Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Haberer, W. Becher, D. Schardt, and G. Kraft, “Magnetic scanning system for heavy ion therapy,” Nucl. Instrum. Methods Phys. Res. A 330, 296305 (1993).
2. E. Pedroni, R. Bacher, H. Blattmann, T. Böhringer, A. Coray, A. Lomax, S. Lin, G. Munkel, S. Scheib, U. Schneider, and A. Tourovsky, “The 200 MeV proton therapy project at PSI: Conceptual design and practical realization,” Med. Phys. 22, 3753 (1995).
3. T. Furukawa, T. Inaniwa, S. Sato, T. Shirai, Y. Takei, E. Takeshita, K. Mizushima, Y. Iwata, T. Himukai, S. Mori, S. Fukuda, S. Minohara, E. Takada, T. Murakami, and K. Noda, “Performance of the NIRS fast scanning system for heavy-ion radiotherapy,” Med. Phys. 37, 56725682 (2010).
4. Y. Hirao, H. Ogawa, S. Yamada, Y. Sato, T. Yamada, K. Sato, A. Itano, M. Kanazawa, K. Noda, K. Kawachi, M. Endo, T. Kanai, T. Kohno, M. Sudou, S. Minohara, A. Kitagawa, F. Soga, E. Takada, S. Watanabe, K. Endo, M. Kumada, and S. Matsumoto, “Heavy ion synchrotron for medical use HIMAC project at NIRS-Japan,” Nucl. Phys. A 538, 541550 (1992).
5. M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt, and U. Weber, “Treatment planning for heavy-ion radiotherapy: Physical beam model and dose optimization,” Phys. Med. Biol. 45, 32993317 (2000).
6. P. Petti, “Differential-pencil beam dose calculations for charged particles,” Med. Phys. 19, 137149 (1992).
7. L. Hong et al., “A pencil beam algorithm for proton dose calculations,” Phys. Med. Biol. 41, 13051330 (1996).
8. H. Szymanowski et al., “Experimental determination and verification of the parameters used in a proton pencil beam algorithm,” Med. Phys. 28, 975987 (2001).
9. E. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann, S. Lin, and A. Lomax, “Experimental characterization and physical modeling of the dose distribution of scanned proton pencil beams,” Phys. Med. Biol. 50, 541561 (2005).
10. T. Inaniwa, T. Furukawa, A. Nagano, S. Sato, S. Saotome, K. Noda, and T. Kanai, “Field-size effect of physical doses in carbon-ion scanning using range shifter plates,” Med. Phys. 36, 28892897 (2009).
11. Y. Kusano, T. Kanai, S. Yonai, M. Komori, N. Ikeda, Y. Tachikawa, A. Ito, and H. Uchida, “Field-size dependence of doses of therapeutic carbon beams,” Med. Phys. 34, 40164022 (2007).
12. Y. Li, R. Zhu, N. Sahoo, A. Anand, and X. Zhang, “Beyond Gaussians: A study of single-spot modeling for scanning proton dose calculation,” Phys. Med. Biol. 57, 983997 (2012).
13. J. Schwaab, S. Brons, J. Fieres, and K. Parodi, “Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning,” Phys. Med. Biol. 56, 78137827 (2011).
14. O. Sawakuchi, R. Zhu, F. Poenisch, K. Suzuki, G. Ciangaru, U. Titt, A. Anand, R. Mohan, T. Gillin, and N. Sahoo, “Experimental characterization of the low-dose envelope of spot scanning proton beams,” Phys. Med. Biol. 55, 34673478 (2010).
15. Y. Kusano, T. Kanai, S. Yonai, M. Komori, N. Ikeda, Y. Tachikawa, A. Ito, and H. Uchida, “Dose contributions from large-angle scattered particles in therapeutic carbon beams,” Med. Phys. 34, 193198 (2007).
16. T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, K. Noda, and T. Kanai, “Development of treatment planning for scanning irradiation at HIMAC,” Nucl. Instrum. Methods Phys. Res. B 266, 21942198 (2008).
17. T. Inaniwa, T. Furukawa, T. Tomitani, S. Sato, K. Noda, and T. Kanai, “Optimization for fast-scanning irradiation in particle therapy,” Med. Phys. 34, 33023311 (2007).
18. T. Inaniwa, T. Furukawa, N. Kanematsu, S. Mori, K. Mizushima, T. Toshito, T. Shirai, and K. Noda, “Evaluation of hybrid depth scanning for carbon-ion radiotherapy,” Med. Phys. 39, 28202825 (2012).

Data & Media loading...


Article metrics loading...



It is essential to consider large-angle scattered particles in dose calculation models for therapeutic carbon-ion beams. However, it is difficult to measure the small dose contribution from large-angle scattered particles. In this paper, the authors present a novel method to derive the parameters describing large-angle scattered particles from the measured results.

The authors developed a new parallel-plate ionization chamber consisting of concentric electrodes. Since the sensitive volume of each channel is increased linearly with this type, it is possible to efficiently and easily detect small contributions from the large-angle scattered particles. The parameters describing the large-angle scattered particles were derived from pencil beam dose distribution in water measured with the new ionization chamber. To evaluate the validity of this method, the correction for the field-size dependence of the doses, “predicted-dose scaling factor,” was calculated with the new parameters.

The predicted-dose scaling factor calculated with the new parameters was compared with the existing one. The difference between the new correction factor and the existing one was 1.3%. For target volumes of different sizes, the calculated dose distribution with the new parameters was in good agreement with the measured one.

Parameters describing the large-angle scattered particles can be efficiently and rapidly determined using the new ionization chamber. The authors confirmed that the field-size dependence of the doses could be compensated for by the new parameters. This method makes it possible to easily derive the parameters describing the large-angle scattered particles, while maintaining the dose calculation accuracy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd