Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/11/10.1118/1.4895003
1.
1.R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43,” Med. Phys. 22, 209234 (1995).
http://dx.doi.org/10.1118/1.597458
2.
2.M. J. Rivard, B. M. Coursey, L. A. DeWerd, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
3.
3.G. H. Hartmann, W. Schlegel, and H. Scharfenberg, “The three-dimensional dose distribution of 125I seeds in tissue,” Phys. Med. Biol. 28, 693699 (1983).
http://dx.doi.org/10.1088/0031-9155/28/6/009
4.
4.K. A. Weaver, “Response of LiF powder to 125I photons,” Med. Phys. 11, 850854 (1984).
http://dx.doi.org/10.1118/1.595600
5.
5.K. A. Weaver, V. Smith, D. Huang, C. Barnett, M. C. Schell, and C. Ling, “Dose parameters of 125I and 192Ir seed sources,” Med. Phys. 16, 636643 (1989).
http://dx.doi.org/10.1118/1.596322
6.
6.A. S. Meigooni, J. A. Meli, and R. Nath, “Influence of the variation of energy spectra with depth in the dosimetry of 192Ir using LiF TLD,” Phys. Med. Biol. 33, 11591170 (1988).
http://dx.doi.org/10.1088/0031-9155/33/10/005
7.
7. A. S. Meigooni, J. A. Meli, andR. Nath, “A comparison of solid phantoms with water for dosimetry of 125I brachytherapy sources,” Med. Phys. 15, 695701 (1988).
http://dx.doi.org/10.1118/1.596182
8.
8.P. J. Muench, A. S. Meigooni, R. Nath, and W. L. McLaughlin, “Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLDs used for brachytherapy dosimetry,” Med. Phys. 18, 769775 (1991).
http://dx.doi.org/10.1118/1.596630
9.
9.S. D. Davis, C. K. Ross, P. N. Mobit, L. Van der Zwan, W. J. Chase, and K. R. Shortt, “The response of LiF TLDs to photon beams in the energy range from 30 kV to 60Co γ-rays,” Radiat. Prot. Dosim. 106, 3344 (2003).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a006332
10.
10.A. A. Nunn, S. D. Davis, J. A. Micka, and L. A. DeWerd, “LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to 60Co,” Med. Phys. 35, 18591869 (2008).
http://dx.doi.org/10.1118/1.2898137
11.
11.A. C. Tedgren, A. Hedman, J.-E. Grindborg, and G. A. Carlsson, “Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to dosimetry of brachytherapy (<1 MeV),” Med. Phys. 38, 55395550 (2011).
http://dx.doi.org/10.1118/1.3633892
12.
12.M. J. Rivard, W. M. Butler, L. A. DeWerd, M. S. Huq, G. S. Ibbott, A. S. Meigooni, C. S. Melhus, M. G. Mitch, R. Nath, and J. F. Williamson, “Supplement to the 2004 update of the AAPM Task Group No. 43 Report,” Med. Phys. 34, 21872205 (2007).
http://dx.doi.org/10.1118/1.2736790
13.
13.Y. S. Horowitz, “Update on AAPM Task Group No. 43 Report—Brachytherapy and TLD,” Radiat. Prot. Dosim. 133, 124125 (2009).
http://dx.doi.org/10.1093/rpd/ncp018
14.
14.Q. Liang, S. D. Davis, Y. S. Horowitz, and L. A. DeWerd, “Investigation of the relative TL response for low-energy X-rays relative to 60Co for TLD-100,” Radiat. Meas. 46, 14531456 (2011).
http://dx.doi.org/10.1016/j.radmeas.2011.07.024
15.
15.D. W. O. Rogers, “General characteristics of radiation dosimeters and a terminology to describe them,” in Clinical Dosimetry Measurements in Radiotherapy, edited by D. W. O. Rogers and J. E. Cygler (Medical Physics Publishing, Madison, Wisconsin, 2009), pp. 137145.
16.
16.P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, “The AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
http://dx.doi.org/10.1118/1.598691
17.
17.J. F. Williamson and M. J. Rivard, “Thermoluminescent detector and Monte Carlo techniques for reference-quality brachytherapy dosimetry,” in Clinical Dosimetry Measurements in Radiotherapy, edited by D. W. O. Rogers and J. E. Cygler (Medical Physics Publishing, Madison, Wisconsin, 2009), pp. 437499.
18.
18.R. K. Das, Z. Li, H. Perera, and J. F. Williamson, “Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts,” Phys. Med. Biol. 41, 9951006 (1996).
http://dx.doi.org/10.1088/0031-9155/41/6/004
19.
19.T. Budd, M. Marshall, L. H. J. Peaple, and J. A. Douglas, “The low- and high-temperature response of lithium fluoride dosemeters to X-rays,” Phys. Med. Biol. 24, 7180 (1979).
http://dx.doi.org/10.1088/0031-9155/24/1/007
20.
20.T. Kron, L. Duggan, T. Smith, A. Rosenfeld, M. Butson, G. Kaplan, S. Howlett, and K. Hyodo, “Dose response of various radiation detectors to synchrotron radiation,” Phys. Med. Biol. 43, 32353259 (1998).
http://dx.doi.org/10.1088/0031-9155/43/11/006
21.
21.P. Olko, P. Bilski, and J.-L. Kim, “Microdosimetric interpretation of the photon energy response of LiF:Mg,Ti detectors,” Radiat. Prot. Dosim. 100, 119122 (2002).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a005826
22.
22.A. S. Meigooni, V. Mishra, H. Panth, and J. Williamson, “Instrumentation and dosimeter-size artifacts in quantitative thermoluminescence dosimetry of low-dose fields,” Med. Phys. 22, 555561 (1995).
http://dx.doi.org/10.1118/1.597555
23.
23.J. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80,” Med. Phys. 11, 670677 (1984).
http://dx.doi.org/10.1118/1.595550
24.
24.AAPM TG–21, “A protocol for the determination of absorbed dose from high-energy photon and electron beams,” Med. Phys. 10, 741771 (1983).
http://dx.doi.org/10.1118/1.595446
25.
25.S. M. Seltzer and P. M. Bergstrom, “Changes in the U.S. primary standards for the air kerma from gamma-ray beams,” J. Res. Natl. Inst. Stand. Technol. 108, 359381 (2003).
http://dx.doi.org/10.6028/jres.108.031
26.
26.S. M. Seltzer, P. J. Lamperti, R. Loevinger, M. G. Mitch, J. T. Weaver, and B. M. Coursey, “New national air-kerma-strength standards for 125I and 103Pd brachytherapy seeds,” J. Res. Natl. Inst. Stand. Technol. 108, 337358 (2003).
http://dx.doi.org/10.6028/jres.108.030
27.
27.R. M. Kennedy, S. D. Davis, J. A. Micka, and L. A. DeWerd, “Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed brachytherapy source,” Med. Phys. 37, 16811688 (2010).
http://dx.doi.org/10.1118/1.3360899
28.
28.P. Mobit and I. Badragan, “Response of LiF-TLD micro-rods around 125I radioactive seed,” Phys. Med. Biol. 48, 31293142 (2003).
http://dx.doi.org/10.1088/0031-9155/48/19/003
29.
29.N. S. Patel, S.-T. Chiu-Tsao, J. F. Williamson, P. Fan, T. Duckworth, D. Shasha, and L. B. Harrison, “Thermoluminescent dosimetry of the Symmetra 125I model I25.S06 interstitial brachytherapy seed,” Med. Phys. 28, 17611769 (2001).
http://dx.doi.org/10.1118/1.1388218
30.
30.J. Dolan, Z. Li, and J. F. Williamson, “Monte Carlo and experimental dosimetry of an 125I brachytherapy seed,” Med. Phys. 33, 46754684 (2006).
http://dx.doi.org/10.1118/1.2388158
31.
31.R. M. Harrison, “Tissue–air ratios and scatter–air ratios for diagnostic radiology (1–4 mm Al HVL),” Phys. Med. Biol. 28, 118 (1983).
http://dx.doi.org/10.1088/0031-9155/28/1/001
32.
32.I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,” Med. Phys. 27, 485498 (2000).
http://dx.doi.org/10.1118/1.598917
33.
33.I. Kawrakow and D. W. O. Rogers, “The EGSnrc code system: Monte Carlo simulation of electron and photon transport,” Technical Report PIRS-701 , National Research Council of Canada, Ottawa, Canada, 2000 [http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/egsnrc/download_egsnrc.html].
34.
34.G. Yegin and D. W. O. Rogers, “A fast Monte Carlo code for multi-seed brachytherapy treatments including interseed effects,” Med. Phys. 31, 1771 (2004), abstract.
http://dx.doi.org/10.1118/1.1776415
35.
35.R. E. P. Taylor, G. Yegin, and D. W. O. Rogers, “Benchmarking BrachyDose: Voxel-based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters,” Med. Phys. 34, 445457 (2007).
http://dx.doi.org/10.1118/1.2400843
36.
36.R. M. Thomson, G. Yegin, R. E. P. Taylor, J. G. H. Sutherland, and D. W. O. Rogers, “Fast Monte Carlo dose calculations for brachytherapy with BrachyDose,” Med. Phys. 37, 39103911 (2010), abstract.
http://dx.doi.org/10.1118/1.3476217
37.
37.Z. J. Chen and R. Nath, “Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources,” Med. Phys. 34, 14121430 (2007).
http://dx.doi.org/10.1118/1.2713217
38.
38.Z. Chen and R. Nath, “A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources,” Phys. Med. Biol. 55, 60896104 (2010).
http://dx.doi.org/10.1088/0031-9155/55/20/004
39.
39.J. Usher-Moga, S. M. Beach, and L. A. DeWerd, “Spectroscopic output of 125I and 103Pd low dose rate brachytherapy sources,” Med. Phys. 36, 270278 (2009).
http://dx.doi.org/10.1118/1.3039789
40.
40.M. Rodriguez and D. W. O. Rogers, “On determining dose rate constants spectroscopically,” Med. Phys. 40, 011713 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4770284
41.
41.M. R. McEwen and D. Niven, “Characterization of the phantom material virtual water in high-energy photon and electron beams,” Med. Phys. 33, 876887 (2006).
http://dx.doi.org/10.1118/1.2174186
42.
42.K.-P. Hermann, L. Geworski, M. Muth, and D. Harder, “Polyethylene-based water-equivalent phantom material for x-ray dosimetry and tube voltages from 10 to 100 kV,” Phys. Med. Biol. 30, 11951200 (1985).
http://dx.doi.org/10.1088/0031-9155/30/11/002
43.
43.D. Duggan and B. L. Johnson, “Dosimetry of the I-Plant Model 3500 iodine-125 brachytherapy source,” Med. Phys. 28, 661670 (2001).
http://dx.doi.org/10.1118/1.1357456
44.
44.Z. Wang and N. Hertel, “Determination of dosimetric characteristics of OptiSeed a plastic brachytherapy 103Pd source,” Appl. Radiat. Isot. 63, 311321 (2005).
http://dx.doi.org/10.1016/j.apradiso.2005.03.017
45.
45.S. Chiu-Tsao, T. L. Duckworth, C. Hsiung, Z. Li, J. Williamson, N. Patel, and L. B. Harrison, “Thermoluminescent dosimetry of the SourceTech Medical model STM1251 125I seed,” Med. Phys. 30, 17321735 (2003).
http://dx.doi.org/10.1118/1.1577251
46.
46.M. J. Berger and J. H. Hubbell, “XCOM: Photon cross sections on a personal computer,” Report NBSIR87-3597 (National Institute of Standards Technology (NIST), Gaithersburg, MD 20899, 1987).
47.
47.B. Walters, I. Kawrakow, and D. W. O. Rogers, “DOSXYZnrc Users Manual,” NRC Technical Report PIRS-794revB (National Research Council Canada, Ottawa, Canada, 2011), http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/beam/download_beam.html.
48.
48.G. Mora, A. Maio, and D. W. O. Rogers, “Monte Carlo simulation of a typical 60Co therapy source,” Med. Phys. 26, 24942502 (1999).
http://dx.doi.org/10.1118/1.598770
49.
49.D. Sheikh-Bagheri and D. W. O. Rogers, “Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code,” Med. Phys. 29, 391402 (2002).
http://dx.doi.org/10.1118/1.1445413
50.
50.G. Anagnostopoulos, D. Baltas, P. Karaiskos, P. Sandilos, P. Papagiannis, and L. Sakelliou, “Thermoluminescent dosimetry of the selectSeed 125I interstitial brachytherapy seed,” Med. Phys. 29, 709716 (2002).
http://dx.doi.org/10.1118/1.1469631
51.
51.P. Papagiannis, L. Sakelliou, G. Anagnostopoulos, and D. Baltas, “On the dose rate constant of the selectSeed 125I interstitial brachytherapy seed,” Med. Phys. 33, 15221523 (2006).
http://dx.doi.org/10.1118/1.2192909
52.
52.Z. Li, J. J. Fan, and J. R. Palta, “Experimental measurements of dosimetric parameters on the transverse axis of a new 125I source,” Med. Phys. 27, 12751280 (2000).
http://dx.doi.org/10.1118/1.599005
53.
53.D. W. O. Rogers, “Analytic and graphical methods for assigning errors to parameters in non-linear least squares fitting,” Nucl. Instrum. Methods 127, 253260 (1975).
http://dx.doi.org/10.1016/0029-554X(75)90496-6
54.
54.R. E. P. Taylor and D. W. O. Rogers, “An EGSnrc Monte Carlo-calculated database of TG-43 parameters,” Med. Phys. 35, 42284241 (2008).
http://dx.doi.org/10.1118/1.2965360
55.
55.J. F. Williamson, “Dosimetric characteristics of the DRAXIMAGE model LS-1 interstitial brachytherapy source design: A Monte Carlo investigation,” Med. Phys. 29, 509521 (2002).
http://dx.doi.org/10.1118/1.1452733
56.
56.T. D. Bohm, P. M. DeLuca, Jr., and L. A. DeWerd, “Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code,” Med. Phys. 30, 701711 (2003).
http://dx.doi.org/10.1118/1.1562942
57.
57.J. J. DeMarco, R. E. Wallace, and K. Boedeker, “An analysis of MCNP cross-sections and tally methods for low-energy photon emitters,” Phys. Med. Biol. 47, 13211332 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/307
58.
58.H. Hedtjärn, G. A. Carlsson, and J. F. Williamson, “Monte Carlo-aided dosimetry of the symmetra model I25.S06 I125, interstitial brachytherapy seed,” Med. Phys. 27, 10761085 (2000).
http://dx.doi.org/10.1118/1.598990
59.
59.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, and G. Ibbott, “Guidance to users of Nycomed Amersham and North American Scientific, Inc., I-125 Interstitial Sources: Dosimetry and calibration changes: Recommendations of the AAPM Radiation Therapy Committee Ad Hoc Subcommittee on low-energy seed dosimetry,” Med. Phys. 26, 570573 (1999).
http://dx.doi.org/10.1118/1.598570
60.
60.M. J. Rivard, “A discretized approach to determining TG-43 brachytherapy dosimetry parameters: Case study using Monte Carlo calculations for the MED3633 103Pd source,” Appl. Radiat. Isot. 55, 775782 (2001).
http://dx.doi.org/10.1016/S0969-8043(01)00144-0
61.
61.V. M. Tello, R. C. Tailor, and W. F. Hanson, “How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams?,” Med. Phys. 22, 11771189 (1995).
http://dx.doi.org/10.1118/1.597613
62.
62.IAEA, in Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, Technical Report Series Vol. 398 (IAEA, Vienna, 2001).
63.
63.ICRU, “Tissue substitutes in radiation dosimetry and measurements,” ICRU Report 44 (ICRU, Washington, DC, 1989).
64.
64.A. S. Meigooni, Z. Li, V. Mishra, and J. F. Williamson, “A comparative study of dosimetric properties of plastic water and solid water in brachytherapy applications,” Med. Phys. 21, 19831987 (1994).
http://dx.doi.org/10.1118/1.597232
65.
65.J. F. Williamson, “Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds,” Med. Phys. 18, 776786 (1991).
http://dx.doi.org/10.1118/1.596631
66.
66.G. Luxton, “Comparison of radiation-dosimetry in water and in solid phantom materials for I-125 and Pd-103 brachytherapy sources—EGS4 Monte Carlo study,” Med. Phys. 21, 621641 (1994).
http://dx.doi.org/10.1118/1.597183
67.
67.L. A. Buckley, B. R. Thomadsen, and L. A. DeWerd, “The water-equivalence of phantom materials for 90Sr–90Y beta particles,” Med. Phys. 28, 10101015 (2001).
http://dx.doi.org/10.1118/1.1376176
68.
68.D. M. Gearheart, A. Drogin, K. Sowards, A. Meigooni, and G. S. Ibbott, “Dosimetric characteristics of a new 125I brachytherapy source,” Med. Phys. 27, 22782285 (2000).
http://dx.doi.org/10.1118/1.1290486
69.
69.A. S. Meigooni, J. L. Hayes, H. Zhang, and K. Sowards, “Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ 125I brachytherapy source,” Med. Phys. 29, 21522158 (2002).
http://dx.doi.org/10.1118/1.1500395
70.
70.Z. Chen, P. Bongiorni, and R. Nath, “Experimental characterization of the dosimetric properties of a newly desined I-Seed model AgX100 125I interstitial brachytherapy source,” Brachytherapy 11, 476482 (2012).
http://dx.doi.org/10.1016/j.brachy.2011.08.009
71.
71.C. C. Popescu, J. Wise, K. Sowards, A. S. Meigooni, and G. S. Ibbott, “Dosimetric characteristics of the PharmaSeed model BT-125-1 source,” Med. Phys. 27, 21742181 (2000).
http://dx.doi.org/10.1118/1.1289897
72.
72.A. S. Meigooni, D. M. Gearheart, and K. Sowards, “Experimental determination of dosimetric characteristics of best 125I brachytherapy source,” Med. Phys. 27, 21682173 (2000).
http://dx.doi.org/10.1118/1.1289256
73.
73.R. Nath and N. Yue, “Dosimetric characterization of an encapsulated interstitial brachytherapy source of 125I on a tungsten substrate,” Brachytherapy 1, 102109 (2002).
http://dx.doi.org/10.1016/S1538-4721(02)00010-7
74.
74.R. E. Wallace, “Empirical dosimetric characterization of model I125-SL 125Iodine brachytherapy source in phantom,” Med. Phys. 27, 27962802 (2000).
http://dx.doi.org/10.1118/1.1323980
75.
75.Z. Chen and R. Nath, “Dose rate constant and energy spectrum of interstitial brachytherapy sources,” Med. Phys. 28, 8696 (2001).
http://dx.doi.org/10.1118/1.1333748
76.
76.J. I. Monroe and J. F. Williamson, “Monte Carlo-aided dosimetry of the Theragenics TheraSeed Model 200 103Pd interstitial brachytherapy seed,” Med. Phys. 29, 609621 (2002).
http://dx.doi.org/10.1118/1.1460876
77.
77.R. Nath, N. Yue, K. Shahnazi, and P. Bongiorini, “Measurement of dose-rate constant for 103Pd seeds with air kerma strength calibration based upon a primary national standard,” Med. Phys. 27, 655658 (2000).
http://dx.doi.org/10.1118/1.598925
78.
78.Z. Li, J. R. Palta, and J. J. Fan, “Monte Carlo caculations and experimental measurements of dosimetry parameters of a new 103Pd source,” Med. Phys. 27, 11081112 (2000).
http://dx.doi.org/10.1118/1.598975
79.
79.R. E. Wallace and J. J. Fan, “Dosimteric characterization of a new design 103Pd brachytherapy source,” Med. Phys. 26, 24652470 (1999).
http://dx.doi.org/10.1118/1.598765
80.
80.S. Bernard and S. Vynckier, “Dosimetric study of a new polymer encapsulated 103Pd seed,” Phys. Med. Biol. 50, 14931504 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/012
81.
81.A. S. Meigooni, Z. Bharucha, M. Yoe-Sein, and K. Sowards, “Dosimetric characteristics of the Best double-wall 103Pd brachytherapy source,” Med. Phys. 28, 25672575 (2001).
http://dx.doi.org/10.1118/1.1414007
82.
82.S. W. Peterson and B. Thomadsen, “Measurements of the dosimetric constants for a new 103Pd brachytherapy source,” Brachytherapy 1, 110119 (2002).
http://dx.doi.org/10.1016/S1538-4721(02)00015-6
83.
83.A. S. Meigooni, H. Zhang, C. Perry, S. A. Dini, and R. A. Koona, “Theoretical and experimental determination of dosimetric characteristics for brachyseed Pd-103, model Pd-1, source,” Appl. Radiat. Isot. 58, 533541 (2003).
http://dx.doi.org/10.1016/S0969-8043(02)00349-4
84.
84.R. Nath, N. Yue, and E. Roa, “Experimental determination of dosimetric characterization of a newly designed encapsulated interstitial brachytherapy source of 103Pd-model Pd-1,” Med. Phys. 29, 24332434 (2002).
http://dx.doi.org/10.1118/1.1510452
85.
85.A. S. Meigooni, S. A. Dini, S. B. Awan, K. Dou, and R. A. Koona, “Theoretical and experimental determination of dosimetric characterictics for ADVANTAGE Pd-103 brachytherapy source,” Appl. Radiat. Isot. 64, 881887 (2006).
http://dx.doi.org/10.1016/j.apradiso.2006.03.015
86.
86.A. S. Meigooni, K. Sowards, and M. Soldano, “Dosimetric characteristics of InterSource103 palladium brachytherapy source,” Med. Phys. 27, 10931100 (2000).
http://dx.doi.org/10.1118/1.598991
87.
87.G. S. Ibbott and R. Nath, “Dose-rate constant for Imagyn 125I brachytherapy source,” Med. Phys. 28, 705 (2001).
http://dx.doi.org/10.1118/1.1359443
88.
88.R. Nath and N. Yue, “Dose distribution along the transverse axis of a new 125I source for interstitial brachytherapy,” Med. Phys. 27, 25362540 (2000).
http://dx.doi.org/10.1118/1.1319520
89.
89.Z. Li, “Monte Carlo calculations of dosimetry parameters of the Urocor Prostaseed 125I source,” Med. Phys. 29, 10291034 (2002).
http://dx.doi.org/10.1118/1.1478559
90.
90.K. Sowards and A. S. Meigooni, “A Monte Carlo evaluation of the dosimetric characteristics of the EchoSeed™ Model 6733 125I brachytherapy source,” Brachytherapy 1, 227232 (2002).
http://dx.doi.org/10.1016/S1538-4721(02)00102-2
91.
91.A. S. Meigooni, S. A. Dini, K. Sowards, J. L. Hayes, and A. Al-Otoom, “Experimental determination of the TG-43 dosimetric characteristics of EchoSeed model 6733 125I brachytherapy source,” Med. Phys. 29, 939942 (2002).
http://dx.doi.org/10.1118/1.1470210
92.
92.T. D. Solberg, J. J. DeMarco, G. Hugo, and R. E. Wallace, “Dosimetric parameters of three new solid core I-125 brachytherapy sources,” J. Appl. Clin. Med. Phys. 3, 119134 (2002).
http://dx.doi.org/10.1120/1.1464086
93.
93.M. J. Rivard, “Comprehensive Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the Model 3500 I-Plant 125I brachytherapy source,” Appl. Radiat. Isot. 57, 381389 (2002).
http://dx.doi.org/10.1016/S0969-8043(02)00110-0
94.
94.R. E. Wallace, “Model 3500 125I brachytherapy source dosimetric characterization,” Appl. Radiat. Isot. 56, 581587 (2002).
http://dx.doi.org/10.1016/S0969-8043(01)00254-8
95.
95.G. Lymperopoulou, P. Papagiannis, A. Angelopoulos, L. Sakelliou, P. Karaiskos, P. Sandilos, A. Przykutta, and D. Baltas, “Monte Carlo and thermoluminescence dosimetry of the new IsoSeed model I125.S17 125I interstitial brachytherapy seed,” Med. Phys. 32, 33133317 (2005).
http://dx.doi.org/10.1118/1.2089588
96.
96.E. Pantelis, D. Baltas, E. Georgiou, P. Karaiskos, G. Lymperopoulou, P. Papariannis, L. Sakelliou, I. Seimenis, and E. Stilliaris, “Dose characterization of the new Bebig IsoSeed I25.S17 using polymer gel and MRI,” Nucl. Instrum. Methods Phys. Res., Sect. A 569, 529532 (2006).
http://dx.doi.org/10.1016/j.nima.2006.08.139
97.
97.F. Mourtada, J. Mikell, and G. Ibbott, “Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the 125I I-Seed AgX100 source model,” Brachytherapy 11, 237244 (2012).
http://dx.doi.org/10.1016/j.brachy.2011.06.002
98.
98.R. Nath and N. Yue, “Experimental determination of a newly designed encapsulated interstitial brachytherapy source of iodine-125-model LS-1 BrachySeed,” Appl. Radiat. Isot. 55, 813821 (2001).
http://dx.doi.org/10.1016/S0969-8043(01)00128-2
99.
99.J. F. Williamson and F. J. Quintero, “Theoretical evaluation of dose distributions in water models 6711 and 6702 125I seeds,” Med. Phys. 15, 891897 (1988).
http://dx.doi.org/10.1118/1.596172
100.
100.R. E. Wallace and J. J. Fan, “Report on the dosimetry of a new design 125Iodine brachytherapy source,” Med. Phys. 26, 19251931 (1999).
http://dx.doi.org/10.1118/1.598737
101.
101.Z. Li and J. F. Williamson, “Measured transverse-axis dosimetric parameters of the model STM1251 125I interstitial source,” J. Appl. Clin. Med. Phys. 3, 212217 (2002).
http://dx.doi.org/10.1120/1.1483235
102.
102.A. S. Meigooni, M. M. Yoe-Sein, A. Y. Al-Otoom, and K. Sowards, “Determination of the dosimetric characteristics of InterSource 125I brachytherapy source,” Int. J. Appl. Radiat. Isot. 56, 589599 (2002).
http://dx.doi.org/10.1016/S0969-8043(01)00258-5
103.
103.B. Reniers, S. Vynckier, and P. Scalliet, “Dosimetric study of the new InterSource125 iodine seed,” Med. Phys. 28, 22852299 (2001).
http://dx.doi.org/10.1118/1.1415072
104.
104.R. E. Wallace (private communication, 2014).
105.
105.Z. Wang and N. Hertel (private communication, 2014).
106.
106.M. Martinov (personal communication, 2014).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/11/10.1118/1.4895003
Loading
/content/aapm/journal/medphys/41/11/10.1118/1.4895003
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/11/10.1118/1.4895003
2014-10-17
2016-09-26

Abstract

To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for 125I and 103Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values.

The relative absorbed-dose energy dependence, rel, for TLDs and the phantom correction, , are calculated for 125I and 103Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated ( rel)−1 and values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, , is determined. The new values and relative absorbed-dose sensitivities, , calculated as the product of ( rel)−1 and , are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values.

In general, rel is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among 125I and 103Pd seed models and common TLD shapes. values depend primarily on the isotope used. Deduced values are 1.074 ± 0.015 and 1.084 ± 0.026 for 125I and 103Pd seeds, respectively. For (1 mm)3 chips, this implies an overall absorbed-dose sensitivity relative to 60Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for 125I and 103Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of calculated here have much lower statistical uncertainties than literature values, but systematic uncertainties from density and composition uncertainties are significant. Using these revised values with the literature’s DRC measurements, the average discrepancies between revised measured values and Monte Carlo values are 1.2% and 0.2% for 125I and 103Pd seeds, respectively, compared to average discrepancies for the original measured values of 4.8%. On average, the revised measured values are 4.3% and 5.9% lower than the original measured values for 103Pd and 125I seeds, respectively. The average of revised DRCs and Monte Carlo values is 3.8% and 2.8% lower for 125I and 103Pd seeds, respectively, than the consensus values in TG-43U1 or TG-43U1S1.

This work shows that rel is TLD shape and seed model dependent suggesting a need to update the generalized energy response dependence, i.e., relative absorbed-dose sensitivity, measured 25 years ago and applied often to DRC measurements of 125I and 103Pd brachytherapy seeds. The intrinsic energy dependence for LiF TLDs deduced here is consistent with previous dosimetry studies and emphasizes the need to revise the DRC consensus values reported by TG-43U1 or TG-43U1S1.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/11/1.4895003.html;jsessionid=l5w7sF2qxRfgMnPBg_FnAyZh.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/11/10.1118/1.4895003&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/41/11/10.1118/1.4895003&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/41/11/10.1118/1.4895003'
Right1,Right2,Right3,