Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/12/10.1118/1.4901555
1.
1.I. El Naqa, P. Pater, and J. Seuntjens, “Monte Carlo role in radiobiological modelling of radiotherapy outcomes,” Phys. Med. Biol. 57(11), R75R97 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/R75
2.
2.R. B. Hawkins, “A Microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET,” Radiat. Res. 160(1), 6169 (2003).
http://dx.doi.org/10.1667/RR3010
3.
3.R. B. Hawkins and T. Inaniwa, “A microdosimetric-kinetic model for cell killing by protracted continuous irradiation including dependence on LET I: Repair in cultured mammalian cells,” Radiat. Res. 180(6), 584594 (2013).
http://dx.doi.org/10.1667/RR13257.1
4.
4.T. Friedrich, M. Durante, and M. Scholz, “Modeling cell survival after photon irradiation based on double-strand break clustering in megabase pair chromatin loops,” Radiat. Res. 178(5), 385394 (2012).
http://dx.doi.org/10.1667/RR2964.1
5.
5.H. Nikjoo, S. Uehara, D. Emfietzoglou, and F. A. Cucinotta, “Track-structure codes in radiation research,” Radiat. Meas. 41(9–10), 10521074 (2006).
http://dx.doi.org/10.1016/j.radmeas.2006.02.001
6.
6.M. A. Bernal and J. A. Liendo, “An investigation on the capabilities of the PENELOPE MC code in nanodosimetry,” Med. Phys. 36(2), 620625 (2009).
http://dx.doi.org/10.1118/1.3056457
7.
7.H. Nikjoo, D. T. Goodhead, D. E. Charlton, and H. G. Paretzke, “Energy deposition in small cylindrical targets by ultrasoft x-rays,” Phys. Med. Biol. 34(6), 691705 (1989).
http://dx.doi.org/10.1088/0031-9155/34/6/005
8.
8.W. Friedland, P. Bernhardt, P. Jacob, and H. G. Paretzke, “Simulation of DNA damage after proton and low LET irradiation,” Radiat. Prot. Dosim. 99(1–4), 99102 (2002).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a006848
9.
9.M. A. Bernal, D. Sikansi, F. Cavalcante, S. Incerti, C. Champion, V. Ivanchenko, and Z. Francis, “An atomistic geometrical model of the B-DNA configuration for DNA–radiation interaction simulations,” Comput. Phys. Commun. 184(12), 28402847 (2013).
http://dx.doi.org/10.1016/j.cpc.2013.07.015
10.
10.Z. Francis, C. Villagrasa, and I. Clairand, “Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm,” Comput. Methods Programs Biomed. 101(3), 265270 (2011).
http://dx.doi.org/10.1016/j.cmpb.2010.12.012
11.
11.V. A. Semenenko and R. D. Stewart, “A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation,” Radiat. Res. 161(4), 451457 (2004).
http://dx.doi.org/10.1667/RR3140
12.
12.V. A. Semenenko and R. D. Stewart, “Fast Monte Carlo simulation of DNA damage formed by electrons and light ions,” Phys. Med. Biol. 51(7), 16931706 (2006).
http://dx.doi.org/10.1088/0031-9155/51/7/004
13.
13.H. Nikjoo, P. O’Neill, M. Terrissol, and D. T. Goodhead, “Quantitative modelling of DNA damage using Monte Carlo track structure method,” Radiat. Environ. Biophys. 38(1), 3138 (1999).
http://dx.doi.org/10.1007/s004110050135
14.
14.J. F. Ward, “Biochemistry of DNA lesions,” Radiat. Res. 104(2s), S103S111 (1985).
http://dx.doi.org/10.2307/3576637
15.
15.W. R. Holley and A. Chatterjee, “Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. I. Theoretical modeling,” Radiat. Res. 145(2), 188199 (1996).
http://dx.doi.org/10.2307/3579174
16.
16.W. Friedland, M. Dingfelder, P. Kundrát, and P. Jacob, “Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC,” Mutat. Res. 711(1–2), 2840 (2011).
http://dx.doi.org/10.1016/j.mrfmmm.2011.01.003
17.
17.W. E. Wilson and H. Nikjoo, “A Monte Carlo code for positive ion track simulation,” Radiat. Environ. Biophys. 38(2), 97104 (1999).
http://dx.doi.org/10.1007/s004110050144
18.
18.S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Guèye, R. Capra, P. Nieminen, and C. Zacharatou, “Comparison of GEANT4 very low energy cross section models with experimental data in water,” Med. Phys. 37(9), 4692 (2010).
http://dx.doi.org/10.1118/1.3476457
19.
19.J. M. Fernández-Varea, G. González-Muñoz, M. E. Galassi, K. Wiklund, B. K. Lind, A. Ahnesjö, and N. Tilly, “Limitations (and merits) of PENELOPE as a track-structure code,” Int. J. Radiat. Biol. 88(1–2), 6670 (2012).
http://dx.doi.org/10.3109/09553002.2011.598209
20.
20.J.-L. Li, C.-Y. Li, R. Qiu, C.-C. Yan, W.-Z. Xie, Z. Zeng, and C.-J. Tung, “Comparison of direct DNA strand breaks induced by low energy electrons with different inelastic cross sections,” Nucl. Instrum. Methods Phys. Res., Sect. B 311(C), 2736 (2013).
http://dx.doi.org/10.1016/j.nimb.2013.06.010
21.
21.H. Nikjoo and P. Girard, “A model of the cell nucleus for DNA damage calculations,” Int. J. Radiat. Biol. 88(1–2), 8797 (2012).
http://dx.doi.org/10.3109/09553002.2011.640860
22.
22.A. Kumar and M. D. Sevilla, “Radiation effects on DNA: Theoretical investigations of electron, hole and excitation pathways to DNA damage,” in Radiation Induced Molecular Phenomena in Nucleic Acids, edited by M. K. Shukla and J. Leszczynski (Springer, Dordrecht, Netherlands, 2008), pp. 577617.
23.
23.C. Champion, H. Lekadir, M. E. Galassi, O. Fojón, R. D. Rivarola, and J. Hanssen, “Theoretical predictions for ionization cross sections of DNA nucleobases impacted by light ions,” Phys. Med. Biol. 55(20), 60536067 (2010).
http://dx.doi.org/10.1088/0031-9155/55/20/002
24.
24.I. Abril, R. Garcia-Molina, C. D. Denton, I. Kyriakou, and D. Emfietzoglou, “Energy loss of hydrogen- and helium-ion beams in DNA: Calculations based on a realistic energy-loss function of the target,” Radiat. Res. 175(2), 247255 (2011).
http://dx.doi.org/10.1667/RR2142.1
25.
25.I. Abril, C. D. Denton, P. de Vera, I. Kyriakou, D. Emfietzoglou, and R. Garcia-Molina, “Effect of the Bethe surface description on the electronic excitations induced by energetic proton beams in liquid water and DNA,” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11–12), 17631767 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.069
26.
26.I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, and D. Emfietzoglou, “Inelastic Collisions of Energetic Protons in Biological Media,” in Advances in Quantum Chemistry (Elsevier, Inc., Oxford, UK, 2013), pp. 129164.
27.
27.Z. Tan, Y. Xia, X. Liu, M. Zhao, Y. Ji, F. Li, and B. Huang, “Cross sections of electron inelastic interactions in DNA,” Radiat. Environ. Biophys. 43(3), 173182 (2004).
http://dx.doi.org/10.1007/s00411-004-0249-4
28.
28.D. Liljequist, T. Liamsuwan, and H. Nikjoo, “Elastic scattering cross section models used for Monte Carlo simulation of electron tracks in media of biological and medical interest,” Int. J. Radiat. Biol. 88(1–2), 2937 (2012).
http://dx.doi.org/10.3109/09553002.2011.584943
29.
29.D. Emfietzoglou, I. Kyriakou, I. Abril, R. Garcia-Molina, and H. Nikjoo, “Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface,” Int. J. Radiat. Biol. 88(1–2), 2228 (2012).
http://dx.doi.org/10.3109/09553002.2011.588061
30.
30.L. Zhang and Z. Tan, “A new calculation on spectrum of direct DNA damage induced by low-energy electrons,” Radiat. Environ. Biophys. 49(1), 1526 (2009).
http://dx.doi.org/10.1007/s00411-009-0262-8
31.
31.R. M. Thomson and I. Kawrakow, “On the Monte Carlo simulation of electron transport in the sub-1 keV energy range,” Med. Phys. 38(8), 4531 (2011).
http://dx.doi.org/10.1118/1.3608904
32.
32.D. Liljequist and H. Nikjoo, “On the validity of trajectory methods for calculating the transport of very low energy (<1 keV ) electrons in liquids and amorphous media,” Radiat. Phys. Chem. 99(C), 4552 (2014).
http://dx.doi.org/10.1016/j.radphyschem.2014.02.015
33.
33.A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, and A. Gibrekhterman, “Low-energy electron transport in alkali halides,” J. Appl. Phys. 76(8), 4656 (1994).
http://dx.doi.org/10.1063/1.357303
34.
34.J. Kuhr and H.-J. Fitting, “Monte Carlo simulation of electron emission from solids,” J. Electron Spectrosc. Relat. Phenom. 105(2), 257273 (1999).
http://dx.doi.org/10.1016/S0368-2048(99)00082-1
35.
35.S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, and G. Barrand, “GEANT4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
36.
36.P. de Vera, E. Surdutovich, I. Abril, R. Garcia-Molina, and A. V. Solov’yov, “Analytical model of ionization and energy deposition by proton beams in subcellular compartments,” Eur. Phys. J. D 68(4), 96 (2014).
http://dx.doi.org/10.1140/epjd/e2014-50041-7
37.
37.W. Friedland, P. Jacob, H. G. Paretzke, M. Merzagora, and A. Ottolenghi, “Simulation of DNA fragment distributions after irradiation with photons,” Radiat. Environ. Biophys. 38(1), 3947 (1999).
http://dx.doi.org/10.1007/s004110050136
38.
38.C. Champion, S. Incerti, H. Aouchiche, and D. Oubaziz, “A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit,” Radiat. Phys. Chem. 78(9), 745750 (2009).
http://dx.doi.org/10.1016/j.radphyschem.2009.03.079
39.
39.R. Panajotovic, F. Martin, P. Cloutier, D. Hunting, and L. Sanche, “Effective cross sections for production of single-strand breaks in plasmid DNA by 0.1 to 4.7 eV electrons,” Radiat. Res. 165, 452459 (2006).
http://dx.doi.org/10.1667/RR3521.1
40.
40.B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 16581660 (2000).
http://dx.doi.org/10.1126/science.287.5458.1658
41.
41.M. A. Bernal, C. E. deAlmeida, C. Sampaio, S. Incerti, C. Champion, and P. Nieminen, “The invariance of the total direct DNA strand break yield,” Med. Phys. 38(7), 41474153 (2011).
http://dx.doi.org/10.1118/1.3597568
42.
42.W. Friedland, P. Jacob, H. G. Paretzke, and T. Stork, “Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models,” Radiat. Res. 150(2), 170 (1998).
http://dx.doi.org/10.2307/3579852
43.
43.D. E. Charlton, H. Nikjoo, and J. L. Humm, “Calculation of initial yields of single- and double-strand breaks in cell nuclei from electrons, protons and alpha particles,” Int. J. Radiat. Biol. 56, 119 (1989).
http://dx.doi.org/10.1080/09553008914551141
44.
44.H. Nikjoo, D. E. Charlton, and D. T. Goodhead, “Monte Carlo track structure studies of energy deposition and calculation of initial DSB and RBE,” Adv. Space Res. 14(10), 161180 (1994).
http://dx.doi.org/10.1016/0273-1177(94)90466-9
45.
45.S. Incerti, C. Champion, H. N. Tran, M. Karamitros, M. Bernal, Z. Francis, V. Ivanchenko, A. Mantero, and Members of the Geant4-DNA collaboration, “Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. B 306(C), 158164 (2013).
http://dx.doi.org/10.1016/j.nimb.2012.12.054
46.
46.W. Friedland, H. G. Paretzke, F. Ballarini, A. Ottolenghi, G. Kreth, and C. Cremer, “First steps towards systems radiation biology studies concerned with DNA and chromosome structure within living cells,” Radiat. Environ. Biophys. 47(1), 4961 (2008).
http://dx.doi.org/10.1007/s00411-007-0152-x
47.
47.D. E. Charlton and J. L. Humm, “A method of calculating initial DNA strand breakage following the decay of incorporated 125I,” Int. J. Radiat. Biol. 53(3), 353365 (1988).
http://dx.doi.org/10.1080/09553008814552501
48.
48.M. A. Bernal and J. A. Liendo, “Erratum: An investigation on the capabilities of the PENELOPE MC code in nanodosimetry [Med. Phys. 36, 620–625 (2009)],” Med. Phys. 37(8), 45204520 (2010).
http://dx.doi.org/10.1118/1.3460317
49.
49.A. G. Georgakilas, P. O’Neill, and R. D. Stewart, “Induction and repair of clustered DNA lesions: What do we know so far?,” Radiat. Res. 180(1), 100109 (2013).
http://dx.doi.org/10.1667/RR3041.1
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/12/10.1118/1.4901555
Loading
/content/aapm/journal/medphys/41/12/10.1118/1.4901555
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/12/10.1118/1.4901555
2014-11-18
2016-09-27

Abstract

Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies.

The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV–220 keV were superimposed on a geometric DNA model composed of 2.7 × 106 nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy . The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands.

Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ≈ 10.79 eV, but deviate significantly for higher values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors’ show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared.

MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/12/1.4901555.html;jsessionid=KhbjO7RdAZYDoQCktW497I7j.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/12/10.1118/1.4901555&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/41/12/10.1118/1.4901555&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/41/12/10.1118/1.4901555'
Right1,Right2,Right3,