1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/3/10.1118/1.4863507
1.
1. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612619 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000612
2.
2. R. Fahrig, A. J. Fox, S. Lownie, and D. W. Holdsworth, “Use of a C-arm system to generate true three-dimensional computed rotational angiograms: Preliminary in vitro and in vivo results,” Am. J. Neuroradiol. 18, 15071514 (1997).
3.
3. L. E. Antonuk, K.-W. Jee, Y. El-Mohri, M. Maolinbay, S. Nassif, X. Rong, Q. Zhao, J. H. Siewerdsen, R. A. Street, and K. S. Shah, “Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications,” Med. Phys. 27, 289306 (2000).
http://dx.doi.org/10.1118/1.598831
4.
4. D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys. 27, 13111323 (2000).
http://dx.doi.org/10.1118/1.599009
5.
5. W. A. Kalender and Y. Kyriakou, “Flat-detector computed tomography (FD-CT),” Eur. Radiol. 17, 27672779 (2007).
http://dx.doi.org/10.1007/s00330-007-0651-9
6.
6. W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 3rd ed. (Publicis, Erlangen, 2011).
7.
7. A. Suomalainen, T. Kiljunen, Y. Käser, J. Peltola, and M. Kortesniemi, “Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners,” Dentomaxillofac. Radiol. 38, 367378 (2009).
http://dx.doi.org/10.1259/dmfr/15779208
8.
8. Y. Kyriakou, G. Richter, A. Dörfler, and W. A. Kalender, “Neuroradiologic applications with routine C-arm flat panel detector CT: Evaluation of patient dose measurements,” Am. J. Neuroradiol. 29, 19301936 (2008).
http://dx.doi.org/10.3174/ajnr.A1237
9.
9. J. B. Ludlow and M. Ivanovic, “Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 106114 (2008).
http://dx.doi.org/10.1016/j.tripleo.2008.03.018
10.
10. J. H. Siewerdsen, D. J. Moseley, S. Burch, S. K. Bisland, A. Bogaards, B. C. Wilson, and D. A. Jaffray, “Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241254 (2005).
http://dx.doi.org/10.1118/1.1836331
11.
11. G. Eggers, J. Klein, T. Welzel, and J. Mühling, “Geometric accuracy of digital volume tomography and conventional computed tomography,” Br. J. Oral Maxillofac. Surg. 46, 639644 (2008).
http://dx.doi.org/10.1016/j.bjoms.2008.03.019
12.
12. Y. Arai, E. Tammisalo, K. Iwai, K. Hashimoto, and K. Shinoda, “Development of a compact computed tomographic apparatus for dental use,” Dentomaxillofac. Radiol. 28, 245248 (1999).
http://dx.doi.org/10.1038/sj.dmfr.4600448
13.
13. A. Doerfler, I. Wanke, T. Egelhof, U. Dietrich, S. Asgari, D. Stolke, and M. Forsting, “Aneurysmal rupture during embolization with Guglielmi detachable coils: Causes, management, and outcome,” Am. J. Neuroradiol. 22, 18251832 (2001).
14.
14. N. S. Heran, J. K. Song, K. Namba, W. Smith, Y. Niimi, and A. Berenstein, “The utility of DynaCT in neuroendovascular procedures,” Am. J. Neuroradiol. 27, 330332 (2006).
15.
15. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 13371349 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
16.
16. C. Holberg, S. Steinhäuser, P. Geis, and I. Rudzki-Janson, “Cone-beam computed tomography in orthodontics: Benefits and limitations,” J. Orofac. Orthop. 66, 434444 (2005).
http://dx.doi.org/10.1007/s00056-005-0519-z
17.
17. J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: Radiation dose and image quality evaluation,” Radiology 221, 657667 (2001).
http://dx.doi.org/10.1148/radiol.2213010334
18.
18. A. O’Connell, D. L. Conover, Y. Zhang, P. Seifert, W. Logan-Young, C. F. L. Lin, L. Sahler, and R. Ning, “Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality,” Am. J. Roentgenol. 195, 496509 (2010).
http://dx.doi.org/10.2214/AJR.08.1017
19.
19. W. A. Kalender, M. Beister, J. M. Boone, D. Kolditz, S. V. Vollmar, and M. C. C. Weigel, “High-resolution spiral CT of the breast at very low dose: Concept and feasibility considerations,” Eur. Radiol. 22, 18 (2012).
http://dx.doi.org/10.1007/s00330-011-2169-4
20.
20. J. B. Pialat, N. Vilayphiou, S. Boutroy, P. J. Gouttenoire, E. Sornay-Rendu, R. Chapurlat, and F. Peyrin, “Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study,” Bone 51, 362368 (2012).
http://dx.doi.org/10.1016/j.bone.2012.06.008
21.
21. D. Töpfer, S. Finzel, O. Museyko, G. Schett, and K. Engelke, “Segmentation and quantification of bone erosions in high-resolution peripheral quantitative computed tomography datasets of the metacarpophalangeal joints of patients with rheumatoid arthritis,” Rheumatology 53, 6571 (2014).
http://dx.doi.org/10.1093/rheumatology/ket259
22.
22. W. Ross, D. D. Cody, and J. D. Hazle, “Design and performance characteristics of a digital flat-panel computed tomography system,” Med. Phys. 33, 18881901 (2006).
http://dx.doi.org/10.1118/1.2198941
23.
23. R. Gupta, M. Grasruck, C. Suess, S. H. Bartling, B. Schmidt, K. Stierstorfer, S. Popescu, T. Brady, and T. Flohr, “Ultra-high resolution flat-panel volume CT: Fundamental principles, design architecture, and system characterization,” Eur. Radiol. 16, 11911205 (2006).
http://dx.doi.org/10.1007/s00330-006-0156-y
24.
24.Health Protection Agency, HPA-RPD-065: Recommendations for the Design of X-ray Facilities and Quality Assurance of Dental Cone Beam CT (Computed Tomography) systems (Health Protection Agency, Chilton, 2010).
25.
25.Health Protection Agency, HPA-CRCE-010: Guidance on the Safe Use of Dental Cone Beam CT (Computed Tomography) Equipment (Health Protection Agency, Chilton, 2010).
26.
26. R. Schulze, S. Hassfeld, D. Schulze, O. Ahlers, W. Freesmeyer, K. Ackermann, E. Frank, H. Terheyden, and U. Hirschfelder, “S1-Empfehlung: Dentale Volumentomographie (DVT),” Dtsch. Zahnärztl. Z. 64, 490496 (2009).
27.
27. Deutsches Institut für Normung (DIN), “Sicherung der Bildqualität in röntgendiagnostischen Betrieben - Teil 161: Abnahmeprüfung nach RöV an zahnmedizinischen Röntgeneinrichtungen zur digitalen Volumentomographie,” DIN Report Nr. 6868-161 (DIN, Berlin, 2013).
28.
28.SEDENTEXCT Guideline Development Panel, “Radiation protection: Cone beam CT for dental and maxillofacial radiology. Evidence based guidelines,” A report prepared by the SEDENTEXCT project (2011) (available URL: http://www.sedentexct.eu).
29.
29. R. Fahrig, R. Dixon, T. Payne, R. L. Morin, A. Ganguly, and N. Strobel, “Dose and image quality for a cone-beam C-arm CT system,” Med. Phys. 33, 45414550 (2006).
http://dx.doi.org/10.1118/1.2370508
30.
30. S. Yoo, G.-Y. Kim, R. Hammoud, E. Elder, T. Pawlicki, H. Guan, T. Fox, G. Luxton, F.-F. Yin, and P. Munro, “A quality assurance program for the on-board imager,” Med. Phys. 33, 44314447 (2006).
http://dx.doi.org/10.1118/1.2362872
31.
31. J. P. Bissonnette, D. J. Moseley, and D. A. Jaffray, “A quality assurance program for image quality of cone-beam CT guidance in radiation therapy,” Med. Phys. 35, 18071815 (2008).
http://dx.doi.org/10.1118/1.2900110
32.
32. J.-P. Bissonnette, P. A. Balter, L. Dong, K. M. Langen, D. M. Lovelock, M. Miften, D. J. Moseley, J. Pouliot, J.-J. Sonke, and S. Yoo, “Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179,” Med. Phys. 39, 19461963 (2012).
http://dx.doi.org/10.1118/1.3690466
33.
33. J. Vassileva and D. Stoyanov, “Quality control and patient dosimetry in dental cone beam CT,” Radiat. Prot. Dosimetry 139, 310312 (2010).
http://dx.doi.org/10.1093/rpd/ncq011
34.
34. R. Pauwels, H. Stamatakis, G. Manousaridis, A. Walker, K. Michielsen, H. Bosmans, R. Bogaerts, R. Jacobs, K. Horner, and K. Tsiklakis, “Development and applicability of a quality control phantom for dental cone-beam CT,” J. Appl. Clin. Med. Phys. 12, 245260 (2011).
35.
35. C. H. McCollough, M. R. Bruesewitz, M. F. McNitt-Gray, K. Bush, T. Ruckdeschel, J. T. Payne, J. A. Brink, and R. K. Zeman, “The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: Practical tips, artifact examples, and pitfalls to avoid,” Med. Phys. 31, 24232442 (2004).
http://dx.doi.org/10.1118/1.1769632
36.
36. International Electrotechnical Commission (IEC), “Amendment 1 – Medical electrical equipment – Part 2-44: Particular requirements for the basic safety and essential performance of X-ray equipment for computed tomography,” IEC Report No. 60601-2-44-A1 (IEC, Geneva, 2012).
37.
37. International Electrotechnical Commission (IEC), “Evaluation and routine testing in medical imaging departments – Part 3-5: Acceptance tests – Imaging performance of computed tomography X-ray equipment,” IEC Report No. 61223-3-5 (IEC, Geneva, 2004).
38.
38. International Electrotechnical Commission (IEC), “Evaluation and routine testing in medical imaging departments – Part 2-6: Constancy tests – Imaging performance of computed tomography X-ray equipment,” IEC Report No. 61223-2-6 (IEC, Geneva, 2006).
39.
39. J. Baek and N. J. Pelc, “Local and global 3D noise power spectrum in cone-beam CT system with FDK reconstruction,” Med. Phys. 38, 21222131 (2011).
http://dx.doi.org/10.1118/1.3556590
40.
40. M. M. Thornton and M. J. Flynn, “Measurement of the spatial resolution of a clinical volumetric computed tomography scanner using a sphere phantom,” Proc. SPIE 6142, 61421Z (2006).
http://dx.doi.org/10.1117/12.654969
41.
41. American Association of Physicists in Medicine (AAPM), “Specification and acceptance testing of computed tomography scanners,” AAPM Report No. 39 (AAPM, New York, 1993).
42.
42. Y. Kyriakou, D. Kolditz, O. Langner, J. Krause, and W. A. Kalender, “Digital volume tomography (DVT) and multislice spiral CT (MSCT): An objective examination of dose and image quality,” Fortschr. Röntgenstr. 183, 144153 (2011).
http://dx.doi.org/10.1055/s-0029-1245709
43.
43. P. Mah, T. E. Reeves, and W. D. McDavid, “Deriving Hounsfield units using grey levels in cone beam computed tomography,” Dentomaxillofac. Radiol. 39, 323335 (2010).
http://dx.doi.org/10.1259/dmfr/19603304
44.
44. P. Sprawls, “AAPM tutorial. CT image detail and noise,” Radiographics 12, 10411046 (1992).
http://dx.doi.org/10.1148/radiographics.12.5.1529128
45.
45. D. A. Chesler, S. J. Riederer, and N. J. Pelc, “Noise due to photon counting statistics in computed X-ray tomography,” J. Comput. Assist. Tomogr. 1, 6474 (1977).
http://dx.doi.org/10.1097/00004728-197701000-00009
46.
46. K. E. Bennett and R. L. Byer, “Fan-beam-tomography noise theory,” J. Opt. Soc. Am. A 3, 624633 (1986).
http://dx.doi.org/10.1364/JOSAA.3.000624
47.
47. Y. Zhang and R. Ning, “Investigation of image noise in cone-beam CT imaging due to photon counting statistics with the Feldkamp algorithm by computer simulations,” J. X-Ray Sci. Technol. 16, 143158 (2008).
48.
48. M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging, 1st ed. (IEEE, New York, NY, 1988).
49.
49. S. J. Riederer, N. J. Pelc, and D. A. Chesler, “The noise power spectrum in computed x-ray tomography,” Phys. Med. Biol. 23, 446454 (1978).
http://dx.doi.org/10.1088/0031-9155/23/3/008
50.
50. R. F. Wagner, D. G. Brown, and M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 8394 (1979).
http://dx.doi.org/10.1118/1.594559
51.
51. J. H. Siewerdsen, I. A. Cunningham, and D. A. Jaffray, “A framework for noise-power spectrum analysis of multidimensional images,” Med. Phys. 29, 26552671 (2002).
http://dx.doi.org/10.1118/1.1513158
52.
52. D. J. Tward and J. H. Siewerdsen, “Cascaded systems analysis of the 3D noise transfer characteristics of flat-panel cone-beam CT,” Med. Phys. 35, 55105529 (2008).
http://dx.doi.org/10.1118/1.3002414
53.
53. M. F. Kijewski and P. F. Judy, “The noise power spectrum of CT images,” Phys. Med. Biol. 32, 565575 (1987).
http://dx.doi.org/10.1088/0031-9155/32/5/003
54.
54. D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: Effect of 2D/3D apertures and sampling,” Med. Phys. 36, 38303843 (2009).
http://dx.doi.org/10.1118/1.3166933
55.
55. P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroac. 15, 7073 (1967).
http://dx.doi.org/10.1109/TAU.1967.1161901
56.
56. C. E. Metz and K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 10791106 (1979).
http://dx.doi.org/10.1088/0031-9155/24/6/001
57.
57. I. A. Cunningham and A. Fenster, “A method for modulation transfer function determination from edge profiles with correction for finite-element differentiation,” Med. Phys. 14, 533537 (1987).
http://dx.doi.org/10.1118/1.596064
58.
58. J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 28, 356360 (2001).
http://dx.doi.org/10.1118/1.1350438
59.
59. A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275281 (2007).
http://dx.doi.org/10.1118/1.2400830
60.
60. A. Katsumata, A. Hirukawa, M. Noujeim, S. Okumura, M. Naitoh, M. Fujishita, E. Ariji, and R. P. Langlais, “Image artifact in dental cone-beam CT,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101, 652657 (2006).
http://dx.doi.org/10.1016/j.tripleo.2005.07.027
61.
61. F. G. Draenert, E. Coppenrath, P. Herzog, S. Müller, and U. G. Mueller-Lisse, “Beam hardening artefacts occur in dental implant scans with the NewTom® cone beam CT but not with the dental 4-row multidetector CT,” Dentomaxillofac. Radiol. 36, 198203 (2007).
http://dx.doi.org/10.1259/dmfr/32579161
62.
62. R. K. W. Schulze, D. Berndt, and B. d’Hoedt, “On cone-beam computed tomography artifacts induced by titanium implants,” Clin. Oral Impl. Res. 21, 100107 (2010).
http://dx.doi.org/10.1111/j.1600-0501.2009.01817.x
63.
63. J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,” Radiographics 24, 16791691 (2004).
http://dx.doi.org/10.1148/rg.246045065
64.
64. G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numer. Math. 14, 403420 (1970).
http://dx.doi.org/10.1007/BF02163027
65.
65. C. Suess, W. A. Kalender, and J. M. Coman, “New low-contrast resolution phantoms for computed tomography,” Med. Phys. 26, 296302 (1999).
http://dx.doi.org/10.1118/1.598516
66.
66. C. Blendl, M. Fiebich, J. M. Voigt, M. Selbach, and C. Uphoff, “Investigation on the 3 D geometric accuracy and on the image quality (MTF, SNR and NPS) of volume tomography units (CT, CBCT and DVT),” Fortschr. Röntgenstr. 184, 2431 (2012).
http://dx.doi.org/10.1055/s-0031-1281818
67.
67. K. M. Hanson, “Detectability in computed tomographic images,” Med. Phys. 6, 441451 (1979).
http://dx.doi.org/10.1118/1.594534
68.
68. T. Nowak, M. Hupfer, F. Althoff, R. Brauweiler, F. Eisa, C. Steiding, and W. A. Kalender, “Time-delayed summation as a means of improving resolution on fast rotating computed tomography systems,” Med. Phys. 39, 22492260 (2012).
http://dx.doi.org/10.1118/1.3697533
69.
69. R. T. Droege and R. L. Morin, “A practical method to measure the MTF of CT scanners,” Med. Phys. 9, 758760 (1982).
http://dx.doi.org/10.1118/1.595124
70.
70. J. Chindasombatjaroen, N. Kakimoto, S. Murakami, Y. Maeda, and S. Furukawa, “Quantitative analysis of metallic artifacts caused by dental metals: Comparison of cone-beam and multi-detector row CT scanners,” Oral Radiol. 27, 114120 (2011).
http://dx.doi.org/10.1007/s11282-011-0071-z
71.
71. R. Pauwels, H. Stamatakis, H. Bosmans, R. Bogaerts, R. Jacobs, K. Horner and K. Tsiklakis, “Quantification of metal artifacts on cone beam computed tomography images,” Clin. Oral Implants Res. 24, 9499 (2013).
http://dx.doi.org/10.1111/j.1600-0501.2011.02382.x
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4863507
Loading
/content/aapm/journal/medphys/41/3/10.1118/1.4863507
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/3/10.1118/1.4863507
2014-02-05
2014-08-28

Abstract

Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT.

The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system.

The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient.

The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/3/1.4863507.html;jsessionid=9mk05273hd4af.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/3/10.1118/1.4863507&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4863507
10.1118/1.4863507
SEARCH_EXPAND_ITEM