1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High energy x-ray phase contrast CT using glancing-angle grating interferometers
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/2/10.1118/1.4860275
1.
1. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258261 (2006).
http://dx.doi.org/10.1038/nphys265
2.
2. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.108105
3.
3. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134137 (2008).
http://dx.doi.org/10.1038/nmat2096
4.
4. M. Stampanoni et al., “The first analysis and clinical evaluation of native breast tissue using differential phase contrast mammography,” Invest. Radiol. 46, 801806 (2011).
http://dx.doi.org/10.1097/RLI.0b013e31822a585f
5.
5. P. B. Noel, J. Herzen, A. A. Fingerle, M. Willner, M. K. Stockmar, D. Hahn, M. Settles, E. Drecoll, I. Zanette, T. Weitkamp, E. J. Rummeny, and F. Pfeiffer, “Evaluation of the potential of phase-contrast computed tomography for improved visualization of cancerous human liver tissue,” Z. Med. Phys. 23(3), 204211 (2013).
http://dx.doi.org/10.1016%2Fj.zemedi.2013.02.006
6.
6. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
http://dx.doi.org/10.1088/0031-9155/52/23/010
7.
7. A. Tapfer, R. Braren, M. Bech, M. Willner, I. Zanette, T. Weitkamp, M. Trajkovic-Arsic, J. T. Siveke, M. Settles, M. Aichler, A. Walch, and F. Pfeiffer, “X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model,” PLoS One 8, e58439 (2013).
http://dx.doi.org/10.1371/journal.pone.0058439
8.
8. D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56, 56975720 (2011).
http://dx.doi.org/10.1088/0031-9155/56/17/015
9.
9. H. Hetterich, S. Fill, J. Herzen, M. Willner, I. Zanette, T. Weitkamp, A. Rack, U. Schüller, M. Sadeghi, R. Brandl, S. Adam-Neumair, M. Reiser, F. Pfeiffer, F. Bamberg, and T. Saam, “Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies,” Z. Med. Phys. 23(3), 194203 (2013).
http://dx.doi.org/10.1016%2Fj.zemedi.2012.12.001
10.
10. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 52545262 (2006).
http://dx.doi.org/10.1143/JJAP.45.5254
11.
11. R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39, 47614774 (2012).
http://dx.doi.org/10.1118/1.4736529
12.
12. S. Grandl, M. Willner, J. Herzen, D. Mayr, S. D. Auweter, A. Hipp, F. Pfeiffer, M. Reiser, and K. Hellerhoff, “Evaluation of phase-contrast CT of breast tissue at conventional x-ray sources – presentation of selected findings,” Z. Med. Phys. 23(3), 212221 (2013).
http://dx.doi.org/10.1016%2Fj.zemedi.2013.02.005
13.
13. F. Pfeiffer, J. Herzen, M. Willner, M. Chabior, S. Auweter, M. Reiser, and F. Bamberg, “Grating-based x-ray phase contrast for biomedical imaging applications,” Z. Med. Phys. 23(3), 176185 (2013).
http://dx.doi.org/10.1016%2Fj.zemedi.2013.02.002
14.
14. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: From pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1R35 (2013).
http://dx.doi.org/10.1088/0031-9155/58/1/R1
15.
15. X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k),” Med. Phys. 39, 44674482 (2012).
http://dx.doi.org/10.1118/1.4730287
16.
16. D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
http://dx.doi.org/10.1063/1.4748882
17.
17. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
http://dx.doi.org/10.1063/1.3208052
18.
18. D. Stutman, J. W. Stayman, M. Finkenthal, and J. H. Siewerdsen, “High energy x-ray phase-contrast imaging using glancing angle grating interferometers,” Proc. SPIE 8668, 866814 (2013).
http://dx.doi.org/10.1117/12.2007930
19.
19. X. Wu, A. E. Deans, and H. Liu, “X-ray diagnostic techniques” in Biomedical Photonics Handbook (CRC Press, 2003), pp. 26252628.
20.
20. I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose x-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 1019910204 (2012).
http://dx.doi.org/10.1073/pnas.1117861109
21.
21. A. E. Anderson, B. J. Ellis, C. L. Peters, and J. A. Weiss, “Cartilage thickness: Factors influencing multi-detector CT measurements in a phantom study,” Radiology 246, 133141 (2008).
http://dx.doi.org/10.1148/radiol.2461062192
22.
22. M. Tapiovaara and T. Siiskonen, “A Monte Carlo program for calculating patient doses in medical x-ray examinations (2nd Ed.),” Report No. STUK-A231 (STUK Helsinki, Finland, 2008).
23.
23. W. Zbijewski, P. De Jean, P. Prakash, Y. Ding, J. W. Stayman, N. Packard, R. Senn, D. Yang, J. Yorkston, A. Machado, J. A. Carrino, and J. H. Siewerdsen, “A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization,” Med. Phys. 38, 47004713 (2011).
http://dx.doi.org/10.1118/1.3611039
24.
24. R. Raupach and T. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 2219, 22192244 (2011).
25.
25. T. Pflederer, L. Rudofsky, D. Ropers, S. Bachmann, M. Marwan, W. G. Daniel, and S. Achenbach, “Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography,” AJR, Am. J. Roentgenol. 192, 10451050 (2009).
http://dx.doi.org/10.2214/AJR.08.1025
26.
26. E. J. Hall and D. J. Brenner, “Cancer risks from diagnostic radiology,” Br. J. Radiol. 81, 362378 (2008).
http://dx.doi.org/10.1259/bjr/01948454
27.
27. J. B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-dimensional statistical approach to improved image quality for multislice helical CT,” Med. Phys. 34, 45264544 (2007).
http://dx.doi.org/10.1118/1.2789499
28.
28. S. Singh, M. K. Kalra, S. Do, J. B. Thibault, H. Pien, O. J. O’Connor, and M. A. Blake, “Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: Dose reduction potential in the abdomen,” J. Comput. Assist. Tomogr. 36, 347353 (2012).
http://dx.doi.org/10.1097/RCT.0b013e31824e639e
29.
29. M. A. Yoon, S. H. Kim, J. M. Lee, H. S. Woo, E. S. Lee, S. J. Ahn, and J. K. Han, “Adaptive statistical iterative reconstruction and Veo: Assessment of image quality and diagnostic performance in CT colonography at various radiation doses,” J. Comput. Assist. Tomogr. 36, 596601 (2012).
http://dx.doi.org/10.1097/RCT.0b013e31826092be
30.
30. K. Lange, “Convergence of EM image reconstruction algorithms with Gibbs smoothing,” IEEE Trans. Med. Imaging 9, 439446 (1990).
http://dx.doi.org/10.1109/42.61759
31.
31. T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors,” IEEE Trans. Med. Imaging. 8, 194202 (1989).
http://dx.doi.org/10.1109/42.24868
32.
32. C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising,” SIAM J. Sci. Comput. 17, 227238 (1996).
http://dx.doi.org/10.1137/0917016
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4860275
Loading
/content/aapm/journal/medphys/41/2/10.1118/1.4860275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/2/10.1118/1.4860275
2014-01-16
2014-08-29

Abstract

The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT.

DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose.

Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT.

DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/2/1.4860275.html;jsessionid=vvgnxeepx1ol.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/2/10.1118/1.4860275&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High energy x-ray phase contrast CT using glancing-angle grating interferometers
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4860275
10.1118/1.4860275
SEARCH_EXPAND_ITEM