Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/2/10.1118/1.4861818
1.
1. J. L. Robar, “Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy,” Phys. Med. Biol. 51(21), 54875504 (2006).
http://dx.doi.org/10.1088/0031-9155/51/21/007
2.
2. E. J. Orton and J. L. Robar, “Megavoltage image contrast with low-atomic number target materials and amorphous silicon electronic portal imagers,” Phys. Med. Biol. 54(5), 12751289 (2009).
http://dx.doi.org/10.1088/0031-9155/54/5/012
3.
3. T. Connell and J. L. Robar, “Low-Z target optimization for spatial resolution improvement in megavoltage imaging,” Med. Phys. 37(1), 124131 (2010).
http://dx.doi.org/10.1118/1.3267040
4.
4. A. Tsechanski, A. F. Bielajew, S. Faermann, and Y. Krutman, “A thin target approach for portal imaging in medical accelerators,” Phys. Med. Biol. 43(8), 22212236 (1998).
http://dx.doi.org/10.1088/0031-9155/43/8/016
5.
5. D. Parsons and J. L. Robar, “Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets,” Med. Phys. 39(7), 45684578 (2012).
http://dx.doi.org/10.1118/1.4730503
6.
6. D. Parsons and J. L. Robar, “The effect of copper conversion plates on low-Z target image quality,” Med. Phys. 39(9), 53625371 (2012).
http://dx.doi.org/10.1118/1.4742052
7.
7. S. Flampouri, P. M. Evans, F. Verhaegen, A. E. Nahum, E. Spezi, and M. Partridge, “Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment,” Phys. Med. Biol. 47(18), 33313349 (2002).
http://dx.doi.org/10.1088/0031-9155/47/18/305
8.
8. D. A. Roberts, V. N. Hansen, A. C. Niven, M. G. Thompson, J. Seco, and P. M. Evans, “A low Z linac and flat panel imager: Comparison with the conventional imaging approach,” Phys. Med. Biol. 53(22), 63056319 (2008).
http://dx.doi.org/10.1088/0031-9155/53/22/003
9.
9. D. A. Roberts et al., “Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range,” Med. Phys. 39(3), 12181226 (2012).
http://dx.doi.org/10.1118/1.3681011
10.
10. O. Z. Ostapiak, P. F. O’Brien, and B. A. Faddegon, “Megavoltage imaging with low Z targets: Implementation and characterization of an investigational system,” Med. Phys. 25(10), 19101918 (1998).
http://dx.doi.org/10.1118/1.598380
11.
11. B. A. Faddegon, V. Wu, J. Pouliot, B. Gangadharan, and A. Bani-Hashemi, “Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target,” Med. Phys. 35(12), 57775786 (2008).
http://dx.doi.org/10.1118/1.3013571
12.
12. D. Sawkey et al., “A diamond target for megavoltage cone-beam CT,” Med. Phys. 37(3), 12461253 (2010).
http://dx.doi.org/10.1118/1.3302831
13.
13. D. W. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We, and T. R. Mackie, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22(5), 503524 (1995).
http://dx.doi.org/10.1118/1.597552
14.
14. S. Agostinelli et al., “GEANT4: A Simulation toolkit,” Nucl. Instrum. Meth. A506(3), 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
15.
15. M. Constantin, D. E. Constantin, P. J. Keall, A. Narula, M. Svatos, and J. Perl, “Linking computer-aided design (CAD) to Geant4-based Monte Carlo simulations for precise implementation of complex treatment head geometries,” Phys. Med. Biol. 55(8), N211N220 (2010).
http://dx.doi.org/10.1088/0031-9155/55/8/N03
16.
16. M. Constantin et al., “Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations,” Med. Phys. 38(7), 40184024 (2011).
http://dx.doi.org/10.1118/1.3598439
17.
17. E. Gete et al., “A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac,” Med. Phys. 40(2), 021707 (13pp.) (2013).
http://dx.doi.org/10.1118/1.4773883
18.
18. INDC International Nuclear Data Committee, Phase-Space Database for External Beam Radiotherapy Summary Report of a Consultants’ Meeting (International Atomic Energy Agency, Vienna, Austria, 2006).
19.
19. D. Sawkey et al., “Measurement of incident electron spots on TrueBeam,” Med. Phys. 40(6), 332 (2013).
http://dx.doi.org/10.1118/1.4814982
20.
20. Z. Chang et al., “Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines,” Med. Phys. 39(11), 69817018 (2012).
http://dx.doi.org/10.1118/1.4762682
21.
21. C. M. Ma and D. W. O. Rogers, BEAMdp Users Manual NRCC Report PIRS-0509(C)revA (NRCC, Ottawa, Canada, 2009).
22.
22. S. Lang, J. Hrbacek, A. Leong, and S. Klöck, “Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams,” Phys. Med. Biol. 57(9), 28192827 (2012).
http://dx.doi.org/10.1088/0031-9155/57/9/2819
23.
23. I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,” Med. Phys. 27(3), 485498 (2000).
http://dx.doi.org/10.1118/1.598917
24.
24. P. Munro and D. C. Bouius, “X-ray quantum limited portal imaging using amorphous silicon flat-panel arrays,” Med. Phys. 25(5), 689702 (1998).
http://dx.doi.org/10.1118/1.598252
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4861818
Loading
/content/aapm/journal/medphys/41/2/10.1118/1.4861818
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/2/10.1118/1.4861818
2014-01-23
2016-07-25