1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A novel method for experimental characterization of large-angle scattered particles in scanned carbon-ion therapy
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/2/10.1118/1.4860256
1.
1. T. Haberer, W. Becher, D. Schardt, and G. Kraft, “Magnetic scanning system for heavy ion therapy,” Nucl. Instrum. Methods Phys. Res. A 330, 296305 (1993).
http://dx.doi.org/10.1016/0168-9002(93)91335-K
2.
2. E. Pedroni, R. Bacher, H. Blattmann, T. Böhringer, A. Coray, A. Lomax, S. Lin, G. Munkel, S. Scheib, U. Schneider, and A. Tourovsky, “The 200 MeV proton therapy project at PSI: Conceptual design and practical realization,” Med. Phys. 22, 3753 (1995).
http://dx.doi.org/10.1118/1.597522
3.
3. T. Furukawa, T. Inaniwa, S. Sato, T. Shirai, Y. Takei, E. Takeshita, K. Mizushima, Y. Iwata, T. Himukai, S. Mori, S. Fukuda, S. Minohara, E. Takada, T. Murakami, and K. Noda, “Performance of the NIRS fast scanning system for heavy-ion radiotherapy,” Med. Phys. 37, 56725682 (2010).
http://dx.doi.org/10.1118/1.3501313
4.
4. Y. Hirao, H. Ogawa, S. Yamada, Y. Sato, T. Yamada, K. Sato, A. Itano, M. Kanazawa, K. Noda, K. Kawachi, M. Endo, T. Kanai, T. Kohno, M. Sudou, S. Minohara, A. Kitagawa, F. Soga, E. Takada, S. Watanabe, K. Endo, M. Kumada, and S. Matsumoto, “Heavy ion synchrotron for medical use HIMAC project at NIRS-Japan,” Nucl. Phys. A 538, 541550 (1992).
http://dx.doi.org/10.1016/0375-9474(92)90803-R
5.
5. M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt, and U. Weber, “Treatment planning for heavy-ion radiotherapy: Physical beam model and dose optimization,” Phys. Med. Biol. 45, 32993317 (2000).
http://dx.doi.org/10.1088/0031-9155/45/11/313
6.
6. P. Petti, “Differential-pencil beam dose calculations for charged particles,” Med. Phys. 19, 137149 (1992).
http://dx.doi.org/10.1118/1.596887
7.
7. L. Hong et al., “A pencil beam algorithm for proton dose calculations,” Phys. Med. Biol. 41, 13051330 (1996).
http://dx.doi.org/10.1088/0031-9155/41/8/005
8.
8. H. Szymanowski et al., “Experimental determination and verification of the parameters used in a proton pencil beam algorithm,” Med. Phys. 28, 975987 (2001).
http://dx.doi.org/10.1118/1.1376445
9.
9. E. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann, S. Lin, and A. Lomax, “Experimental characterization and physical modeling of the dose distribution of scanned proton pencil beams,” Phys. Med. Biol. 50, 541561 (2005).
http://dx.doi.org/10.1088/0031-9155/50/3/011
10.
10. T. Inaniwa, T. Furukawa, A. Nagano, S. Sato, S. Saotome, K. Noda, and T. Kanai, “Field-size effect of physical doses in carbon-ion scanning using range shifter plates,” Med. Phys. 36, 28892897 (2009).
http://dx.doi.org/10.1118/1.3140586
11.
11. Y. Kusano, T. Kanai, S. Yonai, M. Komori, N. Ikeda, Y. Tachikawa, A. Ito, and H. Uchida, “Field-size dependence of doses of therapeutic carbon beams,” Med. Phys. 34, 40164022 (2007).
http://dx.doi.org/10.1118/1.2779126
12.
12. Y. Li, R. Zhu, N. Sahoo, A. Anand, and X. Zhang, “Beyond Gaussians: A study of single-spot modeling for scanning proton dose calculation,” Phys. Med. Biol. 57, 983997 (2012).
http://dx.doi.org/10.1088/0031-9155/57/4/983
13.
13. J. Schwaab, S. Brons, J. Fieres, and K. Parodi, “Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning,” Phys. Med. Biol. 56, 78137827 (2011).
http://dx.doi.org/10.1088/0031-9155/56/24/009
14.
14. O. Sawakuchi, R. Zhu, F. Poenisch, K. Suzuki, G. Ciangaru, U. Titt, A. Anand, R. Mohan, T. Gillin, and N. Sahoo, “Experimental characterization of the low-dose envelope of spot scanning proton beams,” Phys. Med. Biol. 55, 34673478 (2010).
http://dx.doi.org/10.1088/0031-9155/55/12/013
15.
15. Y. Kusano, T. Kanai, S. Yonai, M. Komori, N. Ikeda, Y. Tachikawa, A. Ito, and H. Uchida, “Dose contributions from large-angle scattered particles in therapeutic carbon beams,” Med. Phys. 34, 193198 (2007).
http://dx.doi.org/10.1118/1.2402328
16.
16. T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, K. Noda, and T. Kanai, “Development of treatment planning for scanning irradiation at HIMAC,” Nucl. Instrum. Methods Phys. Res. B 266, 21942198 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.02.070
17.
17. T. Inaniwa, T. Furukawa, T. Tomitani, S. Sato, K. Noda, and T. Kanai, “Optimization for fast-scanning irradiation in particle therapy,” Med. Phys. 34, 33023311 (2007).
http://dx.doi.org/10.1118/1.2754058
18.
18. T. Inaniwa, T. Furukawa, N. Kanematsu, S. Mori, K. Mizushima, T. Toshito, T. Shirai, and K. Noda, “Evaluation of hybrid depth scanning for carbon-ion radiotherapy,” Med. Phys. 39, 28202825 (2012).
http://dx.doi.org/10.1118/1.4705357
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4860256
Loading
/content/aapm/journal/medphys/41/2/10.1118/1.4860256
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/2/10.1118/1.4860256
2014-01-13
2014-07-11

Abstract

It is essential to consider large-angle scattered particles in dose calculation models for therapeutic carbon-ion beams. However, it is difficult to measure the small dose contribution from large-angle scattered particles. In this paper, the authors present a novel method to derive the parameters describing large-angle scattered particles from the measured results.

The authors developed a new parallel-plate ionization chamber consisting of concentric electrodes. Since the sensitive volume of each channel is increased linearly with this type, it is possible to efficiently and easily detect small contributions from the large-angle scattered particles. The parameters describing the large-angle scattered particles were derived from pencil beam dose distribution in water measured with the new ionization chamber. To evaluate the validity of this method, the correction for the field-size dependence of the doses, “predicted-dose scaling factor,” was calculated with the new parameters.

The predicted-dose scaling factor calculated with the new parameters was compared with the existing one. The difference between the new correction factor and the existing one was 1.3%. For target volumes of different sizes, the calculated dose distribution with the new parameters was in good agreement with the measured one.

Parameters describing the large-angle scattered particles can be efficiently and rapidly determined using the new ionization chamber. The authors confirmed that the field-size dependence of the doses could be compensated for by the new parameters. This method makes it possible to easily derive the parameters describing the large-angle scattered particles, while maintaining the dose calculation accuracy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/2/1.4860256.html;jsessionid=1bwne3bh6p6v6.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/2/10.1118/1.4860256&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A novel method for experimental characterization of large-angle scattered particles in scanned carbon-ion therapy
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4860256
10.1118/1.4860256
SEARCH_EXPAND_ITEM