Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. M. Sevick-Muraca, “Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications,” Annu. Rev. Med. 63, 217231 (2012).
2.B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. van der Vorst, P. J. K. Kuppen, C. W. G. M. Löwik, J. V. Frangioni, C. J. H. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323332 (2011).
3.B. Madajewski, B. F. Judy, A. Mouchli, V. Kapoor, D. Holt, M. D. Wang, S. Nie, and S. Singhal, “Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease,” Clin. Cancer Res. 18, 57415751 (2012).
4.Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 43174322 (2010).
5.E. N. Savariar, C. N. Felsen, N. Nashi, T. Jiang, L. G. Ellies, P. Steinbach, R. Y. Tsien, and Q. T. Nguyen, “Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides,” Cancer Res. 73, 855864 (2013).
6.S. Keereweer, P. B. A. A. Van Driel, and C. W. G. M. Lowik, “Preclinical studies on tumor-specific fluorescent targeting agents: The need for a gold standard of tumor localization,” Mol. Imaging Biol. 16(1), 1012 (2014).
7.J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669680 (1997).
8.A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 17011720 (2003).
9.C. D. Darne, Y. Lu, I. C. Tan, B. Zhu, J. C. Rasmussen, A. M. Smith, S. Yan, and E. M. Sevick-Muraca, “A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography,” Phys. Med. Biol. 57, 81358152 (2012).
10.C. H. Heath, N. L. Deep, L. N. Beck, K. E. Day, L. Sweeny, K. R. Zinn, C. C. Huang, and E. L. Rosenthal, “Use of Panitumumab-IRDye800 to Image Cutaneous Head and Neck Cancer in Mice,” Otolaryngol.–Head Neck Surg. 148, 982990 (2013).
11.E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: Primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13, 041303041316 (2008).
12.W. T. Phillips, “Delivery of gamma-imaging agents by liposomes,” Adv. Drug Delivery Rev. 37, 1332 (1999).
13.H. Palmedo, H. Bender, F. Grünwald, P. Mallmann, P. Zamora, D. Krebs, and H. J. Biersack, “Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and technetium-99m methoxyisobutylisonitrile scintimammography in the detection of breast tumours,” Eur. J. Nucl. Med. 24, 11381145 (1997).
14.A. K. Paul, M. Tatsumi, K. Yutani, K. Fujino, K. Hashikawa, and T. Nishimura, “Effects of iterative reconstruction on image contrast and lesion detection in gamma camera coincidence imaging in lung and breast cancers,” Nucl. Med. Commun. 23, 103110 (2002).
15.G. C. Gurtner, G. E. Jones, P. C. Neligan, M. I. Newman, B. T. Phillips, J. M. Sacks, M. R. Zenn, D. Sachs, R. Capobianco, and R. Zhang, “Intraoperative laser angiography using the SPY system: Review of the literature and recommendations for use,” Ann. Surg. Innovation Res. 7, 114 (2013).
16.Novadaq, Operator's Manual (LifeCell Corporation, Branchburg, NJ, 2011).
17.J. Baeten, M. Niedre, J. Dunham, and V. Ntziachristos, “Development of fluorescent materials for diffuse fluorescence tomography standards and phantoms,” Opt. Exp. 15, 86818694 (2007).
18.B. Zhu, J. C. Rasmussen, Y. Lu, and E. M. Sevick-Muraca, “Reduction of excitation light leakage to improve near-infrared fluorescence imaging for tissue surface and deep tissue imaging,” Med. Phys. 37, 59615970 (2010).
19.E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, and K. E. Adams, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: Feasibility study,” Radiology 246, 734741 (2008).
20.B. Zhu, J. C. Rasmussen, I. C. Tan, and E. M. Sevick-Muraca, “Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach,” Technol. Cancer Res. Treat. 11, 95104 (2012).
21.G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, and A. G. J. van der Zee, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: First in-human results,” Nat. Med. 17, 13151319 (2011).

Data & Media loading...


Article metrics loading...



Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices.

The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies.

The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times.

Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd