Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. S. Koh, C. K. Tan, L. H. Cheong, and C. C. Lim, “Cerebral perfusion mapping using a robust and efficient method for deconvolution analysis of dynamic contrast-enhanced images,” Neuroimage 32(2), 643653 (2006).
2.H. B. W. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 12701281 (2009).
3.S. Bisdas, T. Naegele, R. Ritz, A. Dimostheni, C. Pfannenberg, M. Reimold, T. S. Koh, and U. Ernemann, “Distinguishing recurrent high-grade gliomas from radiation injury: A pilot study using dynamic contrast-enhanced MR imaging,” Acad. Radiol. 18(5), 575583 (2011).
4.G. Nielsen, T. Fritz-Hansen, C. G. Dirks, G. B. Jensen, and H. B. W. Larsson, “Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging,” J. Magn. Reson. Imaging 20(3), 403410 (2004).
5.G. Tarroni, C. Corsi, P. F. Antkowiak, F. Veronesi, C. M. Kramer, F. H. Epstein, J. Walter, C. Lamberti, R. M. Lang, V. Mor-Avi, and A. R. Patel, “Myocardial perfusion: Near–automated evaluation from contrast-enhanced MR images obtained at rest and during vasodilator stress,” Radiology 265(2), 576583 (2012).
6.G. Brix, F. Kiessling, R. Lucht, S. Darai, K. Wasser, S. Delorme, and J. Griebel, “Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series,” Magn. Reson. Med. 52(2), 420429 (2004).
7.R. Fusco, M. Sansone, S. Maffei, N. Raiano, and A. Petrillo, “Dynamic contrast-enhanced MRI in breast cancer: A comparison between distributed and compartmental tracer kinetic models,” J. Biomed. Graphics Comput. 2(2), 2336 (2012).
8.H. Michaely, K. Herrmann, K. Nael, N. Oesingmann, M. Reiser, and S. Schoenberg, “Functional renal imaging: Nonvascular renal disease,” Abdom. Imaging 32(1), 116 (2007).
9.B. D. de Senneville, I. A. Mendichovszky, S. Roujol, I. Gordon, C. Moonen, and N. Grenier, “Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys,” J. Magn. Reson. Imaging 28(4), 970978 (2008).
10.F. Khalifa, G. M. Beache, M. A. El-Ghar, T. El-Diasty, G. Gimel’farb, M. Kong, and A. El-Baz, “Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection,” IEEE Trans. Med. Imaging 32(10), 19101927 (2013).
11.M. A. Haider, P. Chung, J. Sweet, A. Toi, K. Jhaveri, C. Ménard, P. Warde, J. Trachtenberg, G. Lockwood, and M. Milosevic, “Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys. 70(2), 425430 (2008).
12.B. M. Kelm, B. H. Menze, O. Nix, C. M. Zechmann, and F. A. Hamprecht, “Estimating kinetic parameter maps from dynamic contrast-enhanced MRI using spatial prior knowledge,” IEEE Trans. Med. Imaging 28(10), 15341547 (2009).
13.E. K. Vos, G. Litjens, T. Kobus, T. Hambrock, C. A. Kaa, J. O. Barentsz, H. Huisman, and T. W. J. Scheenen, “Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T,” Eur. Urol. 64(3), 448455 (2013).
14.M. Bergamino, L. Bonzano, F. Levrero, G. Mancardi, and L. Roccatagliata, “A review of technical aspects of t1–weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors,” Phys. Med. 30(6), 635643 (2014).
15.E. Nagel, C. Klein, I. Paetsch, S. Hettwer, B. Schnackenburg, K. Wegscheider, and E. Fleck, “Magnetic resonance perfusion measurements for the non-invasive detection of coronary artery disease,” Circulation 108(4), 423437 (2003).
16.P. L. Choyke, J. A. Frank, M. E. Girton, S. W. Inscoe, M. J. Carvlin, J. L. Black, H. A. Austin, and A. J. Dwyer, “Dynamic Gd-DTPA-enhanced MR imaging of the kidney: Experimental results,” Radiology 170(3), 713720 (1989).
17.L. Bokacheva, H. Rusinek, J. L. Zhang, Q. Chen, and V. S. Lee, “Estimates of glomerular filtration rate from MR renography and tracer kinetic models,” J. Magn. Reson. Imaging 29(2), 371382 (2009).
18.D. L. Buckley, “Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI,” Magn. Reson. Med. 47(3), 601606 (2002).
19.G. J. M. Parker, J. Suckling, S. F. Tanner, A. R. Padhani, J. E. Husband, and M. O. Leach, “MRIW: Parametric analysis software for contrast-enhanced dynamic MR imaging in cancer,” Radiographics 18(2), 497506 (1998).
20.P. Gibbs, G. P. Liney, M. Lowry, P. J. Kneeshaw, and L. W. Turnbull, “Differentiation of benign and malignant sub-1 cm breast lesions using dynamic contrast enhanced MRI,” Breast 13(2), 115121 (2004).
21.N. M. Hylton, J. D. Blume, W. K. Bernreuter, E. D. Pisano, M. A. Rosen, E. A. Morris, P. T. Weatherall, C. D. Lehman, G. M. Newstead, S. Polin, H. S. Marques, L. J. Esserman, M. D. Schnall, and ACRIN 6657 Trial Team and I-SPY 1 TRIAL Investigators, “Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy results from ACRIN 6657/I-SPY TRIAL,” Radiology 263(3), 663672 (2012).
22.V. A. Arasu, R. C. Chen, D. N. Newitt, C. B. Chang, H. Tso, N. M. Hylton, and B. N. Joe, “Can signal enhancement ratio (SER) reduce the number of recommended biopsies without affecting cancer yield in occult MRI-detected lesions?,” Acad. Radiol. 18(6), 716721 (2011).
23.S. C. Partridge, R. K. Vanantwerp, R. K. Doot, X. Chai, B. F. Kurland, P. R. Eby, J. M. Specht, L. K. Dunnwald, E. K. Schubert, C. D. Lehman, and D. A. Mankoff, “Association between serial dynamic contrast-enhanced MRI and dynamic 18 F-FDG PET measures in patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer,” J. Mag. Reson. Imaging 32(5), 11231131 (2010).
24.N. Hylton, “Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker,” J. Clin. Oncol. 24(20), 32933298 (2006).
25.G. M. Beache, S. Kulke, H. Kantor, P. N. T. Campbell, D. Chesler, H. Gerwirtz, B. Rosen, T. Brady, and T. Weisskoff, “Imaging perfusion deficits in ischemic heart disease with susceptibility–enhanced T2-weighted MRI: Preliminary human studies,” Magn. Reson. Imaging 16(1), 1927 (1998).
26.M. J. Paldino and D. P. Barboriak, “Fundamentals of quantitative dynamic contrast-enhanced MR imaging,” Magn. Reson. Imaging Clin. North Am. 17(2), 277289 (2009).
27.H. J. Van der woude, J. L. Bloem, K. L. Verstraete, A. H. Taminiau, M. A. Nooy, and H. P. C, “Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: Value of dynamic MR imaging in detecting viable tumor before surgery,” Am. J. Roentgenol. 165(3), 593598 (1995).
28.W. E. Reddick, J. S. Taylor, and B. D. Fletcher, “Dynamic mr imaging (demri) of microcirculation in bone sarcoma.,” J. Magn. Reson. Imaging 10(3), 277285 (1999).<277::AID-JMRI8>3.0.CO;2-S
29.P. J. Hoskin, M. I. Saunders, K. Goodchild, M. E. Powell, N. J. Taylor, and H. Baddeley, “Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer,” Br. J. Radiol. 72(863), 10931098 (1999).
30.A. Semiz oysu, E. Ayanoglu, N. Kodalli, C. Oysu, C. Uneri, and C. Erzen, “Dynamic contrast-enhanced MRI in the differentiation of posttreatment fibrosis from recurrent carcinoma of the head and neck,” Clin. Imaging 29(5), 307312 (2005).
31.N. Tomura, K. Omachi, I. Sakuma, S. Takahashi, J. Izumi, O. Watanabe, J. Watarai, and M. Sageshima, “Dynamic contrast-enhanced magnetic resonance imaging in radiotherapeutic efficacy in the head and neck tumors,” Am. J. Otolaryngol. 26(3), 163167 (2005).
32.J. Schwitter, D. Nanz, S. Kneifel, K. Bertschinger, M. Büchi, P. R. Knüsel, B. Marincek, T. F. Lüscher, and G. K. Von schulthess, “Assessment of myocardial perfusion in coronary artery disease by magnetic resonance a comparison with positron emission tomography and coronary angiography,” Circulation 103(18), 22302235 (2001).
33.T. Ibrahim, S. G. Nekolla, K. Schreiber, K. Odaka, S. Volz, J. Mehilli, M. Güthlin, W. Delius, and M. Schwaiger, “Assessment of coronary flow reserve: Comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography,” J. Am. Coll. Cardiol. 39(5), 864870 (2002).
34.V. Positano, M. F. Santarelli, and L. Landini, “Automatic characterization of myocardial perfusion in contrast-enhanced MRI,” EURASIP J. Appl. Signal Process. 5(1), 413421 (2003).
35.H. Ólafsdóttir, M. B. Stegmann, and H. B. W. Larsson, “Automatic assessment of cardiac perfusion MRI,” in Proceedings of the Medical Image Computing and Computer Assisted Intervention (Springer, Berlin Heidelberg, 2004), pp. 10601061.
36.H. Xue, S. Zuehlsdorff, P. Kellman, A. Arai, S. Nielles-Vallespin, C. Chefdhotel, C. H. Lorenz, and J. Guehring, “Unsupervised inline analysis of cardiac perfusion MRI,” in Proceedings of the Medical Image Computing and Computer Assisted Intervention (Springer, Berlin Heidelberg, 2009), pp. 741749.
37.M.-Y. M. Su, K.-C. Yang, C.-C. Wu, Y.-W. Wu, H.-Y. Yu, R.-Y. Tseng, and W.-Y. I. Tseng, “First-pass myocardial perfusion cardiovascular magnetic resonance at 3 Tesla,” J. Cardiovasc. Magn. Reson. 9(4), 633644 (2007).
38.F. Khalifa, G. M. Beache, A. Elnakib, H. Sliman, G. Gimel’farb, K. C. Welch, and A. El-Baz, “A new nonrigid registration framework for improved visualization of transmural perfusion gradients on cardiac first-pass perfusion MRI,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, Piscataway, NJ, 2012), pp. 828831.
39.F. Khalifa, G. M. Beache, G. Gimel’farb, and A. El-Baz, “A novel CAD system for analyzing cardiac first-pass MRI images,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, Piscataway, NJ, 2012), pp. 7780.
40.G. M. Beache, F. Khalifa, G. Gimel’farb, and A. El-Baz, “Fully automated framework for the analysis of myocardial first-pass perfusion MR images,” Med. Phys. 41(10), 102305 (18pp.) (2014).
41.J. M. Hawnaur, X. P. Zhu, and C. E. Hutchinson, “Quantitative dynamic contrast enhanced MRI of recurrent pelvic masses in patients treated for cancer,” Br. J. Radiol. 71(851), 11361142 (1998).
42.L. Blomqvist, P. Fransson, and T. Hindmarsh, “The pelvis after surgery and radio-chemotherapy for rectal cancer studied with Gd-DTPA-enhanced fast dynamic MR imaging,” Eur. Radiol. 8(5), 781787 (1998).
43.O. Dicle, F. Obuz, and H. Cakmakci, “Differentiation of recurrent rectal cancer and scarring with dynamic MR imaging,” Br. J. Radiol. 72(864), 11551159 (1999).
44.P. Torricelli, A. Pecchi, G. Luppi, and R. Romagnoli, “Gadolinium-enhanced MRI with dynamic evaluation in diagnosing the local recurrence of rectal cancer,” Abdom. Imaging 28(1), 00190027 (2003).
45.N. Tuncbilek, H. M. Karakas, and S. Altaner, “Dynamic MRI in indirect estimation of microvessel density, histologic grade, and prognosis in colorectal adenocarcinomas,” Abdom. Imaging 29(2), 166172 (2004).
46.A. de Vries, J. Griebel, C. Kremser, W. Judmaier, T. Gneiting, P. Debbage, T. Kremser, K.-P. Pfeiffer, W. Buchberger, and P. Lukas, “Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: Preliminary results and implications for therapy,” Radiology 217(2), 385391 (2000).
47.X. M. Zhang, D. Yu, H. L. Zhang, Y. Dai, D. Bi, Z. Liu, M. R. Prince, and C. Li, “3D dynamic contrast-enhanced MRI of rectal carcinoma at 3T: Correlation with microvascular density and vascular endothelial growth factor markers of tumor angiogenesis,” J. Magn. Reson. Imaging 27(6), 13091316 (2008).
48.K. Bol, J. C. Haeck, H. C. Groen, W. J. Niessen, M. R. Bernsen, M. de Jong, and J. F. Veenland, “Can DCE-MRI explain the heterogeneity in radiopeptide uptake imaged by SPECT in a pancreatic neuroendocrine tumor model?,” PloS one 8(10), e77076 (11pp.) (2013).
49.J. Scharf, A. Kemmling, T. Hess, A. Mehrabi, G. Kauffmann, C. Groden, and G. Brix, “Assessment of hepatic perfusion in transplanted livers by pharmacokinetic analysis of dynamic magnetic resonance measurements,” Invest. Radiol. 42(4), 224229 (2007).
50.Y. Ohno, M. Nogami, T. Higashino, D. Takenaka, S. Matsumoto, H. Hatabu, and K. Sugimura, “Prognostic value of dynamic mr imaging for non-small-cell lung cancer patients after chemoradiotherapy,” J. Magn. Reson. Imaging 21(6), 775783 (2005).
51.M. Medved, G. Karczmar, C. Yang, J. Dignam, T. F. Gajewski, H. Kindler, E. Vokes, P. MacEneany, M. T. Mitchell, and W. M. Stadler, “Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time,” J. Magn. Reson. Imaging 20(1), 122128 (2004).
52.S. Glaßer, U. Preim, K. Tönnies, and B. Preim, “A visual analytics approach to diagnosis of breast DCE-MRI data,” Comput. Graphics 34(5), 602611 (2010).
53.A. Karahaliou, K. Vassiou, N. S. Arikidis, S. Skiadopoulos, T. Kanavou, and L. Costaridou, “Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis,” Br. J. Radiol. 83(988), 296309 (2010).
54.R. G. Abramson, X. Li, T. L. Hoyt, P.-F. Su, L. R. Arlinghaus, K. J. Wilson, V. G. Abramson, A. B. Chakravarthy, and T. E. Yankeelov, “Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI: Preliminary results,” Magn. Reson. Imaging 31(9), 14571464 (2013).
55.R. Fusco, S. Filice, V. Granata, Y. Mandato, A. Porto, M. DAiuto, M. Rinaldo, M. Di Bonito, M. Sansone, C. Sansone, A. Rotondo, and A. Petrillo1, “Can semi-quantitative evaluation of uncertain (type II) time-intensity curves improve diagnosis in breast DCE-MRI?,” J. Biomed. Sci. Eng. 6(3A), 418425 (2013).
56.L. Martincich, F. Montemurro, G. De Rosa, V. Marra, R. Ponzone, S. Cirillo, M. Gatti, N. Biglia, I. Sarotto, P. Sismondi, D. Regge, and M. Aglietta, “Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging,” Breast Cancer Res. Treat. 83(1), 6776 (2004).
57.C. El Khoury, V. Servois, F. Thibault, A. Tardivon, L. Ollivier, M. Meunier, C. Allonier, and S. Neuenschwander, “MR quantification of the washout changes in breast tumors under preoperative chemotherapy: Feasibility and preliminary results,” Am. J. Roentgenol. 184(5), 14991504 (2005).
58.R. Johansen, L. R. Jensen, J. Rydland, P. E. Goa, K. A. Kvistad, T. F. Bathen, D. E. Axelson, S. Lundgren, and I. S. Gribbestad, “Predicting survival and early clinical response to primary chemotherapy for patients with locally advanced breast cancer using DCE-MRI,” J. Magn. Reson. Imaging 29(6), 13001307 (2009).
59.N. Tuncbilek, F. Tokatli, S. Altaner, A. Sezer, M. Türe, I. K. Omurlu, and O. Temizoz, “Prognostic value DCE-MRI parameters in predicting factor disease free survival and overall survival for breast cancer patients,” Eur. J. Radiol. 81(5), 863867 (2012).
60.S. Mussurakis, D. L. Buckley, S. Bowsley, P. J. Carleton, J. N. Fox, L. W. Turnbull, and A. Horsman, “Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma,” Invest. Radiol. 30(11), 650662 (1995).
61.P. C. Stomper, J. S. Winston, S. Herman, D. L. Klippenstein, M. A. Arredondo, and L. E. Blumenson, “Angiogenesis and dynamic MR imaging gadolinium enhancement of malignant and benign breast lesions,” Breast Cancer Res. Treat. 45(1), 3946 (1997).
62.L. Esserman, N. Hylton, T. George, and N. Weidner, “Contrast-enhanced magnetic resonance imaging to assess tumor histopathology and angiogenesis in breast carcinoma,” Breast J. 5(1), 1321 (1999).
63.C. K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, and H. H. Schild, “Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions?,” Radiology 211(1), 101110 (1999).
64.R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: Correlation of MR findings with histologic features and expression of growth factors,” Radiology 217(3), 841848 (2000).
65.F. Sardanelli, F. Podo, G. D’Agnolo, A. Verdecchia, M. Santaquilani, R. Musumeci, G. Trecate, S. Manoukian, S. Morassut, C. de Giacomi, M. Federico, L. Cortesi, S. Corcione, S. Cirillo, V. Marra, A. Cilotti, C. Di Maggio, A. Fausto, L. Preda, C. Zuiani, A. Contegiacomo, A. Orlacchio, M. Calabrese, L. Bonomo, E. Di Cesare, M. Tonutti, P. Panizza, and A. Del Maschio, “Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results,” Radiology 242(3), 698715 (2007).
66.C. E. Loo, H. J. Teertstra, S. Rodenhuis, M. J. van de Vijver, J. Hannemann, S. H. Muller, M.-J. V. Peeters, and K. G. A. Gilhuijs, “Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy: Initial results,” Am. J. Roentgenol. 191(5), 13311338 (2008).
67.M. Rakoczy, D. McGaughey, M. J. Korenberg, J. Levman, and A. L. Martel, “Feature selection in computer-aided breast cancer diagnosis via dynamic contrast-enhanced magnetic resonance images,” J. Digital Imaging 26(1), 198208 (2013).
68.C. R. Loiselle, P. R. Eby, W. B. DeMartini, S. Peacock, N. Bittner, C. D. Lehman, and J. N. Kim, “Dynamic contrast-enhanced MRI kinetics of invasive breast cancer: A potential prognostic marker for radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 76(5), 13141319 (2010).
69.N. A. Mayr, W. T. C. Yuh, V. A. Magnotta, J. C. Ehrhardt, J. A. Wheeler, J. I. Sorosky, C. S. Davis, B. Wen, D. D. Martin, R. E. Pelsang, R. E. Buller, L. W. Oberley, D. E. Mellenberg, and D. H. Hussey, “Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: A new noninvasive predictive assay,” Int. J. Radiat. Oncol., Biol., Phys. 36(3), 623633 (1996).
70.N. A. Mayr, W. T. Yuh, J. Zheng, J. C. Ehrhardt, V. A. Magnotta, J. I. Sorosky, R. E. Pelsang, L. W. Oberley, and D. H. Hussey, “Prediction of tumor control in patients with cervical cancer: Analysis of combined volume and dynamic enhancement pattern by MR imaging,” Am. J. Roentgenol. 170(1), 177182 (1998).
71.Q. Y. Gong, J. N. Brunt, C. S. Romaniuk, J. P. Oakley, L. T. Tan, N. Roberts, G. H. Whitehouse, and B. Jones, “Contrast enhanced dynamic MRI of cervical carcinoma during radiotherapy: Early prediction of tumour regression rate,” Br. J. Radiol. 72(864), 11771184 (1999).
72.S. Postema, P. M. T. Pattynama, C. S. P. van Rijswijk, and J. B. Trimbos, “Cervical carcinoma: Can dynamic contrast-enhanced MR imaging help predict tumor aggressiveness?,” Radiology 210(1), 217220 (1999).
73.R. A. Cooper, B. M. Carrington, J. A. Loncaster, S. M. Todd, S. E. Davidson, J. P. Logue, A. D. Luthra, A. P. Jones, I. Stratford, R. D. Hunter, and C. M. L. Weat, “Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix,” Radiother. Oncol. 57(1), 5359 (2000).
74.K.-L. Li, X. P. Zhu, A. Waterton, and Jackson, “Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors,” J. Magn. Reson. Imaging 12(2), 347357 (2000).<347::AID-JMRI19>3.0.CO;2-7
75.N. A. Mayr, W. T. C. Yuh, J. C. Arnholt, J. C. Ehrhardt, J. I. Sorosky, V. A. Magnotta, K. S. Berbaum, W. Zhen, A. C. Paulino, L. W. Oberley, A. K. Sood, and J. M. Buatti, “Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer,” J. Magn. Reson. Imaging 12(6), 10271033 (2000).<1027::AID-JMRI31>3.0.CO;2-5
76.E. A. Boss, L. F. A. G. Massuger, L. A. M. Pop, L. C. G. Verhoef, H.-J. Huisman, H. Boonstra, and J. O. Barentsz, “Post-radiotherapy contrast enhancement changes in fast dynamic MRI of cervical carcinoma,” J. Magn. Reson. Imaging 13(4), 600606 (2001).
77.S. Donaldson, D. L. Buckley, J. O’connor, S. E. Davidson, B. M. Carrington, A. P. Jones, and C. M. L. West, “Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix,” Br. J. Cancer 102(1), 2326 (2009).
78.W. T. C. Yuh, N. A. Mayr, D. Jarjoura, D. Wu, J. C. Grecula, S. S. Lo, S. M. Edwards, V. A. Magnotta, S. Sammet, H. Zhang, J. F. Montebello, J. Fowler, M. Knopp, and J. Z. Wang, “Predicting control of primary tumor and survival by DCE MRI during early therapy in cervical cancer,” Invest. Radiol. 44(6), 343350 (2009).
79.N. A. Mayr, W. T. C. Yuh, D. Jajoura, J. Z. Wang, S. S. Lo, J. F. Montebello, K. Porter, D. Zhang, D. S. McMeekin, and J. M. Buatti, “Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer,” Cancer 116(4), 903912 (2010).
80.E. K. Andersen, K. H. Hole, K. V. Lund, K. Sundfør, G. B. Kristensen, H. Lyng, and E. Malinen, “Dynamic contrast-enhanced MRI of cervical cancers: Temporal percentile screening of contrast enhancement identifies parameters for prediction of chemoradioresistance,” Int. J. Radiat. Oncol., Biol., Phys. 82(3), e485–e492 (2012).
81.V. B. Ho, S. F. Allen, M. N. Hood, and P. L. Choyke, “Renal masses: Quantitative assessment of enhancement with dynamic MR imaging,” Radiology 224(3), 695700 (2002).
82.H. J. Michaely, S. O. Schoenberg, N. Oesingmann, C. Ittrich, C. Buhlig, D. Friedrich, A. Struwe, J. Rieger, C. Reininger, W. Samtleben, M. Weiss, and M. F. Reiser, “Renal artery stenosis: Functional assessment with dynamic MR perfusion measurements feasibility study,” Radiology 238(2), 586596 (2006).
83.V. Positano, I. Bernardeschi, V. Zampa, M. Marinelli, L. Landini, and M. F. Santarelli, “Automatic 2D registration of renal perfusion image sequences by mutual information and adaptive prediction,” Magn. Reson. Mater. Phys., Biol., Med. 26(3), 325335 (2013).
84.J. A. de Priester, J. A. den Boer, M. H. Christiaans, A. G. Kessels, E. L. Giele, A. Hasman, H. P. van Hooff, and J. van Engelshoven, “Automated quantitative evaluation of diseased and nondiseased renal transplants with MR renography,” J. Magn. Reson. Imaging 17(1), 95103 (2003).
85.A. A. Farag, A. El-Baz, S. Yuksel, M. A. El-Ghar, and T. El-Diasty, “A framework for the detection of acute renal rejection with dynamic contrast enhanced magnetic resonance imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, Piscataway, NJ, 2006), pp. 418421.
86.A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, W. Miller, M. Abou El-Ghar, T. El-Diasty, and M. Ghoneim, “A new CAD system for the evaluation of kidney diseases using DCE-MRI,” in Proceedings of the Medical Image Computing and Computer Assisted Intervention (Springer, Berlin Heidelberg, 2006), pp. 446453.
87.A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, M. Abo El-Ghar, and T. Eldiasty, “Image analysis of renal DCE-MRI for the detection of acute renal rejection,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, Piscataway, NJ, 2006), pp. 822825.
88.A. El-Baz, G. Gimel’farb, and M. Abou El-Ghar, “New motion correction models for automatic identification of renal transplant rejection,” in Proceedings of the Medical Image Computing and Computer Assisted Intervention (Springer, Berlin Heidelberg, 2007), pp. 235243.
89.A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “A novel image analysis approach for accurate identification of acute renal rejection,” in Proceedings of the IEEE International Conference on Image Processing (IEEE, Piscataway, NJ, 2008), pp. 18121815.
90.A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “Image analysis approach for identification of renal transplant rejection,” in Proceedings of the International Conference on Pattern Recognition (IEEE Computer Society, Washington, DC, 2008), pp. 14.
91.F. Khalifa, A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “Non-invasive image-based approach for early detection of acute renal rejection,” in Proceedings of the Medical Image Computing and Computer Assisted Intervention (Springer, Berlin Heidelberg, 2010), pp. 1018.
92.F. Khalifa, M. Abou El-Ghar, B. Abdollahi, H. B. Frieboes, T. El-Diasty, and A. El-Baz, “A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI,” NMR Biomed. 26(11), 14601470 (2013).
93.M. R. Engelbrecht, H. J. Huisman, R. J. F. Laheij, G. J. Jager, G. J. L. H. van Leenders, C. A. Hulsbergen-Van De Kaa, J. J. M. C. H. de la Rosette, J. G. Blickman, and J. O. Barentsz, “Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging,” Radiology 229(1), 248254 (2003).
94.S. M. Noworolski, R. G. Henry, D. B. Vigneron, and J. Kurhanewicz, “Dynamic contrast-enhanced MRI in normal and abnormal prostate tissues as defined by biopsy, MRI, and 3D MRSI,” Magn. Reson. Med. 53(2), 249255 (2005).
95.J. Ren, Y. Huan, H. Wang, Y.-J. Chang, H.-T. Zhao, Y.-L. Ge, Y. Liu, and Y. Yang, “Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: Correlation with angiogenesis,” Clin. Radiol. 63(2), 153159 (2008).
96.P. Puech, N. Betrouni, R. Viard, A. Villers, X. Leroy, and L. Lemaitre, “Prostate cancer computer-assisted diagnosis software using dynamic contrast-enhanced MRI,” in Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Piscataway, NJ, 2007), pp. 55675570.
97.P. Puech, N. Betrouni, N. Makni, A.-S. Dewalle, A. Villers, and L. Lemaitre, “Computer-assisted diagnosis of prostate cancer using DCE-MRI data: Design, implementation and preliminary results,” Int. J. Comput. Assisted Radiol. Surg. 4(1), 110 (2009).
98.E. Casciani, E. Polettini, E. Carmenini, I. Floriani, G. Masselli, L. Bertini, and G. F. Gualdi, “Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy,” Am. J. Roentgenol. 190(5), 11871192 (2008).
99.M. Valerio, V. Panebianco, A. Sciarra, M. Osimani, S. Salsiccia, L. Casciani, A. Giuliani, M. Bizzarri, F. Di Silverio, R. Passariello, and C. Filippo, “Classification of prostatic diseases by means of multivariate analysis on in vivo proton MRSI and DCE-MRI data,” NMR Biomed. 22(10), 10361046 (2009).
100.A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby, and A. El-Baz, “Non-invasive image-based approach for early detection of prostate cancer,” in Proceedings of the Fourth International Conference on Developments in E-systems Engineering (IEEE Computer Society, Washington DC, 2011), pp. 172177.
101.A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby, and A. El-Baz, “A novel image-based approach for early detection of prostate cancer using DCE-MRI,” in Computational Intelligence in Biomedical Imaging, edited by K. Suzuki (Springer Science and Business Media, New York, NY, 2014), Chap. 3, pp. 5585.
102.S. Isebaert, F. De Keyzer, K. Haustermans, E. Lerut, T. Roskams, I. Roebben, H. Van Poppel, S. Joniau, and R. Oyen, “Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology,” Eur. J. Radiol. 81(3), 217222 (2012).
103.E. Niaf, O. Rouvière, F. Mège-Lechevallier, F. Bratan, and C. Lartizien, “Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI,” Phys. Med. Biol. 57(12), 38333851 (2012).
104.J. J. Fütterer, M. R. Engelbrecht, H. J. Huisman, G. J. Jager, C. A. Hulsbergen-van De Kaa, J. A. Witjes, and J. O. Barentsz, “Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: Experienced versus less experienced readers1,” Radiology 237(2), 541549 (2005).
105.M. J. Dobson, B. M. Carrington, C. D. Collins, W. D. J. Ryder, G. Read, C. E. Hutchinson, and J. M. Hawnaur, “The assessment of irradiated bladder carcinoma using dynamic contrast-enhanced MR imaging,” Clin. Radiol. 56(2), 9498 (2001).
106.A. Kalogeropoulos, V. Georgiopoulou, S. Kritchevsky, B. Psaty, N. Smith, A. Newman, N. Rodondi, S. Satterfield, D. Bauer, K. Bibbins-Domingo, A. Smith, P. Wilson, R. Vasan, T. Harris, and J. Butler, “Epidemiology of incident heart failure in a contemporary elderly cohort: The health, aging, and body composition study,” Archi. Intern. Med. 169(7), 708715 (2009).
107.T. Lindeberg, “Edge detection and ridge detection with automatic scale selection,” Int. J. Comput. Vision 30(2), 117156 (1998).
108.M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul, W. K. Laskey, D. J. Pennell, J. A. Rumberger, T. Ryan, and M. S. Verani, “Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association,” Circulation 105(4), 539542 (2002).
109.A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” Ca–Cancer J. Clin. 61(2), 6990 (2011).
110.H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res. 14(6), 502515 (1964).
111.C. Cobelli, G. Toffolo, and D. M. Foster, “A simplified formulation of the gamma variate function,” Phys. Med. Biol. 37(7), 15971600 (1992).
112.American Cancer Society, Cancer Facts and Figures (American Cancer Society, Atlanta, GA, 2013).
113.H. B. W. Larsson, M. Stubgaard, J. L. Frederiksen, M. Jensen, O. Henriksen, and O. B. Paulson, “Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors,” Magn. Reson. Med. 16(1), 117131 (1990).
114.G. Brix, W. Semmler, R. Port, L. Schad, G. Layer, and W. Lorenz, “Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging,” J. Comput. Assisted Tomogr. 15(4), 621628 (1991).
115.P. S. Tofts and A. G. Kermode, “Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts,” Magn. Reson. Med. 17(2), 357367 (1991).
116.S. P. Sourbron and D. L. Buckley, “Classic models for dynamic contrast-enhanced MRI,” NMR Biomed. 26(8), 10041027 (2013).
117.S. P. Sourbron and D. L. Buckley, “Tracer kinetic modeling in MRI: Estimating perfusion and capillary permeability,” Phys. Med. Biol. 57(2), R1–R33 (2012).
118.T. S. Koh, S. Bisdas, D. M. Koh, and C. H. Thng, “Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI,” J. Magn. Reson. Imaging 34(6), 12621276 (2011).
119.J. R. Ewing and H. Bagher-Ebadian, “Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: Experimental and clinical applications,” NMR Biomed. 26(8), 10281041 (2013).
120.P. S. Tofsts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. V. Knopp, H. B. W. Larsson, T. Lee, N. A. Mayr, and G. J. M. Parker, “Estimating kinetics parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: Standardized quantities and symbols,” J. Magn. Reson. Imaging 10(3), 223232 (1999).<223::AID-JMRI2>3.0.CO;2-S
121.C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data,” J. Cereb. Blood Flow Metab. 3(1), 17 (1983).
122.W. C. Sangren and C. W. Sheppard, “A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment,” The Bulletin Math. Biophys. 15(4), 387394 (1953).
123.J. A. Johnson and T. A. Wilson, “A model for capillary exchange,” Am. J. Physiol. 210(6), 12991303 (1966).
124.K. S. St Lawrence and T.-Y. Lee, “An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation,” J. Cereb. Blood Flow Metab. 18(12), 13651377 (1998).
125.C. Cobelli, G. Toffolo, and D. M. Foster, “Tracer to tracee ratio for analysis of stable isotope tracer data: Link with radioactive kinetic formalism,” Am. J. Phys. 262(6), 968975 (1992).
126.K. B. Larson, J. Markham, and M. E. Raichle, “Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers,” J. Cereb. Blood Flow Metab. 7(4), 443463 (1987).
127.S. B. Donaldson, C. M. L. West, S. E. Davidson, B. M. Carrington, G. Hutchison, A. P. Jones, S. P. Sourbron, and D. L. Buckley, “A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: Application in carcinoma of the cervix,” Magn. Reson. Med. 63(3), 691700 (2010).
128.L. E. Kershaw and H.-L. M. Cheng, “Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model,” Magn. Reson. Med. 64(6), 17721780 (2010).
129.T. E. Yankeelov and J. C. Gore, “Dynamic contrast enhanced magnetic resonance imaging in oncology: Theory, data acquisition, analysis, and examples,” Curr. Med. Imaging Rev. 3(2), 91107 (2009).
130.G. J. M. Parker, C. Roberts, A. Macdonald, G. A. Buonaccorsi, S. Cheung, D. L. Buckley, A. Jackson, Y. Watson, K. Davies, and G. C. Jayson, “Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI,” Magn. Reson. Med. 56(5), 9931000 (2006).
131.H. B. W. Larsson and P. S. Tofts, “Measurement of blood-brain barrier permeability using dynamic Gd-DTPA scanning–A comparison of methods,” Magn. Reson. Med. 24(1), 174176 (1992).
132.H. J. Weinmann, M. Laniado, and W. Mutzel, “Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers,” Physiol. Chem. Phys. Med. NMR 16(2), 167172 (1984).
133.D. De Naeyer, “Algorithm development and protocol optimization for pharmacokinetic modeling of dynamic contrast-enhanced magnetic resonance imaging,” Ph.D. dissertation, Ghent University, Ghent, Belgium, 2011.
134.T. Fritz-Hansen, E. Rostrup, H. B. W. Larsson, L. Søndergaard, P. Ring, and O. Henriksen, “Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging,” Magn. Reson. Med. 36(2), 225231 (1996).
135.R. E. Port, M. V. Knopp, U. Hoffmann, S. Milker-Zabel, and G. Brix, “Multicompartment analysis of gadolinium chelate kinetics: Blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging,” J. Magn. Reson. Imaging 10(3), 233241 (1999).<233::AID-JMRI3>3.0.CO;2-M
136.M. J. P. van Osch, E.-J. Vonken, M. A. Viergever, J. van der Grond, and C. J. G. Bakker, “Measuring the arterial input function with gradient echo sequences,” Magn. Reson. Med. 49(6), 10671076 (2003).
137.S. L. Barnes, J. G. Whisenant, M. E. Loveless, and T. E. Yankeelov, “Practical dynamic contrast enhanced MRI in small animal models of cancer: Data acquisition, data analysis, and interpretation,” Pharmaceutics 4(3), 442478 (2012).
138.G. O. Cron, C. Foottit, T. E. Yankeelov, L. I. Avruch, M. E. Schweitzer, and I. Cameron, “Arterial input functions determined from MR signal magnitude and phase for quantitative dynamic contrast-enhanced MRI in the human pelvis,” Magn. Reson. Med. 66(2), 498504 (2011).
139.I. Van der Schaaf, E.-J. Vonken, A. Waaijer, B. Velthuis, M. Quist, and T. van Osch, “Influence of partial volume on venous output and arterial input function,” Am. J. Neuroradiol. 27(1), 4650 (2006).
140.B. F. Kjølby, I. K. Mikkelsen, M. Pedersen, L. Østergaard, and V. G. Kiselev, “Analysis of partial volume effects on arterial input functions using gradient echo: A simulation study,” Magn. Reson. Med. 61(6), 13001309 (2009).
141.M. K. Ivancevic, I. Zimine, X. Montet, J.-N. Hyacinthe, F. Lazeyras, D. Foxall, and J.-P. Vallée, “Inflow effect correction in fast gradient-echo perfusion imaging,” Magn. Reson. Med. 50(5), 885891 (2003).
142.F. Peeters, L. Annet, L. Hermoye, and B. E. Van Beers, “Inflow correction of hepatic perfusion measurements using T1-weighted, fast gradient-echo, contrast-enhanced MRI,” Magn. Reson. Med. 51(4), 710717 (2004).
143.J. L. Zhang, H. Rusinek, L. Bokacheva, Q. Chen, P. Storey, and V. S. Lee, “Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI,” J. Magn. Reson. Imaging 30(3), 656665 (2009).
144.D. A. Kovar, M. Lewis, and G. S. Karczmar, “A new method for imaging perfusion and contrast extraction fraction: Input functions derived from reference tissues,” J. Magn. Reson. Imaging 8(5), 11261134 (1998).
145.T. E. Yankeelov, L. M. DeBusk, D. D. Billheimer, J. J. Luci, P. C. Lin, R. R. Price, and J. C. Gore, “Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T,” J. Magn. Reson. Imaging 24(5), 11401147 (2006).
146.T. E. Yankeelov, G. O. Cron, C. L. Addison, J. C. Wallace, R. C. Wilkins, B. A. Pappas, G. E. Santyr, and J. C. Gore, “Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data,” Magn. Reson. Med. 57(2), 353361 (2007).
147.S. Walker-Samuel, C. C. Parker, M. O. Leach, and D. J. Collins, “Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: Comparison with a fixed vascular input function,” Phys. Med. Biol. 52(1), 7589 (2007).
148.M. Heisen, X. Fan, J. Buurman, N. A. W. van Riel, G. S. Karczmar, and B. M. ter Haar Romeny, “The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data,” Phys. Med. Biol. 55(16), 48714883 (2010).
149.A. R. Padhani, C. Hayes, S. Landau, and M. O. Leach, “Reproducibility of quantitative dynamic MRI of normal human tissues,” NMR Biomed. 15(2), 143153 (2002).
150.C. Yang, G. S. Karczmar, M. Medved, and W. M. Stadler, “Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: Fundamental concepts and simulations,” Magn. Reson. Med. 52(5), 11101117 (2004).
151.T. E. Yankeelov, J. J. Luci, M. Lepage, R. Li, L. DeBusk, P. C. Lin, R. R. Price, and J. C. Gore, “Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: A reference region model,” Magn. Reson. Imaging 23(4), 519529 (2005).
152.C. Yang, G. S. Karczmar, M. Medved, and W. M. Stadler, “Multiple reference tissue method for contrast agent arterial input function estimation,” Magn. Reson. Med. 58(6), 12661275 (2007).
153.C. Yang, G. S. Karczmar, M. Medved, A. Oto, M. Zamora, and W. M. Stadler, “Reproducibility assessment of a multiple reference tissue method for quantitative DCE-MRI analysis,” Magn. Reson. Med. 61(4), 851859 (2009).
154.C. Yang, W. M. Stadler, G. S. Karczmar, M. Milosevic, I. Yeung, and M. A. Haider, “Comparison of quantitative parameters in cervix cancer measured by dynamic contrast–enhanced MRI and CT,” Magn. Reson. Med. 63(6), 16011609 (2010).
155.T. E. Yankeelov, J. J. Luci, L. M. DeBusk, P. C. Lin, and J. C. Gore, “Incorporating the effects of transcytolemmal water exchange in a reference region model for DCE-MRI analysis: Theory, simulations, and experimental results,” Magn. Reson. Med. 59(2), 326335 (2008).
156.A. Steingoetter, J. Svensson, Y. Kosanke, R. M. Botnar, M. Schwaiger, E. Rummeny, and R. Braren, “Reference region-based pharmacokinetic modeling in quantitative dynamic contract-enhanced MRI allows robust treatment monitoring in a rat liver tumor model despite cardiovascular changes,” Magn. Reson. Med. 65(1), 229238 (2011).
157.J. U. Fluckiger, M. C. Schabel, and E. V. R. DiBella, “Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI,” Magn. Reson. Med. 62(6), 14771486 (2009).
158.M. C. Schabel, J. U. Fluckiger, and E. V. R. DiBella, “A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations,” Phys. Med. Biol. 55(16), 47834806 (2010).
159.M. C. Schabel, E. V. R. DiBella, R. L. Jensen, and K. L. Salzman, “A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results,” Phys. Med. Biol. 55(16), 48074823 (2010).
160.U. Hoffmann, G. Brix, M. V. Knopp, T. Heβ, and W. J. Lorenz, “Pharmacokinetic mapping of the breast: A new method for dynamic MR mammography,” Magn. Reson. Med. 33(4), 506514 (1995).
161.P. S. Tofts, “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,” J. Magn. Reson. Imaging 7(1), 91101 (1997).
162.D. Gadian, J. Payne, D. Bryant, I. Young, D. Carr, and G. Bydder, “Gadolinium-DTPA as a contrast agent in mr imaging-theoretical projections and practical observations,” J. Comput. Assisted Tomogr. 9(2), 242251 (1985).
163.F. Bloch, “Nuclear induction,” Phys. Rev. 70(7–8), 460474 (1946).
164.D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince, MRI from Picture to Proton (Cambridge University Press, Cambridge, UK, 2006).
165.G. J. Stanisz and R. M. Henkelman, “Gd-DTPA relaxivity depends on macromolecular content,” Magn. Reson. Med. 44(5), 665667 (2000).<665::AID-MRM1>3.0.CO;2-M
166.X. Li, R. A. Priest, W. J. Woodward, I. J. Tagge, F. Siddiqui, W. Huang, W. D. Rooney, T. M. Beer, M. G. Garzotto, and C. S. Springer, “Feasibility of shutter-speed DCE-MRI for improved prostate cancer detection,” Magn. Reson. Med. 69(1), 171178 (2013).
167.R. Ordidge, P. Gibbs, B. Chapman, M. Stehling, and P. Mansfield, “High-speed multislice T1 mapping using inversion-recovery echo-planar imaging,” Magn. Reson. Med. 16(2), 238245 (1990).
168.U. Studler, L. M. White, G. Andreisek, S. Luu, H.-L. M. Cheng, and M. S. Sussman, “Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers,” J. Magn. Reson. Imaging 32(2), 394398 (2010).
169.D. C. Zhu and R. D. Penn, “Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering,” Magn. Reson. Med. 54(3), 725731 (2005).
170.E. Henderson, G. Mckinnon, T.-Y. Lee, and B. K. Rutt, “A fast 3D look-locker method for volumetric t1 mapping,” Magn. Reson. Imaging 17(8), 11631171 (1999).
171.A. Freeman, P. Gowland, and P. Mansfield, “Optimization of the ultrafast look-locker echo-planar imaging t1 mapping sequence,” Magn. Reson. Imaging 16(7), 765772 (1998).
172.H. Z. Wang, S. J. Riederer, and J. N. Lee, “Optimizing the precision in T1 relaxation estimation using limited flip angles,” Magn. Reson. Med. 5(5), 399416 (1987).
173.H.-L. M. Cheng and G. A. Wright, “Rapid high-resolution T1 mapping by variable flip angles: Accurate and precise measurements in the presence of radiofrequency field inhomogeneity,” Magn. Reson. Med. 55(3), 566574 (2006).
174.G. Andreisek, L. M. White, Y. Yang, E. Robinson, H.-L. M. Cheng, and M. S. Sussman, “Delayed gadolinium-enhanced MR imaging of articular cartilage: Three-dimensional T1 mapping with variable flip angles and B1 correction,” Radiology 252(3), 865873 (2009).
175.M. Bergamino, L. Saitta, L. Barletta, L. Bonzano, G. L. Mancardi, L. Castellan, J. L. Ravetti, and L. Roccatagliata, “Measurement of blood-brain barrier permeability with T1-Weighted dynamic contrast-enhanced MRI in brain tumors: A comparative study with two different algorithms,” ISRN Neurosci. 2013, 16.
176.J. Yuan, S. K. K. Chow, D. K. W. Yeung, A. T. Ahuja, and A. D. King, “Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck,” Quant. Imaging Med. Surg. 2(4), 245253 (2012).
177.B. Whitcher and V. J. Schmid, “Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R,” J. Stat. Software 44(5), 129 (2011).
178.J. A. Brookes, T. W. Redpath, F. J. Gilbert, A. D. Murray, and R. T. Staff, “Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two-and three-dimensional variable flip angle fast low-angle shot,” J. Magn. Reson. Imaging 9(2), 163171 (1999).<163::AID-JMRI3>3.0.CO;2-L
179.M. C. Schabel and G. R. Morrell, “Uncertainty in T1 mapping using the variable flip angle method with two flip angles,” Phys. Med. Biol. 54(1), 18 (2009).
180.J. Brookes, T. Redpath, F. Gilbert, G. Needham, and A. Murray, “Measurement of spin-lattice relaxation times with FLASH for dynamic MRI of the breast,” Br. J. Radiol. 69(819), 206214 (1996).
181.S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissues,” Pharmacol. Rev. 3(1), 141 (1951).
182.H. B. W. Larsson, P. Christiansen, M. Stubgaard, C. Thomsen, J. Frederiksen, and O. Henriksen, “In vivo calculation of the unidirectional inflow constant across the blood-brain barrier using MRI,” in Proceedings of the Annual Meeting of the Society for Magnetic Resonance in Medicine (ISMRM, Berkeley, CA, 1990), pp. 752.
183.G. Brix, J. Griebel, F. Kiessling, and F. Wenz, “Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements,” Eur. J. Nucl. Med. Mol. Imaging 37(1), 3051 (2010).
184.J. H. Lee, J. P. Dyke, D. Ballon, D. Ciombor, M. P. Rosenwasser, and R. K. Aaron, “Subchondral fluid dynamics in a model of osteoarthritis: Use of dynamic contrast-enhanced magnetic resonance imaging,” Osteoarthritis and Cartilage 17(10), 13501355 (2009).
185.H. T. Ma, J. F. Griffith, D. K. Yeung, and P. C. Leung, “Modified Brix model analysis of bone perfusion in subjects of varying bone mineral density,” J. Magn. Reson. Imaging 31(5), 11691175 (2010).
186.M. D. Rutland, “A comprehensive analysis of renal DTPA studies. I. Theory and normal values,” Nucl. Med. Commun. 6(1), 1120 (1985).
187.N. Hackstein, J. Heckrodt, and W. S. Rau, “Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique,” J. Magn. Reson. Imaging 18(6), 714725 (2003).
188.N. Hackstein, H. Kooijman, S. Tomaselli, and W. S. Rau, “Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA,” J. Magn. Reson. Imaging 22(3), 406414 (2005).
189.D. L. Buckley, A. E. Shurrab, C. M. Cheung, A. P. Jones, H. Mamtora, and P. A. Kalra, “Measurement of single kidney function using dynamic contrast-enhanced MRI: Comparison of two models in human subjects,” J. Magn. Reson. Imaging 24(5), 11171123 (2006).
190.S. P. Sourbron, H. J. Michaely, M. F. Reiser, and S. O. Schoenberg, “MRI- measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model,” Invest. Radiol. 43(1), 4048 (2008).
191.H. Bagher-Ebadian, R. Jain, S. P. Nejad-Davarani, T. Mikkelsen, M. Lu, Q. Jiang, L. Scarpace, A. S. Arbab, J. Narang, H. Soltanian-Zadeh, R. Paudyal, and J. R. Ewing, “Model selection for DCE-T1 studies in glioblastoma,” Magn. Reson. Med. 68(1), 241251 (2012).
192.H. Chen, F. Li, X. Zhao, C. Yuan, B. Rutt, and W. S. Kerwin, “Extended graphical model for analysis of dynamic contrast-enhanced MRI,” Magn. Reson. Med. 66(3), 868878 (2011).
193.M. E. Gaens, W. H. Backes, S. Rozel, M. Lipperts, S. N. Sanders, K. Jaspers, J. P. M. Cleutjens, J. C. Sluimer, S. Heeneman, M. J. A. P. Daemen, R. T. J. Welten, J.-W. H. Daemen, J. E. Wildberger, R. M. Kwee, and M. E. Kooi, “Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: Model selection, reproducibility, and validation,” Radiology 266(1), 271279 (2013).
194.S. Sourbron, M. Ingrisch, A. Siefert, M. Reiser, and K. Herrmann, “Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI,” Magn. Reson. Med. 62(1), 205217 (2009).
195.J. Kärcher and V. J. Schmid, “Two tissue compartment model in DCE-MRI: A Bayesian approach,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, Piscataway, NJ, 2010), pp. 724727.
196.M. Mescam, M. Kretowski, and J. Bezy-Wendling, “Multiscale model of liver DCE-MRI towards a better understanding of tumor complexity,” IEEE Trans. Med. Imaging 29(3), 699707 (2010).
197.A. Steingoetter, D. Menne, and R. F. Braren, “Assessing antiangiogenic therapy response by DCE-MRI: Development of a physiology driven multi-compartment model using population pharmacometrics,” PloS one 6(10), e26366 (2011).
198.J. C. Sommer and V. J. Schmid, “Spatial two-tissue compartment model for dynamic contrast-enhanced magnetic resonance imaging,” J. R Stat. Soc.: Ser. C (Appl. Stat.) 63, 695713 (2014).
199.J. C. Sommer, J. Gertheiss, and V. J. Schmid, “Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data,” Stat. Med. 33(6), 10291041 (2014).
200.X. Li, E. B. Welch, A. B. Chakravarthy, L. Xu, L. R. Arlinghaus, J. Farley, I. A. Mayer, M. C. Kelley, I. M. Meszoely, J. Means-Powell, V. G. Abramson, A. M. Grau, J. C. Gore, and T. E. Yankeelov, “Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer,” Magn. Reson. Med. 68(1), 261271 (2012).
201.C. S. Landis, X. Li, F. W. Telang, J. A. Coderre, P. L. Micca, W. D. Rooney, L. L. Latour, G. Vétek, I. Pályka, and C. S. Springer, “Determination of the MRI contrast agent concentration time course in vivo following bolus injection: Effect of equilibrium transcytolemmal water exchange,” Magn. Reson. Med. 44(4), 563574 (2000).<563::AID-MRM10>3.0.CO;2-#
202.T. E. Yankeelov, W. D. Rooney, and C. S. Springer, “CR bolus-tracking pharmacokinetic parameters: The effects of equilibrium transcytolemmal water exchange,” in Proceedings of the 9th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM, Berkeley, CA, 2001), pp. 2251.
203.X. Li, W. D. Rooney, and C. S. Springer, “A unified magnetic resonance imaging pharmacokinetic theory: Intravascular and extracellular contrast reagents,” Magn. Reson. Med. 54(6), 13511359 (2005).
204.W. Huang, L. A. Tudorica, X. Li, S. B. Thakur, Y. Chen, E. A. Morris, I. J. Tagge, M. E. Korenblit, W. D. Rooney, J. A. Koutcher, and C. S. Springer, “Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging,” Radiology 261(2), 394403 (2011).
205.X. Li, W. Huang, T. E. Yankeelov, A. Tudorica, W. D. Rooney, and C. S. Springer, “Shutter-speed analysis of contrast reagent bolus-tracking data: Preliminary observations in benign and malignant breast disease,” Magn. Reson. Med. 53(3), 724729 (2005).
206.X. Li, W. Huang, E. A. Morris, L. A. Tudorica, V. E. Seshan, W. D. Rooney, I. Tagge, Y. Wang, J. Xu, and C. S. Springer, “Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI,” Proc. Natl. Acad. Sci. U. S. A. 105(46), 1793717942 (2008).
207.W. Huang, X. Li, E. A. Morris, L. A. Tudorica, V. E. Seshan, W. D. Rooney, I. Tagge, Y. Wang, J. Xu, and C. S. Springer, “The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo,” Proc. Natl. Acad. Sci. U. S. A. 105(46), 1794317948 (2008).
208.C. S. Springer, L. A. Tudorica, X. Li, S. Thakur, E. A. Morris, K. Y. Oh, M. D. Kettler, Y. Chen, I. J. Tagge, S. L. Hemmingson, M. Korenblit, J. W. Grinstead, G. Laub, J. Koutcher, and W. Huang, “Meta-population breast cancer screening with the δktrans DCE-MRI parameter,” in Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, Berkeley, CA, 2011), pp. 3097.
209.X. Li, R. A. Priest, W. J. Woodward, F. Siddiqui, T. M. Beer, M. G. Garzotto, W. D. Rooney, and C. S. Springer, Jr., “Cell membrane water exchange effects in prostate DCE-MRI,” J. Magn. Reson. 218, 7785 (2012).
210.X. Li, C. S. Springer, and M. Jerosch-Herold, “First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: Evidence for human myocardial capillary recruitment in adenosine-induced hyperemia,” NMR Biomed. 22(2), 148157 (2009).
211.T. E. Yankeelov, W. D. Rooney, X. Li, and C. S. Springer, “Variation of the relaxographic ‘shutter-speed’ for transcytolemmal water exchange affects the CR bolus-tracking curve shape,” Magn. Reson. Med. 50(6), 11511169 (2003).
212.R. Zhou, S. Pickup, T. E. Yankeelov, C. S. Springer, and J. D. Glickson, “Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: Effects of transcytolemmal water exchange,” Magn. Reson. Med. 52(2), 248257 (2004).
213.T. E. Yankeelov, W. D. Rooney, W. Huang, J. P. Dyke, X. Li, A. Tudorica, J.-H. Lee, J. A. Koutcher, and C. S. Springer, “Evidence for shutter-speed variation in CR bolus-tracking studies of human pathology,” NMR Biomed. 18(3), 173185 (2005).
214.S. Kim, H. Quon, L. A. Loevner, M. A. Rosen, L. Dougherty, A. M. Kilger, J. D. Glickson, and H. Poptani, “Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck,” J. Magn. Reson. Imaging 26(6), 16071617 (2007).
215.Y. Sawada, C. S. Patlak, and R. G. Blasberg, “Kinetic analysis of cerebrovascular transport based on indicator diffusion technique,” Am. J. Physiol. 256(3), H794H812 (1989).
216.T. Koh, V. Zeman, J. Darko, T. Lee, M. Milosevic, M. Haider, P. Warde, and I. Yeung, “The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow,” Phys. Med. Biol. 46(5), 15191538 (2001).
217.T. Koh, L. Cheong, C. Tan, and C. Lim, “A distributed parameter model of cerebral blood-tissue exchange with account of capillary transit time distribution,” Neuroimage 30(2), 426435 (2006).
218.M. Ingrisch and S. Sourbron, “Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: A primer,” J. Pharmacokinet. Pharmacodyn. 40(3), 281300 (2013).
219.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, Cambridge, England, 1992).
220.G. R. Moran and F. S. Prato, “Modeling tissue contrast agent concentration: A solution to the tissue homogeneity model using a simulated arterial input function,” Magn. Reson. Med. 45(1), 4245 (2001).<42::AID-MRM1007>3.0.CO;2-U
221.A. Garpebring, N. Ostlund, and M. Karlsson, “A novel estimation method for physiological parameters in dynamic contrast-enhanced MRI: Application of a distributed parameter model using Fourier-domain calculations,” IEEE Trans. Med. Imaging 28(9), 13751383 (2009).
222.L. E. Kershaw and D. L. Buckley, “Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI,” Magn. Reson. Med. 56(5), 986992 (2006).
223.H. B. W. Larsson, M. Stubgaard, L. Søndergaard, and O. Henriksen, “In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging,” J. Magn. Reson. Imaging 4(3), 433440 (1994).
224.H. B. Larsson, T. Fritz-Hansen, E. Rostrup, L. Søndergaard, P. Ring, and O. Henriksen, “Myocardial perfusion modeling using MRI,” Magn. Reson. Med. 35(5), 716726 (1996).
225.T. Fritz-Hansen, E. Rostrup, L. Sørndergaard, P. B. Ring, O. Amtorp, and H. B. W. Larsson, “Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI,” Magn. Reson. Med. 40(6), 922929 (1998).
226.J.-P. M. Vallée, H. D. Sostman, J. R. Macfall, T. R. Degrado, J. Zhang, L. Sebbag, F. R. Cobb, T. Wheeler, L. W. Hedlund, T. G. Turkington, C. E. Spritzer, and R. E. Coleman, “Quantification of myocardial perfusion by MRI after coronary occlusion,” Magn. Reson. Med. 40(2), 287297 (1998).
227.J. H. S. Cullen, M. A. Horsfield, C. R. Reek, G. R. Cherryman, D. B. Barnett, and N. J. Samani, “A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging,” J. Am. Coll. Cardiol. 33(5), 13861394 (1999).
228.J. P. Pärkkä, P. Niemi, A. Saraste, J. W. Koskenvuo, M. Komu, V. Oikonen, J. O. Toikka, T. O. Kiviniemi, J. Knuuti, H. Sakuma, and J. J. Hartiala, “Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans,” Magn. Reson. Med. 55(4), 772779 (2006).
229.T. Fritz-Hansen, J. D. Hove, K. F. Kofoed, H. Kelbaek, and H. B. W. Larsson, “Quantification of MRI measured myocardial perfusion reserve in healthy humans: A comparison with positron emission tomography,” J. Magn. Reson. Imaging 27(4), 818824 (2008).
230.C. A. Hulka, B. L. Smith, D. C. Sgroi, L. Tan, W. B. Edmister, J. P. Semple, T. Campbell, D. B. Kopans, T. J. Brady, and R. M. Weisskoff, “Benign and malignant breast lesions: Differentiation with echo-planar MR imaging,” Radiology 197(1), 3338 (1995).
231.C. A. Hulka, W. B. Edmister, B. L. Smith, L. Tan, D. C. Sgroi, T. Campbell, D. B. Kopans, and R. M. Weisskoff, “Dynamic echo-planar imaging of the breast: Experience in diagnosing breast carcinoma and correlation with tumor angiogenesis,” Radiology 205(3), 837842 (1997).
232.E. K. Andersen, K. H. Hole, K. V. Lund, K. Sundfør, G. B. Kristensen, H. Lyng, and E. Malinen, “Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome,” Radiother. Oncol. 107(1), 117122 (2013).
233.P. Hayton, M. Brady, L. Tarassenko, and N. Moore, “Analysis of dynamic MR breast images using a model of contrast enhancement,” Med. Image Anal. 1(3), 207224 (1997).
234.M. V. Knopp, G. Brix, H. J. Junkermann, and H. P. Sinn, “MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy,” Magn. Reson. Imaging Clin. North Am. 2(4), 633658 (1994).
235.M. Müller-Schimpfle, K. Ohmenhäuser, J. Sand, P. Stoll, and C. D. Claussen, “Dynamic 3D-MR mammography: Is there a benefit of sophisticated evaluation of enhancement curves for clinical routine?,” J. Magn. Reson. Imaging 7(1), 236240 (1997).
236.M. V. Knopp, E. Weiss, H. P. Sinn, J. Mattern, H. Junkermann, J. Radeleff, A. Magener, G. Brix, S. Delorme, I. Zuna, and G. van Kaick, “Pathophysiologic basis of contrast enhancement in breast tumors,” J. Magn. Reson. Imaging 10(3), 260266 (1999).<260::AID-JMRI6>3.0.CO;2-7
237.P. Armitage, C. Behrenbruch, M. Brady, and N. Moore, “Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast,” Med. Image Anal. 9(4), 315329 (2005).
238.M. D. Pickles, M. Lowry, D. J. Manton, P. Gibbs, and L. W. Turnbull, “Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy,” Breast Cancer Res. Treat. 91(1), 110 (2005).
239.H. Hawighorst, R. Engenhart, M. V. Knopp, G. Brix, M. Grandy, M. Essig, P. Miltner, I. Zuna, M. Fuss, and G. van Kaick, “Intracranial meningeomas: Time-and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging,” Magn. Reson. Imaging 15(4), 423432 (1997).
240.F. L. Giesel, P. L. Choyke, A. Mehndiratta, C. M. Zechmann, H. von Tengg-Kobligk, K. Kayser, H. Bischoff, C. Hintze, S. Delorme, M. A. Weber, M. Essig, H.-U. Kauczor, and M. V. Knopp, “Pharmacokinetic analysis of malignant pleural mesothelioma initial results of tumor microcirculation and its correlation to microvessel density (CD-34),” Acad. Radiol. 15(5), 563570 (2008).
241.H. Hawighorst, P. G. Knapstein, W. Weikel, M. V. Knopp, I. Zuna, A. Knof, G. Brix, U. Schaeffer, C. Wilkens, S. O. Schoenberg, M. Essig, P. Vaupel, and G. van kaick, “Angiogenesis of uterine cervical carcinoma: Characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement,” Cancer Res. 57(21), 47774786 (1997).
242.H. Hawighorst, W. Weikel, P. G. Knapstein, M. V. Knopp, I. Zuna, S. O. Schönberg, P. Vaupel, and G. van kaick, “Angiogenic activity of cervical carcinoma: Assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome,” Clin. Cancer Res. 4(10), 23052312 (1998).
243.J. A. Loncaster, B. M. Carrington, J. R. Sykes, A. P. Jones, S. M. Todd, R. Cooper, D. L. Buckley, S. E. Davidson, J. P. Logue, R. D. Hunter, and C. M. L. West, “Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix,” Int. J. Radiat. Oncol., Biol., Phys. 54(3), 759767 (2002).
244.C. Halle, E. Andersen, M. Lando, E.-K. Aarnes, G. Hasvold, M. Holden, R. G. Syljuåsen, K. Sundfør, G. B. Kristensen, R. Holm, E. Malinen, and H. Lyng, “Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI,” Cancer Res. 72(20), 52855295 (2012).
245.M. Müller-Schimpfle, G. Brix, G. Layer, P. Schlag, R. Engenhart, S. Frohmuller, T. Hess, I. Zuna, W. Semmler, and G. van Kaick, “Recurrent rectal cancer: Diagnosis with dynamic MR imaging,” Radiology 189(3), 881889 (1993).
246.X. Yang, J. Liang, J. T. Heverhagen, G. Jia, P. Schmalbrock, S. Sammet, R. Koch, and M. V. Knopp, “Improving the pharmacokinetic parameter measurement in dynamic contrast-enhanced MRI by use of the arterial input function: Theory and clinical application,” Magn. Reson. Med. 59(6), 14481456 (2008).
247.F. Kiessling, M. Lichy, R. Grobholz, M. Heilmann, N. Farhan, M. S. Michel, L. Trojan, J. Ederle, U. Abel, H.-U. Kauczor, W. Semmler, and S. Delorme, “Simple models improve the discrimination of prostate cancers from the peripheral gland by T1-weighted dynamic MRI,” Eur. Radiol. 14(10), 17931801 (2004).
248.Y. S. Sung, H.-J. Kwon, B.-W. Park, G. Cho, C. K. Lee, K.-S. Cho, and J. K. Kim, “Prostate cancer detection on dynamic contrast-enhanced MRI: Computer-aided diagnosis versus single perfusion parameter maps,” Am. J. Roentgenol. 197(5), 11221129 (2011).
249.X. P. Zhu, K. L. Li, I. D. Kamaly-Asl, D. R. Checkley, J. J. L. Tessier, J. C. Waterton, and A. Jackson, “Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging,” J. Magn. Reson. Imaging 11(6), 575585 (2000).<575::AID-JMRI2>3.0.CO;2-1
250.H. C. Roberts, T. P. Roberts, R. C. Brasch, and W. P. Dillon, “Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: Correlation with histologic grade,” Am. J. Neuroradiol. 21(5), 891899 (2000).
251.D. J. Covarrubias, B. R. Rosen, and M. H. Lev, “Dynamic magnetic resonance perfusion imaging of brain tumors,” Oncologist 9(5), 528537 (2004).
252.M. Bergamino, L. Barletta, L. Castellan, L. Saitta, G. L. Mancardi, and L. Roccatagliata, “Evaluation of IAUGC indices and two DCE-MRI pharmacokinetic parameters assessed by two different theoretical algorithms in patients with brain tumors,” Clin. Imaging 38(6), 808814 (2014).
253.S. P. Cramer and H. B. W. Larsson, “Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: a simulation and in vivo study on healthy subjects and multiple sclerosis patients,” J. Cereb. Blood Flow Metab. 34(10), 16551665 (2014).
254.C. Lavini, J. J. C. Verhoeff, C. B. Majoie, L. J. A. Stalpers, D. J. Richel, and M. Maas, “Model-based, semiquantitative and time intensity curve shape analysis of dynamic contrast-enhanced MRI: A comparison in patients undergoing antiangiogenic treatment for recurrent glioma,” J. Magn. Reson. Imaging 34(6), 13031312 (2011).
255.M. Haris, N. Husain, A. Singh, R. Awasthi, R. K. Singh Rathore, M. Husain, and R. K. Gupta, “Dynamic contrast-enhanced (DCE) derived transfer coefficient (ktrans) is a surrogate marker of matrix metalloproteinase 9 (MMP-9) expression in brain tuberculomas,” J. Magn. Reson. Imaging 28(3), 588597 (2008).
256.G. J. Hunter, L. M. Hamberg, N. Choi, R. K. Jain, T. McCloud, and A. J. Fischman, “Dynamic T1-weighted magnetic resonance imaging and positron emission tomography in patients with lung cancer: Correlating vascular physiology with glucose metabolism,” Clin. Cancer Res. 4(4), 949955 (1998).
257.J. H. Naish, L. E. Kershaw, D. L. Buckley, A. Jackson, J. C. Waterton, and G. J. M. Parker, “Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI,” Magn. Reson. Med. 61(6), 15071514 (2009).
258.P. S. Tofts, B. Berkowitz, and M. D. Schnall, “Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model,” Magn. Reson. Med. 33(4), 564568 (1995).
259.S. Mussurakis, D. L. Buckley, P. J. Drew, J. N. Fox, P. J. Carleton, L. W. Turnbull, and A. Horsman, “Dynamic MR imaging of the breast combined with analysis of contrast agent kinetics in the differentiation of primary breast tumours,” Clin. Radiol. 52(7), 516526 (1997).
260.C. Hayes, A. R. Padhani, and M. O. Leach, “Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging,” NMR Biomed. 15(2), 154163 (2002).
261.E. Furman-Haran, E. Schechtman, F. Kelcz, K. Kirshenbaum, and H. Degani, “Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions,” Cancer 104(4), 708718 (2005).
262.S. B. Wedam, J. A. Low, S. X. Yang, C. K. Chow, P. Choyke, D. Danforth, S. M. Hewitt, A. Berman, S. M. Steinberg, D. J. Liewehr, J. Plehn, A. Doshi, D. Thomasson, N. McCarthy, H. Koeppen, M. Sherman, J. Zujewski, K. Camphausen, H. Chen, and S. M. Swain, “Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer,” J. Clin. Oncol. 24(5), 769777 (2006).
263.D. Vincensini, V. Dedieu, P. A. Eliat, C. Vincent, C. Bailly, J. de Certaines, and F. Joffre, “Magnetic resonance imaging measurements of vascular permeability and extracellular volume fraction of breast tumors by dynamic Gd-DTPA-enhanced relaxometry,” Magn. Reson. Imaging 25(3), 293302 (2007).
264.J. Veltman, M. Stoutjesdijk, R. Mann, H. J. Huisman, J. O. Barentsz, J. G. Blickman, and C. Boetes, “Contrast-enhanced magnetic resonance imaging of the breast: The value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions,” Eur. Radiol. 18(6), 11231133 (2008).
265.M.-L. W. Ah-See, A. Makris, N. J. Taylor, M. Harrison, P. I. Richman, R. J. Burcombe, J. J. Stirling, J. A. d’Arcy, D. J. Collins, M. R. Pittam, D. Ravichandran, and A. R. Padhani, “Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer,” Clin. Cancer Res. 14(20), 65806589 (2008).
266.M. C. Schabel, G. R. Morrell, K. Y. Oh, C. A. Walczak, R. B. Barlow, and L. A. Neumayer, “Pharmacokinetic mapping for lesion classification in dynamic breast MRI,” J. Magn. Reson. Imaging 31(6), 13711378 (2010).
267.R. H. El khouli, K. J. Macura, I. R. Kamel, M. A. Jacobs, and D. A. Bluemke, “3-T dynamic contrast-enhanced MRI of the breast: Pharmacokinetic parameters versus conventional kinetic curve analysis,” Am. J. Roentgenol. 197(6), 14981505 (2011).
268.X. Li, L. R. Arlinghaus, G. D. Ayers, A. B. Chakravarthy, R. G. Abramson, V. G. Abramson, N. Atuegwu, J. Farley, I. A. Mayer, M. C. Kelley, I. M. Meszoely, J. Means-Powell, A. M. Grau, M. Sanders, S. R. Bhave, and T. E. Yankeelov, “DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: Pilot study findings,” Magn. Reson. Med. 71(4), 15921602 (2014).
269.A. Jena, S. B. Mehta, and S. Taneja, “Optimizing MRI scan time in the computation of pharmacokinetic parameters (ktrans) in breast cancer diagnosis,” J. Magn. Reson. Imaging 38(3), 573579 (2013).
270.I. Ocak, M. Bernardo, G. Metzger, T. Barrett, P. Pinto, P. S. Albert, and P. L. Choyke, “Dynamic contrast-enhanced MRI of prostate cancer at 3T: A study of pharmacokinetic parameters,” Am. J. Roentgenol. 189(4), W192W201 (2007).
271.A. S. N. Jackson, S. A. Reinsberg, S. A. Sohaib, E. M. Charles-Edwards, S. Jhavar, T. J. Christmas, A. C. Thompson, M. J. Bailey, C. M. Corbishley, C. Fisher, M. O. Leach, and P. Dearnaley, “Dynamic contrast-enhanced MRI for prostate cancer localization,” Br. J. Radiol. 82(974), 148156 (2009).
272.M. Lowry, B. Zelhof, G. P. Liney, P. Gibbs, M. D. Pickles, and L. W. Turnbull, “Analysis of prostate DCE-MRI: Comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue,” Invest. Radiol. 44(9), 577584 (2009).
273.D. L. Langer, T. H. van der Kwast, A. J. Evans, J. Trachtenberg, B. C. Wilson, and M. A. Haider, “Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI,” J. Magn. Reson. Imaging 30(2), 327334 (2009).
274.S. F. Riches, G. S. Payne, V. A. Morgan, S. Sandhu, C. Fisher, M. Germuska, D. J. Collins, A. Thompson, and N. M. desouza, “MRI in the detection of prostate cancer: Combined apparent diffusion coefficient, metabolite ratio, and vascular parameters,” Am. J. Roentgenol. 193(6), 15831591 (2009).
275.P. C. Vos, T. Hambrock, J. O. Barenstz, and H. J. Huisman, “Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI,” Phys. Med. Biol. 55(6), 17191734 (2010).
276.D. L. Langer, T. H. van der Kwast, A. J. Evans, A. Plotkin, J. Trachtenberg, B. C. Wilson, and M. A. Haider, “Prostate tissue composition and MR measurements: Investigating the relationships between ADC, T2, Ktrans, ve, and corresponding histologic features,” Radiology 255(2), 485494 (2010).
277.A. Oto, C. Yang, A. Kayhan, M. Tretiakova, T. Antic, C. Schmid-Tannwald, S. Eggener, G. S. Karczmar, and W. M. Stadler, “Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: Correlation of quantitative MR parameters with gleason score and tumor angiogenesis,” Am. J. Roentgenol. 197(6), 13821390 (2011).
278.Y.-J. Chen, W.-C. Chu, Y.-S. Pu, S.-C. Chueh, C.-T. Shun, and W.-Y. I. Tseng, “Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer,” J. Magn. Reson. Imaging 36(4), 912919 (2012).
279.K. Røe, L. T. G. Mikalsen, A. J. van der Kogel, J. Bussink, H. Lyng, A. H. Ree, L. Marignol, and D. R. Olsen, “Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer,” Radiat. Oncol. 7(1), 7587 (2012).
280.P. C. Vos, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, “Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis,” Phys. Med. Biol. 57(6), 15271542 (2012).
281.C. Li, M. Chen, S. Li, X. Zhao, C. Zhang, X. Luo, and C. Zhou, “Detection of prostate cancer in peripheral zone: Comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T,” Acta. Radiol. 55(2), 239247 (2014).
282.A. B. Rosenkrantz, A. Sabach, J. S. Babb, B. W. Matza, S. S. Taneja, and F.-M. Deng, “Prostate cancer: Comparison of dynamic contrast-enhanced MRI techniques for localization of peripheral zone tumor,” Am. J. Roentgenol. 201(3), W471W478 (2013).
283.M. L. George, A. S. K. Dzik-Jurasz, A. R. Padhani, G. Brown, D. M. Tait, S. A. Eccles, and R. I. Swift, “Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer,” Br. J. Surg. 88(12), 16281636 (2001).
284.Q. G. de Lussanet, W. H. Backes, A. W. Griffioen, A. R. Padhani, C. I. Baeten, A. van Baardwijk, P. Lambin, G. L. Beets, J. van Engelshoven, and R. G. H. Beets-Tan, “Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer,” Int. J. Radiat. Oncol., Biol., Phys. 63(5), 13091315 (2005).
285.G. Atkin, N. J. Taylor, F. M. Daley, J. J. Stirling, P. Richman, R. Glynne-Jones, J. A. d’Arcy, D. J. Collins, and A. R. Padhani, “Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis,” Br. J. Surg. 93(8), 9921000 (2006).
286.W. Ceelen, P. Smeets, W. Backes, N. van Damme, T. Boterberg, P. Demetter, I. Bouckenooghe, M. De Visschere, M. Peeters, and P. Pattyn, “Noninvasive monitoring of radiotherapy-induced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model,” Int. J. Radiat. Oncol., Biol., Phys. 64(4), 11881196 (2006).
287.K. Mross, U. Fasol, A. Frost, R. Benkelmann, J. Kuhlmann, M. Büchert, C. Unger, H. Blum, J. Hennig, T. P. Milenkova, J. Tessier, A. D. Krebs, A. J. Ryan, and R. Fischer, “DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: A randomized phase I study,” J. Angiog. Res. 1(5), 112 (2009).
288.J. Gu, P.-L. Khong, S. Wang, Q. Chan, E. X. Wu, W. Law, R. K. Liu, and J. Zhang, “Dynamic contrast-enhanced MRI of primary rectal cancer: Quantitative correlation with positron emission tomography/computed tomography,” J. Magn. Reson. Imaging 33(2), 340347 (2011).
289.W. W. Yao, H. Zhang, B. Ding, T. Fu, H. Jia, L. Pang, L. Song, W. Xu, Q. Song, K. Chen, and Z. Pan, “Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features,” La Radiol. Med. 116(3), 366374 (2011).
290.O. M. Hahn, C. Yang, M. Medved, G. Karczmar, E. Kistner, T. Karrison, E. Manchen, M. Mitchell, M. J. Ratain, and W. M. Stadler, “Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma,” J. Clin. Oncol. 26(28), 45724578 (2008).
291.R. J. Hodgson, T. Barnes, S. Connolly, B. Eyes, R. S. D. Campbell, and R. Moots, “Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid arthritis,” Skeletal Radiol. 37(3), 201207 (2008).
292.R. Hodgson, P. OConnor, and R. Moots, “MRI of rheumatoid arthritis–image quantitation for the assessment of disease activity, progression and response to therapy,” Rheumatology 47(1), 1321 (2008).
293.G. Adluru, E. V. DiBella, and M. C. Schabel, “Model-based registration for dynamic cardiac perfusion MRI,” J. Magn. Reson. Imaging 24(5), 10621070 (2006).
294.N. A. Pack and E. V. R. DiBella, “Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods,” Magn. Reson. Med. 64(1), 125137 (2010).
295.B. Huang, C.-S. Wong, B. Whitcher, D. L.-W. Kwong, V. Lai, Q. Chan, and P.-L. Khong, “Dynamic contrast-enhanced magnetic resonance imaging for characterising nasopharyngeal carcinoma: Comparison of semiquantitative and quantitative parameters and correlation with tumour stage,” Eur Radiol. 23(6), 14951502 (2013).
296.Q. G. de Lussanet, J. C. G. van Golde, R. G. H. Beets-Tan, M. J. Post, M. S. Huijberts, N. C. Schaper, A. G. H. Kessels, J. van Engelshoven, and W. H. Backes, “Dynamic contrast-enhanced MRI of muscle perfusion combined with MR angiography of collateral artery growth in a femoral artery ligation model,” NMR Biomed. 20(8), 717725 (2007).
297.L. Dong, W. S. Kerwin, M. S. Ferguson, R. Li, J. Wang, H. Chen, G. Canton, T. S. Hatsukami, and C. Yuan, “Cardiovascular magnetic resonance in carotid atherosclerotic disease,” J. Cardiovasc. Magn. Reson. 11 , 53 (15pp.) (2009).
298.N. Michoux, L. Huwart, J. Abarca-Quinones, M. Dorvillius, L. Annet, F. Peeters, and B. E. Van Beers, “Transvascular and interstitial transport in rat hepatocellular carcinomas: Dynamic contrast-enhanced MRI assessment with low-and high-molecular weight agents,” J. Magn. Reson. Imaging 28(4), 906914 (2008).
299.D. Checkley, J. J. Tessier, J. Kendrew, J. C. Waterton, and S. R. Wedge, “Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours,” Br. J. Cancer 89(10), 18891895 (2003).
300.A. R. Padhani, C. Hayes, L. Assersohn, T. Powles, A. Makris, J. Suckling, M. O. Leach, and J. E. Husband, “Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results,” Radiology 239(2), 361374 (2006).
301.T. Chikui, E. Kitamoto, S. Kawano, T. Sugiura, M. Obara, A. W. Simonetti, M. Hatakenaka, Y. Matsuo, S. Koga, M. Ohga, K. Nakamura, and K. Yoshiura, “Pharmacokinetic analysis based on dynamic contrast-enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer,” J. Magn. Reson. Imaging 36(3), 589597 (2012).
302.M. F. Akisik, K. Sandrasegaran, G. Bu, C. Lin, G. D. Hutchins, and E. G. Chiorean, “Pancreatic cancer: Utility of dynamic contrast-enhanced MR imaging in assessment of antiangiogenic therapy,” Radiology 256(2), 441449 (2010).
303.Y. Yamashita, T. Baba, Y. Baba, R. Nishimura, S. Ikeda, M. Takahashi, H. Ohtake, and H. Okamura, “Dynamic contrast-enhanced MR imaging of uterine cervical cancer: Pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy,” Radiology 216(3), 803809 (2000).
304.M. A. Zahra, L. T. Tan, A. N. Priest, M. J. Graves, M. Arends, R. A. F. Crawford, J. D. Brenton, D. J. Lomas, and E. Sala, “Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer,” Int. J. Radiat. Oncol., Biol., Phys. 74(3), 766773 (2009).
305.S. I. Semple, V. N. Harry, D. E. Parkin, and F. J. Gilbert, “A combined pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging predicts response to chemoradiation in locally advanced cervical cancer,” Int. J. Radiat. Oncol., Biol., Phys. 75(2), 611617 (2009).
306.C. Ellingsen, T. A. M. Egeland, K. Gulliksrud, J.-V. Gaustad, B. Mathiesen, and E. K. Rofstad, “Assessment of hypoxia in human cervical carcinoma xenografts by dynamic contrast-enhanced magnetic resonance imaging,” Int. J. Radiat. Oncol., Biol., Phys. 73(3), 838845 (2009).
307.S. Kim, L. A. Loevner, H. Quon, A. Kilger, E. Sherman, G. Weinstein, A. Chalian, and H. Poptani, “Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging,” Am. J. Neuroradiol. 31(2), 262268 (2010).
308.C. Roberts, G. J. M. Parker, C. J. Rose, Y. Watson, J. P. O’Connor, S. M. Stivaros, A. Jackson, and V. E. Rushton, “Glandular function in sjögren syndrome: Assessment with dynamic contrast-enhanced MR imaging and tracer kinetic modeling initial experience,” Radiology 246(3), 845853 (2008).
309.Y. Cao, A. Popovtzer, D. Li, D. B. Chepeha, J. S. Moyer, M. E. Prince, F. Worden, T. Teknos, C. Bradford, S. K. Mukherji, and A. Eisbruch, “Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: A prospective study,” Int. J. Radiat. Oncol., Biol., Phys. 72(5), 12871290 (2008).
310.F. K.-H. Lee, A. D. King, M. K.-M. Kam, B. B.-Y. Ma, and D. K.-W. Yeung, “Radiation injury of the parotid glands during treatment for head and neck cancer: Assessment using dynamic contrast-enhanced MR imaging,” Radiat. Res. 175(3), 291296 (2011).
311.S. Agrawal, R. Awasthi, A. Singh, M. Haris, R. K. Gupta, and R. K. S. Rathore, “An exploratory study into the role of dynamic contrast-enhanced (DCE) MRI metrics as predictors of response in head and neck cancers,” Clin. Radiol. 67(9), e1e5 (2012).
312.F. K.-H. Lee, A. D. King, B. B.-Y. Ma, and D. K.-W. Yeung, “Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) for differential diagnosis in head and neck cancers,” Eur. J. Radiol. 81(4), 784788 (2012).
313.W. Kerwin, A. Hooker, M. Spilker, P. Vicini, M. Ferguson, T. Hatsukami, and C. Yuan, “Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque,” Circulation 107(6), 851856 (2003).
314.W. S. Kerwin, K. D. O’Brien, M. S. Ferguson, N. Polissar, T. S. Hatsukami, and C. Yuan, “Inflammation in carotid atherosclerotic plaque: A dynamic contrast-enhanced MR imaging study,” Radiology 241(2), 459468 (2006).
315.W. S. Kerwin, M. Oikawa, C. Yuan, G. P. Jarvik, and T. S. Hatsukami, “MR imaging of adventitial vasa vasorum in carotid atherosclerosis,” Magn. Reson. Med. 59(3), 507514 (2008).
316.T. Kurita, H. Sakuma, K. Onishi, M. Ishida, K. Kitagawa, T. Yamanaka, T. Tanigawa, T. Kitamura, K. Takeda, and M. Ito, “Regional myocardial perfusion reserve determined using myocardial perfusion magnetic resonance imaging showed a direct correlation with coronary flow velocity reserve by Doppler flow wire,” Eur. Heart J. 30(4), 444452 (2009).
317.T. Ichihara, M. Ishida, K. Kitagawa, Y. Ichikawa, T. Natsume, N. Yamaki, H. Maeda, K. Takeda, and H. Sakuma, “Quantitative analysis of first-pass contrast-enhanced myocardial perfusion MRI using a patlak plot method and blood saturation correction,” Magn. Reson. Med. 62(2), 373383 (2009).
318.Q. Jiang, J. R. Ewing, G. L. Ding, L. Zhang, Z. G. Zhang, L. Li, P. Whitton, M. Lu, J. Hu, Q. J. Li, R. A. Knight, and M. Chopp, “Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI,” J. Cereb. Blood Flow Metab. 25(5), 583592 (2005).
319.V. L. Nguyen, M. E. Kooi, W. H. Backes, R. H. M. van Hoof, A. E. C. M. Saris, M. C. J. Wishaupt, F. A. M. V. I. Hellenthal, R. J. van der Geest, A. G. H. Kessels, G. W. H. Schurink, and T. Leiner, “Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: A comparison,” PLoS One 8(10), e75173 (2013).
320.J. A. Jacquez, Compartmental Analysis in Biology and Medicine (University of Michigan Press, Ann Arbor, MI, 1985).
321.G. Brix, M. L. Bahner, U. Hoffmann, A. Horvath, and W. Schreiber, “Regional blood flow, capillary permeability, and compartmental volumes: Measurement with dynamic CT-initial experience,” Radiology 210(1), 269276 (1999).
322.G. Brix, M. Salehi Ravesh, S. Zwick, J. Griebel, and S. Delorme, “On impulse response functions computed from dynamic contrast-enhanced image data by algebraic deconvolution and compartmental modeling,” Phys. Med. 28(2), 119128 (2012).
323.L. H. D. Cheong, C. C. T. Lim, and T. San Koh, “Dynamic contrast-enhanced CT of intracranial meningioma: Comparison of distributed and compartmental tracer kinetic models initial results,” Radiology 232(3), 921930 (2004).
324.S. Metz, C. Ganter, S. Lorenzen, S. van Marwick, K. Herrmann, F. Lordick, S. G. Nekolla, E. J. Rummeny, H.-J. Wester, G. Brix, M. Schwaiger, and A. Beer, “Phenotyping of tumor biology in patients by multimodality multiparametric imaging: Relationship of microcirculation, αvβ3 expression, and glucose metabolism,” J. Nucl. Med. 51(11), 16911698 (2010).
325.I. Thomassin-Naggara, D. Balvay, C. A. Cuenod, E. Daraï, C. Marsault, and M. Bazot, “Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion,” Eur. Radiol. 20(4), 984994 (2010).
326.L. J. Bains, D. M. McGrath, J. H. Naish, S. Cheung, Y. Watson, M. B. Taylor, J. P. Logue, G. J. M. Parker, J. C. Waterton, and D. L. Buckley, “Tracer kinetic analysis of dynamic contrast-enhanced MRI and CT bladder cancer data: A preliminary comparison to assess the magnitude of water exchange effects,” Magn. Reson. Med. 64(2), 595603 (2010).
327.S. B. Donaldson, G. Betts, S. C. Bonington, J. J. Homer, N. J. Slevin, L. E. Kershaw, H. Valentine, C. M. L. West, and D. L. Buckley, “Perfusion estimated with rapid dynamic contrast-enhanced magnetic resonance imaging correlates inversely with vascular endothelial growth factor expression and pimonidazole staining in head-and-neck cancer: A pilot study,” Int. J. Radiat. Oncol., Biol., Phys. 81(4), 11761183 (2011).
328.S. Bisdas, M. Baghi, J. Wagenblast, T. J. Vogl, C. H. Thng, and T. S. Koh, “Gadolinium-enhanced echo-planar t2-weighted MRI of tumors in the extracranial head and neck: Feasibility study and preliminary results using a distributed-parameter tracer kinetic analysis,” J. Magn. Reson. Imaging 27(5), 963969 (2008).
329.T. Koh, C. Thng, S. Hartono, J. Kwek, J. Khoo, K. Miyazaki, D. Collins, M. Orton, M. Leach, V. Lewington, and D. Koh, “Dynamic contrast-enhanced MRI of neuroendocrine hepatic metastases: A feasibility study using a dual-input two-compartment model,” Magn. Reson. Med. 65(1), 250260 (2011).
330.E. Henderson, J. Sykes, D. Drost, H.-J. Weinmann, B. K. Rutt, and T.-Y. Lee, “Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents,” J. Magn. Reson. Imaging 12(6), 9911003 (2000).<991::AID-JMRI26>3.0.CO;2-1
331.G. R. Moran, R. E. Thornhill, J. Sykes, and F. S. Prato, “Myocardial viability imaging using Gd-DTPA: Physiological modeling of infarcted myocardium, and impact on injection strategy and imaging time,” Magn. Reson. Med. 48(5), 791800 (2002).
332.V. J. Schmid, B. Whitcher, A. R. Padhani, and G.-Z. Yang, “Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines,” IEEE Trans. Med. Imaging 28(6), 789798 (2009).
333.L. E. Kershaw, C. E. Hutchinson, and D. L. Buckley, “Benign prostatic hyperplasia: Evaluation of T1, T2, and microvascular characteristics with T1-weighted dynamic contrast-enhanced MRI,” J. Magn. Reson. Imaging 29(3), 641648 (2009).
334.D. L. Buckley, C. Roberts, G. J. M. Parker, J. P. Logue, and C. E. Hutchinson, “Prostate cancer: Evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging initial experience,” Radiology 233(3), 709715 (2004).
335.J. G. Korporaal, M. van Vulpen, C. A. van den Berg, and U. A. van der Heide, “Tracer kinetic model selection for dynamic contrast-enhanced computed tomography imaging of prostate cancer,” Invest. Radiol. 47(1), 4148 (2012).
336.G. Brix, S. Zwick, F. Kiessling, and J. Griebel, “Pharmacokinetic analysis of tissue microcirculation using nested models: Multimodel inference and parameter identifiability,” Med. Phys. 36(7), 29232933 (2009).
337.R. Luypaert, M. Ingrisch, S. Sourbron, and J. de Mey, “The akaike information criterion in DCE-MRI: Does it improve the haemodynamic parameter estimates?,” Phys. Med. Biol. 57(11), 36093628 (2012).
338.M. Ingrisch, S. Sourbron, D. Morhard, B. Ertl-Wagner, T. Kümpfel, R. Hohlfeld, M. Reiser, and C. Glaser, “Quantification of perfusion and permeability in multiple sclerosis: Dynamic contrast-enhanced MRI in 3D at 3T,” Invest. Radiol. 47(4), 252258 (2012).
339.J. U. Harrer, G. J. M. Parker, H. A. Haroon, D. L. Buckley, K. Embelton, C. Roberts, D. Balériaux, and A. Jackson, “Comparative study of methods for determining vascular permeability and blood volume in human gliomas,” J. Magn. Reson. Imaging 20(5), 748757 (2004).
340.M. Haris, R. K. Gupta, A. Singh, N. Husain, M. Husain, C. M. Pandey, C. Srivastava, S. Behari, and R. K. S. Rathore, “Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI,” Neuroradiology 50(6), 531540 (2008).
341.V. S. Lee, H. Rusinek, L. Bokacheva, A. J. Huang, N. Oesingmann, Q. Chen, M. Kaur, K. Prince, T. Song, E. L. Kramer, and E. F. Leonard, “Renal function measurements from mr renography and a simplified multicompartmental model,” Am. J. Physiol.-Renal Physiol. 292(5), F1548F1559 (2007).
342.L. Tabar, H.-H. T. Chen, S. W. Duffy, and U. B. Krusemo, “Primary and adjuvant therapy, prognostic factors and survival in 1053 breast cancers diagnosed in a trial of mammography screening,” Jpn. J. Clin. Oncol. 29(12), 608616 (1999).
343.M. Leach, B. Morgan, P. Tofts, D. Buckley, W. Huang, M. Horsfield, T. Chenevert, D. Collins, A. Jackson, D. Lomas, B. Whitcher, L. Clarke, R. Plummer, I. Judson, R. Jones, R. Alonzi, T. Brunner, D. Koh, P. Murphy, J. Waterton, G. Parker, M. Graves, T. Scheenen, T. Redpath, M. Orton, G. Karczmar, H. Huisman, and P. A. J. Barentsz, “Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging,” Eur. Radiol. 22(7), 14511464 (2012).
344.J. P. O’Connor, A. Jackson, G. J. Parker, C. Roberts, and G. C. Jayson, “Dynamic contrast-enhanced mri in clinical trials of antivascular therapies,” Natl. Rev. Clin. Oncol. 9(3), 167177 (2012).
345.C. Andersen and F. T. Jensen, “Differences in blood-tumour-barrier leakage of human intracranial tumours: Quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment,” Acta Neurochir. 140(9), 919924 (1998).
346.S. Sourbron, “Technical aspects of MR perfusion,” Eur. J. Radiol. 76(3), 304313 (2010).
347.M. Pellerin, T. E. Yankeelov, and M. Lepage, “Incorporating contrast agent diffusion into the analysis of DCE-MRI data,” Magn. Reson. Med. 58(6), 11241134 (2007).
348.G. Jia, C. O’Dell, J. T. Heverhagen, X. Yang, J. Liang, R. V. Jacko, S. Sammet, T. Pellas, P. Cole, and M. V. Knopp, “Colorectal liver metastases: Contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at MR imaging,” Radiology 248(3), 901909 (2008).
349.D. L. Buckley, L. E. Kershaw, and G. J. Stanisz, “Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: Dynamic contrast-enhanced MRI of human internal obturator muscle,” Magn. Reson. Med. 60(5), 10111019 (2008).
350.K. L. Zierler, “Theoretical basis of indicator-dilution methods for measuring flow and volume,” Circ. Res. 10(3), 393407 (1962).
351.L. Østergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, “High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis,” Magn. Reson. Med. 36(5), 715725 (1996).
352.F. Calamante, D. Gadian, and A. Connelly, “Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke assumptions, limitations, and potential implications for clinical use,” Stroke 33(4), 11461151 (2002).
353.M. Jerosch-Herold, C. Swingen, and R. T. Seethamraju, “Myocardial blood flow quantification with MRI by model-independent deconvolution,” Med. Phys. 29(5), 886897 (2002).
354.S. E. Petersen, M. Jerosch-Herold, L. E. Hudsmith, M. D. Robson, J. M. Francis, H. A. Doll, J. B. Selvanayagam, S. Neubauer, and H. Watkins, “Evidence for microvascular dysfunction in hypertrophic cardiomyopathy new insights from multiparametric magnetic resonance imaging,” Circulation 115(18), 24182425 (2007).
355.C. A. Miller, J. H. Naish, M. P. Ainslie, C. Tonge, D. Tout, P. Arumugam, A. Banerji, R. M. Egdell, D. Clark, P. Weale, C. D. Steadman, G. P. McCann, S. G. Ray, G. J. Parker, and M. Schmitt, “Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: Effect of variations in methodology and validation with positron emission tomography,” J. Cardiovasc. Magn. Reson. 16(1), 111 (2014).
356.M. Jerosch-Herold, “Quantification of myocardial perfusion by cardiovascular magnetic resonance,” J. Cardiovasc. Magn. Reson. 12(1), 57 (16pp.) (2010).
357.T. Franiel, B. Hamm, and H. Hricak, “Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer,” Eur. Radiol. 21(3), 616626 (2011).
358.H. B. W. Larsson, S. Rosenbaum, and T. Fritz-Hansen, “Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart,” Magn. Reson. Med. 46(2), 272281 (2001).
359.E. Henderson, B. K. Rutt, and T.-Y. Lee, “Temporal sampling requirements for the tracer kinetics modeling of breast disease,” Magn. Reson. Imaging 16(9), 10571073 (1998).
360.C. Larsson, M. Kleppestø, I. Rasmussen, R. Salo, J. Vardal, P. Brandal, and A. Bjørnerud, “Sampling requirements in DCE-MRI based analysis of high grade gliomas: Simulations and clinical results,” J. Magn. Reson. Imaging 37(4), 818829 (2013).
361.V. J. Schmid, B. Whitcher, A. R. Padhani, N. J. Taylor, and G.-Z. Yang, “Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging,” IEEE Trans. Med. Imaging 25(12), 16271636 (2006).
362.V. J. Schmid, “Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI,” IEEE Trans. Med. Imaging 30(7), 13051313 (2011).
363.H. C. Canuto, C. McLachlan, M. I. Kettunen, M. Velic, A. S. Krishnan, A. Neves, M. de Backer, D.-E. Hu, M. P. Hobson, and K. M. Brindle, “Characterization of image heterogeneity using 2D minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent,” Magn. Reson. Med. 61(5), 12181224 (2009).
364.C. J. Rose, S. J. Mills, J. P. O’Connor, G. A. Buonaccorsi, C. Roberts, Y. Watson, S. Cheung, S. Zhao, B. Whitcher, A. Jackson, and G. J. M. Parker, “Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps,” Magn. Reson. Med. 62(2), 488499 (2009).
365.L. Alic, M. van Vliet, C. van Dijke, A. Eggermont, J. Veenland, and W. Niessen, “Heterogeneity in DCE-MRI parametric maps: A biomarker for treatment response?,” Phys. Med. Biol. 56(6), 16011616 (2011).
366.S. M. Galbraith, M. A. Lodge, N. J. Taylor, G. J. S. Rustin, S. Bentzen, J. J. Stirling, and A. R. Padhani, “Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: Comparison of quantitative and semi-quantitative analysis,” NMR Biomed. 15(2), 132142 (2002).
367.G. Jia, X. Yang, Y. Takayama, S. Sammet, Z. K. Shah, K. K. Shah, P. P. Dangle, W. P. Wang, R. E. Jimenez, V. R. Patel, and M. V. Knopp, “Ass-essment of different quantification approaches of DCE-MRI in prostate cancer at 3T,” in Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, Berkeley, CA, 2008), Vol. 16, pp. 168.
368.L. Bokacheva, K. Sheikh, H. Rusinek, A. Mikheev, D. Kim, X. Kong, J. Melamed, and B. Taouli, “Which DCE MRI parameter provides the best discrimination between prostate cancer and benign tissue?,” in Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, Berkeley, CA, 2009), Vol. 17, pp. 785.
369.C. Chih-Feng, H. Ling-Wei, L. Chun-Chung, L. Chen-Chang, W. Hsu-Huei, T. Yuan-Hsiung, and L. Ho-Ling, “In vivo correlation between semi-quantitative hemodynamic parameters and ktrans derived from DCE-MRI of brain tumors,” Int. J. Imaging Sys. Technol. 22(2), 132136 (2012).
370.B. Morgan, J. Utting, A. Higginson, A. L. Thomas, W. P. Steward, and M. A. Horsfield, “A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging,” Br. J. cancer 94(10), 14201427 (2006).
371.X. Zhang, M. D. Pagel, A. F. Baker, and R. J. Gillies, “Reproducibility of magnetic resonance perfusion imaging,” PLoS One 9(2), e89797 (2014).
372.A. Radjenovic, B. Dall, J. P. Ridgway, and M. A. Smith, “Measurement of pharmacokinetic parameters in histologically graded invasive breast tumours using dynamic contrast-enhanced MRI,” Br. J. Radiol. 81(962), 120128 (2008).
373.A. Anderlik, A. Z. Munthe-Kaas, O. K. Oye, E. Eikefjord, J. Rorvik, D. M. Ulvang, F. G. Zollner, and A. Lundervold, “Quantitative assessment of kidney function using dynamic contrast enhanced MRI-Steps towards an integrated software prototype,” in Proceedings of the 6th International Symposium on Image and Signal Processing Analysis (IEEE, New York, NY, 2009), pp. 575581.
374.F. A. van Dorsten, M. van der Graaf, M. R. W. Engelbrecht, G. J. L. H. van Leenders, A. Verhofstad, M. Rijpkema, J. J. M. C. H. de la Rosette, J. O. Barentsz, and A. Heerschap, “Combined quantitative dynamic contrast-enhanced MR imaging and 1H MR spectroscopic imaging of human prostate cancer,” J. Magn. Reson. Imaging 20(2), 279287 (2004).

Data & Media loading...


Article metrics loading...



To present a review of most commonly used techniques to analyze dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), discusses their strengths and weaknesses, and outlines recent clinical applications of findings from these approaches.

DCE-MRI allows for noninvasive quantitative analysis of contrast agent (CA) transient in soft tissues. Thus, it is an important and well-established tool to reveal microvasculature and perfusion in various clinical applications. In the last three decades, a host of nonparametric and parametric models and methods have been developed in order to quantify the CA’s perfusion into tissue and estimate perfusion-related parameters (indexes) from signal- or concentration–time curves. These indexes are widely used in various clinical applications for the detection, characterization, and therapy monitoring of different diseases.

Promising theoretical findings and experimental results for the reviewed models and techniques in a variety of clinical applications suggest that DCE-MRI is a clinically relevant imaging modality, which can be used for early diagnosis of different diseases, such as breast and prostate cancer, renal rejection, and liver tumors.

Both nonparametric and parametric approaches for DCE-MRI analysis possess the ability to quantify tissue perfusion.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd