1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
The first clinical implementation of electromagnetic transponder-guided MLC tracking
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/2/10.1118/1.4862509
1.
1. P. J. Keall, V. R. Kini, S. S. Vedam, and R. Mohan, “Motion adaptive x-ray therapy: A feasibility study,” Phys. Med. Biol. 46, 110 (2001).
http://dx.doi.org/10.1088/0031-9155/46/1/301
2.
2. P. J. Keall, H. Cattell, D. Pokhrel, S. Dieterich, K. H. Wong, M. J. Murphy, S. S. Vedam, K. Wijesooriya, and R. Mohan, “Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system,” Int. J. Radiat. Oncol., Biol., Phys. 65, 15791584 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.04.038
3.
3. A. Sawant, R. Venkat, V. Srivastava, D. Carlson, S. Povzner, H. Cattell, and P. Keall, “Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 20502061 (2008).
http://dx.doi.org/10.1118/1.2905355
4.
4. M. B. Tacke, S. Nill, A. Krauss, and U. Oelfke, “Real-time tumor tracking: Automatic compensation of target motion using the Siemens 160 MLC,” Med. Phys. 37, 753761 (2010).
http://dx.doi.org/10.1118/1.3284543
5.
5. S. P. M. Crijns, B. W. Raaymakers, and J. J. W. Lagendijk, “Proof of concept of MRI-guided tracked radiation delivery: Tracking one-dimensional motion,” Phys. Med. Biol. 57, 78637872 (2012).
http://dx.doi.org/10.1088/0031-9155/57/23/7863
6.
6. P. R. Poulsen, J. Carl, J. Nielsen, M. S. Nielsen, J. B. Thomsen, H. K. Jensen, B. Kjaergaard, P. R. Zepernick, E. Worm, W. Fledelius, B. Cho, A. Sawant, D. Ruan, and P. J. Keall, “Megavoltage image-based dynamic multileaf collimator tracking of a NiTi stent in porcine lungs on a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 82, e321e327 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.03.023
7.
7. A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. Cho, P. Poulsen, H. Cattell, L. J. Newell, P. Parikh, and P. J. Keall, “Toward submillimeter accuracy in the management of intrafraction motion: The integration of real-time internal position monitoring and multileaf collimator target tracking,” Int. J. Radiat. Oncol., Biol., Phys. 74, 575582 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.12.057
8.
8. R. L. Smith, A. Sawant, L. Santanam, R. B. Venkat, L. J. Newell, B. C. Cho, P. Poulsen, H. Catell, P. J. Keall, and P. J. Parikh, “Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: An intensity-modulated radiation therapy feasibility study,” Int. J. Radiat. Oncol., Biol., Phys. 74, 868875 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2009.01.031
9.
9. A. Sawant, S. Dieterich, M. Svatos, and P. Keall, “Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems,” Med. Phys. 37, 64666479 (2010).
http://dx.doi.org/10.1118/1.3517837
10.
10. P. J. Keall, A. Sawant, B. Cho, D. Ruan, J. Wu, P. Poulsen, J. Petersen, L. J. Newell, H. Cattell, and S. Korreman, “Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy,” Int. J. Radiat. Oncol., Biol., Phys. 79, 312320 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.03.011
11.
11. J. Wu, D. Ruan, B. Cho, A. Sawant, J. Petersen, L. J. Newell, H. Cattell, and P. J. Keall, “Electromagnetic detection and real-time DMLC adaptation to target rotation during radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 82, e545e553 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1958
12.
12. A. Krauss, S. Nill, M. Tacke, and U. Oelfke, “Electromagnetic real-time tumor position monitoring and dynamic multileaf collimator tracking using a Siemens 160 MLC: Geometric and dosimetric accuracy of an integrated system,” Int. J. Radiat. Oncol., Biol., Phys. 79, 579587 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.03.043
13.
13. D. Ruan and P. Keall, “Dynamic multileaf collimator control for motion adaptive radiotherapy: An optimization approach,” in 2011 IEEE Power Engineering and Automation Conference (PEAM) (IEEE, New York, 2011), Vol. 3, pp. 100103.
14.
14. P. R. Poulsen, M. L. Schmidt, P. Keall, E. S. Worm, W. Fledelius, and L. Hoffmann, “A method of dose reconstruction for moving targets compatible with dynamic treatments,” Med. Phys. 39, 62376246 (2012).
http://dx.doi.org/10.1118/1.4754297
15.
15. T. N. Eade, L. Guo, E. Forde, K. Vaux, J. Vass, P. Hunt, and A. Kneebone, “Image-guided dose-escalated intensity-modulated radiation therapy for prostate cancer: Treating to doses beyond 78 Gy,” BJU Int. 109, 16551660 (2012).
http://dx.doi.org/10.1111/j.1464-410X.2011.10668.x
16.
16. J. M. Michalski, H. Gay, A. Jackson, S. L. Tucker, and J. O. Deasy, “Radiation dose-volume effects in radiation-induced rectal injury,” Int. J. Radiat., Oncol., Biol., Phys. 76, S123S129 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.03.078
17.
17. M. Hiraoka, Y. Matsuo, A. Sawada, N. Ueki, Y. Miyaba, M. Nakamura, S. Yano, S. Kaneko, T. Mizowaki, and M. Kokubo, “Realization of dynamic tumor tracking irradiation with real-time monitoring in lung tumor patients using a gimbaled X-ray head radiation therapy equipment,” Int. J. Radiat. Oncol., Biol., Phys. 84, S560S561 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.07.1493
18.
18. W. D. D’Souza, S. A. Naqvi, and C. X. Yu, “Real-time intra-fraction-motion tracking using the treatment couch: A feasibility study,” Phys. Med. Biol. 50, 4021 (2005).
http://dx.doi.org/10.1088/0031-9155/50/17/007
19.
19. J. Wilbert, J. Meyer, K. Baier, M. Guckenberger, C. Herrmann, R. Heß, C. Janka, L. Ma, T. Mersebach, A. Richter, M. Roth, K. Schilling, and M. Flentje, “Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing,” Med. Phys. 35, 39113921 (2008).
http://dx.doi.org/10.1118/1.2964090
20.
20. A. A. Konski, P. E. Wallner, E. E. R. Harris, R. A. Price Jr., M. Buyyounouski, R. Miller, T. Schefter, W. Tome, and I. Parsai, “Stereotactic body radiotherapy (SBRT) for primary management of early-stage, low-intermediate risk prostate cancer,” Report of the ASTRO Emerging Technology Committee, 2008.
21.
21. Y. Ge, R. O’Brien, and P. Keall, “Real-time tumor deformation tracking using dynamic multileaf collimator (DMLC),” Int. J. Radiat. Oncol., Biol., Phys. 84, S83 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.07.219
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4862509
Loading
/content/aapm/journal/medphys/41/2/10.1118/1.4862509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/2/10.1118/1.4862509
2014-01-23
2014-11-27

Abstract

We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre.

An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used.

The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V from that planned, even for the small motion.

The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/2/1.4862509.html;jsessionid=1u86ke9oe7712.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/2/10.1118/1.4862509&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The first clinical implementation of electromagnetic transponder-guided MLC tracking
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/2/10.1118/1.4862509
10.1118/1.4862509
SEARCH_EXPAND_ITEM