1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/2/10.1118/1.4862505
1.
1. American Cancer Society, Cancer Facts & Figures 2012 (American Cancer Society, Atlanta, 2012).
2.
2. Z. Ouhib and M. Kasper, Clinical Guide to Surface Treatment of Skin Cancer with Brachytherapy (Nucletron, Veenendaal, Netherlands, 2010).
3.
3. D. Granero, J. Pérez-Calatayud, J. Gimeno, F. Ballester, E. Casal, V. Crispín, and R. van der Laarse, “Design and evaluation of a HDR skin applicator with flattening filter,” Med. Phys. 35, 495503 (2008).
http://dx.doi.org/10.1118/1.2825622
4.
4. J. Pérez-Calatayud, D. Granero, F. Ballester, V. Puchades, E. Casal, A. Soriano, and V. Crispín, “A dosimetric study of Leipzig applicators,” Int. J. Radiat. Oncol., Biol., Phys. 62, 579584 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.028
5.
5. M. Evans, M. Yassa, E. Podgorsak, T. Roman, L. Schereiner, and L. Souhami, “Surface applicators for high dose rate brachytherapy in AIDS-related Kaposi's sarcoma,” Int. J. Radiat. Oncol., Biol., Phys. 39, 769774 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00360-X
6.
6.In this paper, certain commercially available products are referred to by name. These references are for informational purposes only and imply neither endorsement by the ADCL nor that these products are the best or only products available for the purpose.
7.
7. M. J. Rivard, S. D. Davis, L. A. DeWerd, T. W. Rusch, and S. Axelrod, “Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source,” Med. Phys. 33, 40204032 (2006).
http://dx.doi.org/10.1118/1.2357021
8.
8. Xoft Inc., Axxent Electronic Brachytherapy System Operator Manual, Appendix J (Xoft Inc., San Jose, CA, 2009).
9.
9. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
10.
10. R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Megooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43,” Med. Phys. 22, 209234 (1995).
http://dx.doi.org/10.1118/1.597458
11.
11. C.-M. Ma, C. W. Coffey, L. A. DeWerd, C. Liu, R. Nath, S. M. Seltzer, and J. P. Seuntjens, “AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology,” Med. Phys. 28, 868893 (2001).
http://dx.doi.org/10.1118/1.1374247
12.
12. B. Grosswendt, “Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size,” Phys. Med. Biol. 35, 12331245 (1990).
http://dx.doi.org/10.1088/0031-9155/35/9/004
13.
13. B. Grosswendt, “Dependence of the photon backscatter factor for water on irradiation field size and source-to-phantom distance between 1.5 and 10 cm,” Phys. Med. Biol. 38, 305310 (1993).
http://dx.doi.org/10.1088/0031-9155/38/2/007
14.
14. S. Klevenhagen, “Experimentally determined backscatter factors for x-rays generated at voltages between 16 and 140 kV,” Phys. Med. Biol. 34, 18711882 (1989).
http://dx.doi.org/10.1088/0031-9155/34/12/010
15.
15. R. T. Knight and A. E. Nahum, “Depth and field-size dependence of ratios of mass-energy absorption coefficient, water-to-air, for kV X-ray dosimetry,” in Proceedings of the IAEA International Symposium on Measurement Assurance Dosimetry (IAEA, Vienna, 1994), pp. 361370.
16.
16. J. P. Seuntjens, I. Kawrakow, J. Borg, F. Hobeila, and D. W. O. Rogers, “Calculated and measured air-kerma response of ionization chambers in low- and medium-energy photon beams,” in Recent Developments in Accurate Radiation Dosimetry, AAPM Symposium Proceedings No. 13, edited by J. P. Seuntjens and P. N. Mobit (Medical Physics Publishing, Madison, WI, 2002), pp. 6984.
17.
17. S. Klevenhagen, R. Aukett, R. Harrison, C. Moretti, A. Nahum, and K. Rosser, “The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al - 4 mm Cu); 10–300 kV generating potential,” Phys. Med. Biol. 41, 26052625 (1996).
http://dx.doi.org/10.1088/0031-9155/41/12/002
18.
18. C. M. Ma and J. P. Seuntjens, “Mass energy-absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams,” Phys. Med. Biol. 44, 131143 (1999).
http://dx.doi.org/10.1088/0031-9155/44/1/011
19.
19. M. C. White, “Photoatomic data library MCPLIB04: A new photoatomic library based on data from ENDF/B-VI Release 8,” Memorandum LA-UR-03-1019, Los Alamos National Laboratory, Los Alamos, NM, 2003.
20.
20. X-5 Monte Carlo Team, MCNP — A General Monte Carlo N-Particle Transport Code, Version 5, Report LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2005.
21.
21. D. Cullen, J. Hubbell, and L. Kissel, “EPDL97: The Evaluated Photon Data Library,” Report UCRL-50400 Vol. 6 Rev. 5, Lawrence Livermore National Laboratory, 1997.
22.
22. K. J. Adams, “Electron upgrade for MCNP4B,” Los Alamos National Laboratory Memorandum X-5-RN(U)-00-14, 2000.
23.
23. K. J. Adams, “Electron Upgrade for MCNP4B,” Memorandum LA-UR-00-3581, Los Alamos National Laboratory, Los Alamos, NM, 2000.
24.
24. I. Kawrakow and D. W. O. Rogers, “The EGSnrc code system: Monte Carlo simulation of electron and photon transport,” Technical Report PIRS-701, National Research Council of Canada, Ottawa, Canada, 2006.
25.
25. S. Davis, “Monte Carlo 101,” Power Point Presentation, University of Wisconsin MRRC Research Meeting, 2009.
26.
26. PTW-Freiburg, Ionization Chamber Type 34013 (PTW-Freiburg, Freiburg, Germany, 1999).
27.
27. T. L. Pike, “A dosimetric Characterization of an electronic brachytherapy source in terms of absorbed dose to water,” Ph.D. dissertation, University of Wisconsin-Madison, 2012.
28.
28. F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley and Sons, Inc., New York, 1986).
29.
29. J. Snow, J. Micka, and L. DeWerd, “Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20 to 250 kVp relative to 60Co,” Med. Phys. 40, 041711 (5pp.) (2013).
http://dx.doi.org/10.1118/1.4794491
30.
30. J. G. Coletti, D. W. Pearson, and L. A. DeWerd, “Mammography exposure standard: Design and characterization of free-air ionization chamber,” Rev. Sci. Instrum. 66, 25742577 (1995).
http://dx.doi.org/10.1063/1.1145590
31.
31. Y. Rong and J. S. Welsh, “Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer and treatment,” Med. Phys. 37, 55095517 (2010).
http://dx.doi.org/10.1118/1.3489379
32.
32. R. Jeraj, P. J. Keall, and P. M. Ostwald, “Comparisons between MCNP, EGS4 and experiment for clinical electron beams,” Phys. Med. Biol. 44, 705717 (1999).
http://dx.doi.org/10.1088/0031-9155/44/3/013
33.
33. G. Ibbott, J. Barnes, R. Hall, and W. R. Hendee, “Stem corrections for ionization chambers,” Med. Phys. 2(6), 328330 (1975).
http://dx.doi.org/10.1118/1.594202
34.
34. M. Glecker, J. Valentine, and E. Silberstein, “Calculating lens dose and surface dose rates from Sr-90 opthalmic applicators using Monte Carlo modeling,” Med. Phys. 25(1), 2936 (1998).
http://dx.doi.org/10.1118/1.598434
35.
35. A. Angelopoulos, P. Baras, L. Sakelliou, P. Karaiskos, and P. Sandilos, “Monte Carlo dosimetry of a new 192Ir high dose rate brachytherapy source,” Med. Phys. 27(11), 25212527 (2000).
http://dx.doi.org/10.1118/1.1315316
36.
36. R. S. Sloboda and G. V. Menon, “Experimental determination of the anisotropy function and anisotropy factor for model 6711 I-125 seeds,” Med. Phys. 27, 17891799 (2000).
http://dx.doi.org/10.1118/1.1287285
37.
37. A. S. Meigooni, K. Sowards, and M. Soldano, “Dosimetric characteristics of the InterSource 103Pd brachytherapy source,” Med. Phys. 27, 10931100 (2000).
http://dx.doi.org/10.1118/1.598991
38.
38. A. S. Meigooni, J. A. Meli, and R. Nath, “A comparison of solid phantoms with water for dosimetry of 125I brachytherapy sources,” Med. Phys. 15, 695701 (1988).
http://dx.doi.org/10.1118/1.596182
39.
39. J. Dolan, Z. Li, and J. F. Williamson, “Monte Carlo and experimental dosimetry of an 125I brachytherapy seed,” Med. Phys. 33, 46754684 (2006).
http://dx.doi.org/10.1118/1.2388158
40.
40. A. Meigooni, S. Awan, N. Thompson, and S. Dini, “Updated Solid WaterTM to water conversion factors for 125I and 103Pd brachytherapy sources,” Med. Phys. 33, 39883992 (2006).
http://dx.doi.org/10.1118/1.2357018
41.
41. F. M. Cox, A. C. Lucas, and B. M. Kaspar, “The reusability of solid thermoluminescent dosimeters and its relation to the maintenance of TL standards,” Health Phys. 30, 135138 (1976).
http://dx.doi.org/10.1097/00004032-197601000-00015
42.
42. M. Srinivasan and L. DeWerd, “Effect of plastic deformation on the thermoluminescence of LiF(TLD-100) single crystals,” J. Phys. D: Appl. Phys. Med. Biol. 6, 21422143 (1973).
http://dx.doi.org/10.1088/0022-3727/6/17/322
43.
43. A. A. Nunn, S. D. Davis, J. A. Micka, and L. A. DeWerd, “LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20 to 250 kVp relative to 60Co,” Med. Phys. 35, 18591869 (2008).
http://dx.doi.org/10.1118/1.2898137
44.
44. Y. Horowitz and P. Olko, “The effects of ionisation density on the thermoluminescence response (efficiency) of LiF:Mg,Ti and LiF:Mg,Cu,P,” Radiat. Prot. Dosim. 109(4), 331348 (2004).
http://dx.doi.org/10.1093/rpd/nch310
45.
45. S. Chiu-Tsao, T. Duckworth, C. Hsiung, Z. Li, J. Williamson, N. Patel, and L. Harrison, “Thermoluminescent dosimetry of the SourceTech Medical model STM1251 125I seed,” Med. Phys. 30, 17321735 (2003).
http://dx.doi.org/10.1118/1.1577251
46.
46. J. F. Williamson and M. J. Rivard, “Quantitative dosimetry methods for brachytherapy, brachytherapy physics,” Proceedings of the Joint AAPM/American Brachytherapy Society Summer School (AAPM, College Park, MD, 2006).
47.
47. J. A. Raffi, “Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate 192Ir and electronic brachytherapy sources,” Ph.D. dissertation, University of Wisconsin-Madison, 2010.
48.
48. L. DeWerd, L. Bartol, and S. Davis, “Thermoluminescence dosimeters,” Proceedings of the AAPM Summer School (AAPM, College Park, MD, 2009), pp. 815840.
49.
49. M. S. MacPherson and J. J. Battista, “Dose distributions and dose rate constants for new ytterbium-169 brachytherapy seeds,” Med. Phys. 22, 8996 (1995).
http://dx.doi.org/10.1118/1.597597
50.
50. N. S. Patel, S.-T. Chiu-Tsao, J. F. Williamson, P. Fan, T. Duckworth, D. Shasha, and L. B. Harrison, “Thermoluminescent dosimetry of the Symmetra™125I model I25.S06 interstitial brachytherapy seed,” Med. Phys. 28, 17611769 (2001).
http://dx.doi.org/10.1118/1.1388218
51.
51. G. Anagnostopoulos, D. Baltas, P. Karaiskos, P. Sandilos, P. Papagiannis, and L. Sakelliou, “Thermoluminescent dosimetry of the selectSeed 125I interstitial brachytherapy seed,” Med. Phys. 29, 709716 (2002).
http://dx.doi.org/10.1118/1.1469631
52.
52. P. Mobit and I. Badragan, “Response of LiF-TLD micro-rods around 125I radioactive seed,” Phys. Med. Biol. 49, 31613170 (2004).
http://dx.doi.org/10.1088/0031-9155/49/14/010
53.
53. G. Lymperopoulou, P. Papagiannis, L. Sakelliou, P. Karaiskos, P. Sandilos, A. Przykutta, and D. Baltas, “Monte Carlo and thermoluminescence dosimetry of the new IsoSeed model I25.S17 125I interstitial brachytherapy seed,” Med. Phys. 32, 33133317 (2005).
http://dx.doi.org/10.1118/1.2089588
54.
54. S. D. Davis, C. K. Ross, P. N. Mobit, L. Van der Zwan, W. J. Chase, and K. R. Shortt, “The response of LiF thermoluminescence dosemeters to photon beams in the energy range from 30 kV x rays to 60Co gamma rays,” Radiat. Prot. Dosim. 106, 3343 (2003).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a006332
55.
55. B. E. Rasmussen, S. D. Davis, J. A. Micka, and L. A. DeWerd, “Response of LiF:Mg,Ti thermoluminescent dosimeters to low-energy photons,” (abstract) Med. Phys. 35, 2792 (2008).
http://dx.doi.org/10.1118/1.2962044
56.
56. G. M. Mora, A. Maio, and D. W. O. Rogers, “Monte Carlo simulation of a typical 60Co therapy source,” Med. Phys. 26(11), 24942502 (1999).
http://dx.doi.org/10.1118/1.598770
57.
57. R. Kennedy, S. Davis, J. Micka, and L. DeWerd, “Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeedTM brachytherapy source,” Med. Phys. 37(4), 16811688 (2010).
http://dx.doi.org/10.1118/1.3360899
58.
58. T. J. McCaw, J. A. Micka, and L. A. DeWerd, “Characterizing the marker-dye correction for Gafchromic® EBT2 film: A comparison of three analysis methods,” Med. Phys. 38, 57715777 (2011).
http://dx.doi.org/10.1118/1.3639997
59.
59. S. Devic, J. Seuntjens, E. Sham, E. B. Podgorsak, C. R. Schmidtlein, A. S. Kirov, and C. G. Soares, “Precise radiochromic film dosimetry using a flat-bed document scanner,” Med. Phys. 32, 22452253 (2005).
http://dx.doi.org/10.1118/1.1929253
60.
60. S. Devic, J. Seuntjens, G. Hegyi, E. Podgorsak, C. G. Soares, A. S. Kirov, I. Ali, J. F. Williamson, and A. Elizondo, “Dosimetric properties of improved GafChromic films for seven different digitizers,” Med. Phys. 31, 23922401 (2004).
http://dx.doi.org/10.1118/1.1776691
61.
61. S. Devic, J. Seuntjens, W. Abdel-Rahman, M. Evans, M. Olivares, E. B. Podgorsak, T. Vuong, and C. G. Soares, “Accurate skin dose measurements using radiochromic film in clinical applications,” Med. Phys. 33, 11161124 (2006).
http://dx.doi.org/10.1118/1.2179169
62.
62. S. Devic, S. Aldelaijan, H. Mohammed, N. Tomic, L. Liang, F. Deblois, and J. Seuntjens, “Absorption spectra time evolution of EBT-2 model GAFCHROMIC™ film,” Med. Phys. 37, 22072214 (2010).
http://dx.doi.org/10.1118/1.3378675
63.
63. S. Devic, N. Tomic, S. Aldelaijan, F. DeBlois, J. Seuntjens, M. F. Chan, and D. Lewis, “Linearization of dose–response curve of the radiochromic film dosimetry system,” Med. Phys. 39(8), 48504857 (2012).
http://dx.doi.org/10.1118/1.4736800
64.
64. B. Arjomandy, R. Tailor, N. Sahoo, M. Gillin, K. Prado, and M. Vicic, “Energy dependence and dose response of GafChromic EBT2 film over a wide range of photon, electron, and proton beam energies,” Med. Phys. 37, 19421947 (2010).
http://dx.doi.org/10.1118/1.3373523
65.
65. L. Richley, A. C. John, H. Coomber, and S. Fletcher, “Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy,” Phys. Med. Biol. 55, 26012617 (2010).
http://dx.doi.org/10.1088/0031-9155/55/9/012
66.
66. A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
http://dx.doi.org/10.1118/1.598407
67.
67. UWRCL, UW-RCL Quality Manual I.3.3 Uncertainty Tables: Air Kerma Therapy (UWADCL, Madison, WI, 2008).
68.
68. S. D. Davis, “Air-kerma strength determination of a miniature x-ray source for brachytherapy applications,” Ph.D. dissertation, University of Wisconsin–Madison, 2009.
69.
69. S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 44(4), 789799 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00069-3
70.
70. L. Bartol and L. DeWerd, “Characterization of thermoluminescent dosimeter reader precision and artifacts,” (abstract) Med. Phys. 35, 2796 (2008).
http://dx.doi.org/10.1118/1.2962059
71.
71. UWRCL, UW-RCL Quality Manual I.5.1 Uncertainty Tables: Diagnostic TLD (UWADCL, Madison, WI, 2008).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4862505
Loading
/content/aapm/journal/medphys/41/2/10.1118/1.4862505
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/2/10.1118/1.4862505
2014-01-23
2014-12-19

Abstract

Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR)192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest.

This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom.

Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate.

The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/2/1.4862505.html;jsessionid=4ndds1tap6h6h.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/2/10.1118/1.4862505&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4862505
10.1118/1.4862505
SEARCH_EXPAND_ITEM