72, 12501258 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2008.06.1937
44.
44. T. Yamamoto, S. Kabus, C. Lorenz, E. Johnston, P. G. Maxim, M. Diehn, N. Eclov, C. Barquero, B. W. Loo, and P. J. Keall, “4D CT lung ventilation images are affected by the 4D CT sorting method,” Med. Phys. 40, 101907 (9pp.) (2013).
http://dx.doi.org/10.1118/1.4820538
45.
45. D. A. Low, B. M. White, P. P. Lee, D. H. Thomas, S. Gaudio, S. S. Jani, X. Wu, and J. M. Lamb, “A novel CT acquisition and analysis technique for breathing motion modeling,” Phys. Med. Biol. 58, L31L36 (2013).
http://dx.doi.org/10.1088/0031-9155/58/11/L31
46.
46. E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, “Four-dimensional deformable image registration using trajectory modeling,” Phys. Med. Biol. 55, 305327 (2010).
http://dx.doi.org/10.1088/0031-9155/55/1/018
47.
47. Z. Wu, E. Rietzel, V. Boldea, D. Sarrut, and G. C. Sharp, “Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations,” Med. Phys. 35, 775781 (2008).
http://dx.doi.org/10.1118/1.2828378
48.
48. V. Delmon, S. Rit, R. Pinho, and D. Sarrut, “Registration of sliding objects using direction dependent B-splines decomposition,” Phys. Med. Biol. 58, 13031314 (2013).
http://dx.doi.org/10.1088/0031-9155/58/5/1303
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4856055
Loading
/content/aapm/journal/medphys/41/1/10.1118/1.4856055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/1/10.1118/1.4856055
2013-12-31
2014-07-25

Abstract

CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with68Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters.

PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change ( ) or Jacobian determinant of deformation ( ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρ and ρ ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient within the segmented lung volumes, and Dice coefficient for the (0 − 20)th functional percentile volumes.

The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρ ) with σ = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ ⩽ 0.76 and 0.38 ⩽ ⩽ 0.68, with and averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in and ( < 0.05), with density scaled metrics also showing higher than for unscaled versions ( < 0.02). and were also sensitive to image quality, with statistically significant improvements using standard (as opposed to gated) PET images and with application of median filtering.

The use of modified CT ventilation metrics, in conjunction with PET-Galligas and careful application of image filtering has resulted in improved correlation compared to earlier studies using nuclear medicine ventilation. However, CT ventilation and PET-Galligas do not always provide the same functional information. The authors have demonstrated that the agreement can improve for CT ventilation metrics incorporating a tissue density scaling, and also with increasing PET image quality. CT ventilation imaging has clear potential for imaging regional air volume change in the lung, and further development is warranted.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/1/1.4856055.html;jsessionid=1jqqamup0n0q.x-aip-live-03?itemId=/content/aapm/journal/medphys/41/1/10.1118/1.4856055&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/1/10.1118/1.4856055
10.1118/1.4856055
SEARCH_EXPAND_ITEM