1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/3/10.1118/1.4864244
1.
1. International Commission on Radiation Units and Measurements, “Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures,” ICRU Report No. 24 (International Commission on Radiation Units and Measurements, Washington, 1976).
2.
2. D. A. Jaffray, P. E. Lindsay, K. K. Brock, J. O. Deasy, and W. A. Tome, “Accurate accumulation of dose for improved understanding of radiation effects in normal tissue,” Int. J. Radiat., Oncol., Biol., Phys. 76, S135S139 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.06.093
3.
3. International Commission on Radiation Units and Measurements, “Use of computers in external beam radiotherapy procedures with high-energy photons and electrons,” ICRU Report No. 42 (International Commission on Radiation Units and Measurements, Bethesda, 1987).
4.
4. G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
5.
5. R. L. Stern, R. Heaton, M. W. Fraser, S. M. Goddu, T. H. Kirby, K. L. Lam, A. Molineu, and T. C. Zhu, “Verification of monitor unit calculations for non-IMRT clinical radiotherapy: Report of AAPM Task Group 114,” Med. Phys. 38, 504530 (2011).
http://dx.doi.org/10.1118/1.3521473
6.
6. P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
http://dx.doi.org/10.1118/1.598691
7.
7. F. M. Khan, K. P. Doppke, K. R. Hogstrom, G. J. Kutcher, R. Nath, S. C. Prasad, J. A. Purdy, M. Rozenfeld, and B. L. Werner, “Clinical electron-beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73109 (1991).
http://dx.doi.org/10.1118/1.596695
8.
8. International Commission on Radiation Units and Measurements, “Prescribing, recording, and reporting photon beam therapy,” ICRU Report No. 50 (International Commission on Radiation Units and Measurements, Bethesda, 1993).
9.
9. A. Dutreix, B. Bjarngard, A. Bridier, B. Mijnheer, J. Shaw, and H. Svensson, “Monitor Unit Calculation for High Energy Photon Beams,” ESTRO Booklet 3 (Garant Publishers, Leuven, Belgium, 1997).
10.
10. T. C. Zhu, A. Ahnesjo, K. L. Lam, X. A. Li, C. M. Ma, J. R. Palta, M. B. Sharpe, B. Thomadsen, and R. C. Tailor, “Report of AAPM Therapy Physics Committee Task Group 74: In-air output ratio, Sc, for megavoltage photon beams,” Med. Phys. 36, 52615291 (2009).
http://dx.doi.org/10.1118/1.3227367
11.
11. B. R. Thomadsen, S. S. Kubsad, B. R. Paliwal, S. Shahabi, and T. R. Mackie, “On the cause of the variation in tissue-maximum ratio values with source-to-detector distance,” Med. Phys. 20, 723727 (1993).
http://dx.doi.org/10.1118/1.597022
12.
12. M. J. Day and E. G. Aird, “The equivalent field method for dose determinations in rectangular fields,” Br. J. Radiol., Suppl. 25, 138151 (1996).
13.
13. T. D. Sterling, H. Perry, and L. Katz, “Derivation of a mathematical expression for the percent depth dose surface of cobalt 60 beams and visualization of multiple field dose distributions,” Br. J. Radiol. 37, 544550 (1964).
http://dx.doi.org/10.1259/0007-1285-37-439-544
14.
14. D. A. Jaffray, J. J. Battista, A. Fenster, and P. Munro, “X-ray sources of medical linear accelerators: Focal and extra-focal radiation,” Med. Phys. 20, 14171427 (1993).
http://dx.doi.org/10.1118/1.597106
15.
15. A. Ahnesjo, T. Knoos, and A. Montelius, “Application of the convolution method for calculation of output factors for therapy photon beams,” Med. Phys. 19, 295301 (1992).
http://dx.doi.org/10.1118/1.596859
16.
16. M. B. Sharpe, D. A. Jaffray, J. J. Battista, and P. Munro, “Extrafocal radiation: A unified approach to the prediction of beam penumbra and output factors for megavoltage x-ray beams,” Med. Phys. 22, 20652074 (1995).
http://dx.doi.org/10.1118/1.597648
17.
17. K. L. Lam, M. S. Muthuswamy, and R. K. Ten Haken, “Flattening-filter-based empirical methods to parametrize the head scatter factor,” Med. Phys. 23, 343352 (1996).
http://dx.doi.org/10.1118/1.597798
18.
18. P. B. Dunscombe and J. M. Nieminen, “On the field-size dependence of relative output from a linear accelerator,” Med. Phys. 19, 14411444 (1992).
http://dx.doi.org/10.1118/1.596799
19.
19. A. Ahnesjo, “Analytic modeling of photon scatter from flattening filters in photon therapy beams,” Med. Phys. 21, 12271235 (1994).
http://dx.doi.org/10.1118/1.597205
20.
20. M. K. Yu and R. Sloboda, “Analytical representation of head scatter factors for shaped photon beams using a two-component x-ray source model,” Med. Phys. 23, 973984 (1996).
http://dx.doi.org/10.1118/1.597827
21.
21. K. L. Lam and R. K. Ten Haken, “Monitor unit calculations with head scatter factors,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons (Advanced Medical Publishing, Inc., Madison, WI, 2000), p. 152.
22.
22. T. J. Jordan and P. C. Williams, “The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231251 (1994).
http://dx.doi.org/10.1088/0031-9155/39/2/002
23.
23. J. R. Palta, D. K. Yeung, and V. Frouhar, “Dosimetric considerations for a multileaf collimator system,” Med. Phys. 23, 12191224 (1996).
http://dx.doi.org/10.1118/1.597678
24.
24. I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. E. Schultheiss, “Beam characteristics of a retrofitted double-focused multileaf collimator,” Med. Phys. 25, 16761684 (1998).
http://dx.doi.org/10.1118/1.598348
25.
25. A. L. Boyer, T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C. J. Huntzinger, “Clinical dosimetry for implementation of a multileaf collimator,” Med. Phys. 19, 12551261 (1992).
http://dx.doi.org/10.1118/1.596757
26.
26. E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat., Oncol., Biol., Phys. 33, 11951208 (1995).
http://dx.doi.org/10.1016/0360-3016(95)00198-0
27.
27. F. M. Khan, The Physics of Radiation Therapy, 2nd ed. (Williams and Wilkins, Baltimore, MD, 1994).
28.
28. J. R. Palta, I. Daftari, and N. Suntharalingam, “Field size dependence of wedge factors,” Med. Phys. 15, 624626 (1988).
http://dx.doi.org/10.1118/1.596217
29.
29. D. B. Hughes, C. J. Karzmark, and R. M. Levy, “Conventions for wedge filter specifications,” Br. J. Radiol. 45, 868 (1972).
http://dx.doi.org/10.1259/0007-1285-45-539-868-a
30.
30. E. M. Dean and J. B. Davis, “The variation of wedge factors with field size on a linear accelerator with wedge tray beneath secondary collimators,” Br. J. Radiol. 64, 184185 (1991).
http://dx.doi.org/10.1259/0007-1285-64-758-184
31.
31. S. J. Thomas, “The variation of wedge factors with field size on a linear accelerator,” Br. J. Radiol. 63, 355356 (1990).
http://dx.doi.org/10.1259/0007-1285-63-749-355
32.
32. D. Georg, C. Garibaldi, and A. Dutreix, “Measurements of basic parameters in wedged high-energy photon beams using a mini-phantom,” Phys. Med. Biol. 42, 18211831 (1997).
http://dx.doi.org/10.1088/0031-9155/42/9/012
33.
33. D. D. Leavitt, M. Martin, J. H. Moeller, and W. L. Lee, “Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery,” Med. Phys. 17, 8791 (1990).
http://dx.doi.org/10.1118/1.596533
34.
34. N. Papanikolau, J. J. Battista, A. Boyer, C. Kappas, E. E. Klein, T. R. Mackie, M. B. Sharpe, and J. Van Dyk, Tissue Inhomogeneity Corrections for Megavoltage Photon Beams: Report of Task Group 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine, 2004.
35.
35. M. R. Sontag, “Monitor unit calculations with heterogeneity corrections,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons (Advanced Medical Publishing, Inc., Madison, WI, 2000), p. 152.
36.
36. H. F. Batho, “Lung corrections in cobalt 60 therapy,” J. Can. Assoc. Radiol. 15, 7983 (1964).
37.
37. M. R. Sontag and J. R. Cunningham, “Corrections to absorbed dose calculations for tissue inhomogeneities,” Med. Phys. 4, 431436 (1977).
http://dx.doi.org/10.1118/1.594329
38.
38. B. J. Gerbi, J. A. Antolak, F. C. Deibel, D. S. Followill, M. G. Herman, P. D. Higgins, M. S. Huq, D. N. Mihailidis, E. D. Yorke, K. R. Hogstrom, and F. M. Khan, “Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25,” Med. Phys. 36, 32393279 (2009).
http://dx.doi.org/10.1118/1.3125820
39.
39. A. S. Shiu, S. S. Tung, C. E. Nyerick, T. G. Ochran, V. A. Otte, A. L. Boyer, and K. R. Hogstrom, “Comprehensive analysis of electron beam central axis dose for a radiotherapy linear accelerator,” Med. Phys. 21, 559566 (1994).
http://dx.doi.org/10.1118/1.597313
40.
40. M. D. Mills, K. R. Hogstrom, and P. R. Almond, “Prediction of electron beam output factors,” Med. Phys. 9, 6068 (1982).
http://dx.doi.org/10.1118/1.595138
41.
41. J. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80,” Med. Phys. 11, 670677 (1984).
http://dx.doi.org/10.1118/1.595550
42.
42. F. M. Khan, P. D. Higgins, B. J. Gerbi, F. C. Deibel, A. Sethi, and D. N. Mihailidis, “Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields,” Phys. Med. Biol. 43, 27412754 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/005
43.
43. F. M. Khan and P. D. Higgins, “Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields: An addendum,” Phys. Med. Biol. 44, N77N80 (1999).
http://dx.doi.org/10.1088/0031-9155/44/6/401
44.
44. A. Kapur, C. M. Ma, E. C. Mok, D. O. Findley, and A. L. Boyer, “Monte Carlo calculations of electron beam output factors for a medical linear accelerator,” Phys. Med. Biol. 43, 34793494 (1998).
http://dx.doi.org/10.1088/0031-9155/43/12/007
45.
45. K. R. Hogstrom, R. E. Steadham, P.-F. Wong, and A. S. Shiu, “Monitor unit calculations for electron beams,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons (Advanced Medical Publishing, Inc., Madison, WI, 2000), p. 152.
46.
46. I. J. Das, C. W. Cheng, R. J. Watts, A. Ahnesjo, J. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
http://dx.doi.org/10.1118/1.2969070
47.
47. International Atomic Energy Agency, Absorbed Dose Determination in Photon and Electron Beams: An International Code of Practice (International Atomic Energy Agency, Vienna, 1987).
48.
48. International Atomic Energy Agency, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dsimetry Based on Standards of Absorbed Dose to Water (International Atomic Energy Agency, Vienna, 2000).
49.
49. International Electrotechnical Commission, Medical Electrical Equipment: Dosimeters with Ionization Chambers as Used in Radiotherapy (International Electrotechnical Commission, Geneva, 1997).
50.
50. International Commission on Radiation Units and Measurements, “Radiation dosimetry: Electron beams with energies between 1 and 50 MeV,” ICRU Report No. 35 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1984).
51.
51. International Atomic Energy Agency, The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry (International Atomic Energy Agency, Vienna, 1997).
52.
52. J. L. Haybittle, A. L. Bradshaw, J. E. Burns, W. T. Morris, and W. G. Pitchford, “Code of practice for electron beam dosimetry in radiotherapy,” Phys. Med. Biol. 30, 11691194 (1985).
http://dx.doi.org/10.1088/0031-9155/30/11/001
53.
53. NACP, “Electron beams with mean energies at the phantom surface below 15 MeV. Supplement to the recommendations by the Nordic Association of Clinical Physics (NACP) 1980,” Acta. Radiol. Oncol. 20, 401415 (1981).
http://dx.doi.org/10.3109/02841868109130229
54.
54. P. R. Almond, R. J. Schulz, J. R. Cunningham, J. G. Holt, R. Loevinger, N. Suntharalingam, K. A. Wright, R. Nath, and G. D. Lempert, “A protocol for the determination of absorbed dose from high-energy photon and electron beams,” Med. Phys. 10, 741771 (1983).
http://dx.doi.org/10.1118/1.595446
55.
55. I. J. Das, A. Ahnesjo, and C. W. Cheng, AAPM Task Group 155: Small Fields and Non-Equilibrium Condition Photon Beam Dosimetry, 2012.
56.
56. J. J. van Gasteren, S. Heukelom, H. J. van Kleffens, R. van der Laarse, J. L. Venselaar, and C. F. Westermann, “The determination of phantom and collimator scatter components of the output of megavoltage photon beams: Measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom,” J. Eur. Soc. Therap. Radiol. Oncol. 20, 250257 (1991).
http://dx.doi.org/10.1016/0167-8140(91)90124-Y
57.
57. T. J. Jordan, “Megavoltage x-ray beams: 2–50 MV,” Br. J. Radiol., Suppl. 25, 62109 (1996).
58.
58. A. Booth and D. W. Rogers, “Monte Carlo study of effects of phantom size, radial position, and depth on photon beam calibration,” Report No. NRC Report PIRS-507, 1995.
59.
59. W. Mayneord and L. F. Lamerton, “A survey of depth dose data,” Br. J. Radiol. 14, 255264 (1941).
http://dx.doi.org/10.1259/0007-1285-14-164-255
60.
60. B. E. Bjarngard, T. C. Zhu, and C. Ceberg, “Tissue-phantom ratios from percentage depth doses,” Med. Phys. 23, 629634 (1996).
http://dx.doi.org/10.1118/1.597698
61.
61. D. M. Frye, B. R. Paliwal, B. R. Thomadsen, and P. Jursinic, “Intercomparison of normalized head-scatter factor measurement techniques,” Med. Phys. 22, 249253 (1995).
http://dx.doi.org/10.1118/1.597602
62.
62. R. K. Ten Haken, “Comment on “Intercomparison on normalized head-scatter factor measurement techniques” [Med. Phys. 22, 249–253 (1995)],” Med. Phys. 22, 14711475 (1995).
http://dx.doi.org/10.1118/1.597572
63.
63. J. J. van Gasteren, S. Heukelom, H. N. Jager, H. J. van Kleffens, R. van der Laarse, B. J. Mijnheer, J. L. Venselaar, and C. F. Westermann, “Comments on “Intercomparison of normalized head-scatter factor measurement techniques” [Med. Phys. 22, 249–253 (1995)],” Med. Phys. 22, 14731475 (1995).
http://dx.doi.org/10.1118/1.597573
64.
64. P. A. Jursinic, “Measurement of head scatter factors of linear accelerators with columnar miniphantoms,” Med. Phys. 33, 17201728 (2006).
http://dx.doi.org/10.1118/1.2201148
65.
65. X. A. Li, M. Soubra, J. Szanto, and L. H. Gerig, “Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps,” Med. Phys. 22, 11671170 (1995).
http://dx.doi.org/10.1118/1.597508
66.
66. P. Storchi and J. J. van Gasteren, “A table of phantom scatter factors of photon beams as a function of the quality index and field size,” Phys. Med. Biol. 41, 563571 (1996).
http://dx.doi.org/10.1088/0031-9155/41/3/016
67.
67. F. M. Khan, B. J. Gerbi, and F. C. Deibel, “Dosimetry of asymmetric x-ray collimators,” Med. Phys. 13, 936941 (1986).
http://dx.doi.org/10.1118/1.595822
68.
68. K. L. Prado and D. L. Royce, “Asymmetric field calculations,” Med. Dosim. 17, 9599 (1992).
69.
69. D. D. Loshek and K. A. Keller, “Beam profile generator for asymmetric fields,” Med. Phys. 15, 604610 (1988).
http://dx.doi.org/10.1118/1.596212
70.
70. J. P. Gibbons and F. M. Khan, “Calculation of dose in asymmetric photon fields,” Med. Phys. 22, 14511457 (1995).
http://dx.doi.org/10.1118/1.597569
71.
71. C. S. Chui, R. Mohan, and D. Fontenla, “Dose computations for asymmetric fields defined by independent jaws,” Med. Phys. 15, 9295 (1988).
http://dx.doi.org/10.1118/1.596164
72.
72. W. Kwa, R. O. Kornelsen, R. W. Harrison, and E. El-Khatib, “Dosimetry for asymmetric x-ray fields,” Med. Phys. 21, 15991604 (1994).
http://dx.doi.org/10.1118/1.597260
73.
73. A. Ahnesjo, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, “Beam modeling and verification of a photon beam multisource model,” Med. Phys. 32, 17221737 (2005).
http://dx.doi.org/10.1118/1.1898485
74.
74. T. C. Zhu and B. E. Bjarngard, “Head scatter off-axis for megavoltage x rays,” Med. Phys. 30, 533543 (2003).
http://dx.doi.org/10.1118/1.1556609
75.
75. F. M. Khan, “Monitor unit calculations for photon beams,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons (Advanced Medical Publishing, Inc., Madison, WI, 2000), p. 152.
76.
76. L. E. Reinstein, “New approaches to tissue compensation in radiation oncology,” in Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning and Brachytherapy, edited by J. A. Purdy (AIP, Woodbury, NY, 1992), pp. 535572.
77.
77. F. R. Bagne, N. Samsami, S. W. Hoke, and D. G. Bronn, “A study of effective attenuation coefficient for calculating tissue compensator thickness,” Med. Phys. 17, 117121 (1990).
http://dx.doi.org/10.1118/1.596561
78.
78. S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Wedge factor constituents of high energy photon beams: Field size and depth dependence,” J. Eur. Soc. Therap. Radiol. Oncol. 30, 6673 (1994).
http://dx.doi.org/10.1016/0167-8140(94)90011-6
79.
79. R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order approximation of field-size and depth dependence of wedge transmission,” Med. Phys. 25, 241244 (1998).
http://dx.doi.org/10.1118/1.598187
80.
80. A. M. Kalend, A. Wu, V. Yoder, and A. Maitz, “Separation of dose-gradient effect from beam-hardening effect on wedge factors in photon fields,” Med. Phys. 17, 701704 (1990).
http://dx.doi.org/10.1118/1.596469
81.
81. E. C. McCullough, J. Gortney, and C. R. Blackwell, “A depth dependence determination of the wedge transmission factor for 4–10 MV photon beams,” Med. Phys. 15, 621623 (1988).
http://dx.doi.org/10.1118/1.596216
82.
82. J. P. Gibbons, “The effect of physical and dynamic wedges on effective source position,” Med. Phys. 22, 1545 (1995).
83.
83. S. Kim, C. Liu, C. Chen, and J. R. Palta, “Two-effective-source method for the calculation of in-air output at various source-to-detector distances in wedged fields,” Med. Phys. 26, 949955 (1999).
http://dx.doi.org/10.1118/1.598487
84.
84. F. M. Khan, “Dosimetry of wedged fields with asymmetric collimation,” Med. Phys. 20, 14471451 (1993).
http://dx.doi.org/10.1118/1.597108
85.
85. D. Georg, “Monitor unit calculation on the beam axis of open and wedged asymmetric high-energy photon beams,” Phys. Med. Biol. 44, 29873007 (1999).
http://dx.doi.org/10.1088/0031-9155/44/12/310
86.
86. B. Smulders, I. A. Bruinvis, and B. J. Mijnheer, “Monitor unit calculations for wedged asymmetric photon beams,” Phys. Med. Biol. 47, 20132030 (2002).
http://dx.doi.org/10.1088/0031-9155/47/12/302
87.
87. D. N. Mihailidis, P. D. Tomara, and J. P. Gibbons, “Measurements of primary off-axis ratios in wedged asymmetric photon fields: A formalism for dose and monitor unit calculations,” Phys. Med. Biol. 50, 20032014 (2005).
http://dx.doi.org/10.1088/0031-9155/50/9/006
88.
88. C. S. Chui and T. LoSasso, “Beam profiles along the nonwedged direction for large wedged fields,” Med. Phys. 21, 16851690 (1994).
http://dx.doi.org/10.1118/1.597282
89.
89. P. Storchi and E. Woudstra, “Calculation models for determining the absorbed dose in water phantoms in off-axis planes of rectangular fields of open and wedged photon beams,” Phys. Med. Biol. 40, 511527 (1995).
http://dx.doi.org/10.1088/0031-9155/40/4/003
90.
90. U. Myler and J. J. Szabo, “Dose calculation along the nonwedged direction for externally wedged beams: Iimprovement of dosimetric accuracy with comparatively moderate effort,” Med. Phys. 29, 748754 (2002).
http://dx.doi.org/10.1118/1.1470501
91.
91. C. Liu, Z. Li, and J. R. Palta, “Characterizing output for the Varian enhanced dynamic wedge field,” Med. Phys. 25, 6470 (1998).
http://dx.doi.org/10.1118/1.598161
92.
92. C. Liu, S. Kim, D. L. Kahler, and J. R. Palta, “Generalized monitor unit calculation for the Varian enhanced dynamic wedge field,” Med. Phys. 30, 18911896 (2003).
http://dx.doi.org/10.1118/1.1586269
93.
93. S. Papatheodorou, S. Zefkili, and J. C. Rosenwald, “The ‘equivalent wedge' implementation of the Varian enhanced dynamic wedge (EDW) into a treatment planning system,” Phys. Med. Biol. 44, 509524 (1999).
http://dx.doi.org/10.1088/0031-9155/44/2/016
94.
94. E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Int. J. Radiat., Oncol., Biol., Phys. 40, 977985 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00916-4
95.
95. J. P. Gibbons, “Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 25, 14111418 (1998).
http://dx.doi.org/10.1118/1.598313
96.
96. K. L. Prado, S. M. Kirsner, R. J. Kudchadker, R. E. Steadham, and R. G. Lane, “Enhanced dynamic wedge factors at off-axis points in asymmetric fields,” J. Appl. Clin. Med. Phys. 4, 7584 (2003).
http://dx.doi.org/10.1120/1.1534710
97.
97. M. Miften, M. Wiesmeyer, A. Beavis, K. Takahashi, and S. Broad, “Implementation of enhanced dynamic wedge in the focus rtp system,” Med. Dosim. 25, 8186 (2000).
http://dx.doi.org/10.1016/S0958-3947(00)00033-9
98.
98. M. K. Yu, “Analytical representation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 29, 26062610 (2002).
http://dx.doi.org/10.1118/1.1513568
99.
99. V. Y. Kuperman, “Analytical representation for Varian EDW factors at off-center points,” Med. Phys. 32, 12561261 (2005).
http://dx.doi.org/10.1118/1.1872532
100.
100. W. Ansbacher and C. Neath, “Comment on “Analytical representation of enhanced dynamic wedge factors for symmetric and asymmetric fields,” Med. Phys. 30, 722723 (2003);
http://dx.doi.org/10.1118/1.1555491
100.W. Ansbacher and C. Neath, Med. Phys. 30, 724725 (2003).
http://dx.doi.org/10.1118/1.1555494
101.
101. J. M. Lydon and K. L. Rykers, “Beam profiles in the nonwedged direction for dynamic wedges,” Phys. Med. Biol. 41, 12171225 (1996).
http://dx.doi.org/10.1088/0031-9155/41/7/010
102.
102. G. E. Desobry, T. J. Waldron, and I. J. Das, “Validation of a new virtual wedge model,” Med. Phys. 25, 7172 (1998).
http://dx.doi.org/10.1118/1.598172
103.
103. J. van Santvoort, “Dosimetric evaluation of the Siemens virtual wedge,” Phys. Med. Biol. 43, 26512663 (1998).
http://dx.doi.org/10.1088/0031-9155/43/9/016
104.
104. M. Miften, X. R. Zhu, K. Takahashi, F. Lopez, and M. T. Gillin, “Implementation and verification of virtual wedge in a three-dimensional radiotherapy planning system,” Med. Phys. 27, 16351643 (2000).
http://dx.doi.org/10.1118/1.599030
105.
105. A. L. McKenzie and P. H. Stevens, “How is photon head scatter in a linear accelerator related to the concept of a virtual source?,” Phys. Med. Biol. 38, 11731180 (1993).
http://dx.doi.org/10.1088/0031-9155/38/8/016
106.
106. J. Van Dyk, J. M. Galvin, G. P. Glasgow, and E. B. Podgorsak, AAPM Report 17: The Physical Aspects of Total and Half Body Photon Irradiation, 1986.
107.
107. D. T. Burns, G. X. Ding, and D. W. Rogers, “R50 as a beam quality specifier for selecting stopping-power ratios and reference depths for electron dosimetry,” Med. Phys. 23, 383388 (1996).
http://dx.doi.org/10.1118/1.597893
108.
108. F. M. Khan, W. Sewchand, and S. H. Levitt, “Effect of air space and depth dose in electron beam therapy,” Radiology 126, 249251 (1978).
http://dx.doi.org/10.1148/126.1.249
109.
109. B. R. Thomadsen, L. W. Asp, J. van de Geijn, B. R. Paliwal, and C. PoCheng, “Perturbation of electron beam doses as a function of SSD due to the use of shielding blocks on the Clinac-18a,” Med. Phys. 8, 507509 (1981).
http://dx.doi.org/10.1118/1.594999
110.
110. E. R. Cecatti, J. F. Goncalves, S. G. Cecatti, and M. da Penha Silva, “Effect of the accelerator design on the position of the effective electron source,” Med. Phys. 10, 683686 (1983).
http://dx.doi.org/10.1118/1.595406
111.
111. S. C. Sharma and M. W. Johnson, “Electron beam effective source surface distances for a high energy linear accelerator,” Med. Dosim. 16, 6570 (1991).
112.
112. M. D. Mills, K. R. Hogstrom, and R. S. Fields, “Determination of electron beam output factors for a 20-MeV linear accelerator,” Med. Phys. 12, 473476 (1985).
http://dx.doi.org/10.1118/1.595674
113.
113. A. Jamshidi, F. T. Kuchnir, and C. S. Reft, “Determination of the source position for the electron beams from a high-energy linear accelerator,” Med. Phys. 13, 942948 (1986).
http://dx.doi.org/10.1118/1.595823
114.
114. K. R. Hogstrom, “Clinical electron beam dosimetry: Basic dosimetry data,” in Advances in Radiation Oncology Physics–Proceedings of the Summer School of the AAPM, edited by J. A. Purdy (American Institute of Physics, New York, 1991).
115.
115. B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
116.
116. A. Boyer, L. Xing, C. M. Ma, B. Curran, R. Hill, A. Kania, and A. Bleier, “Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning,” Med. Phys. 26, 187195 (1999).
http://dx.doi.org/10.1118/1.598502
117.
117. C. M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma, and A. L. Boyer, “Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system,” Phys. Med. Biol. 45, 24832495 (2000).
http://dx.doi.org/10.1088/0031-9155/45/9/303
118.
118. J. H. Kung, G. T. Chen, and F. K. Kuchnir, “A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance,” Med. Phys. 27, 22262230 (2000).
http://dx.doi.org/10.1118/1.1286553
119.
119. L. Xing, Y. Chen, G. Luxton, J. G. Li, and A. L. Boyer, “Monitor unit calculation for an intensity modulated photon field by a simple scatter-summation algorithm,” Phys. Med. Biol. 45, N1N7 (2000).
http://dx.doi.org/10.1088/0031-9155/45/3/401
120.
120. Y. Yang, L. Xing, J. G. Li, J. Palta, Y. Chen, G. Luxton, and A. Boyer, “Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT,” Med. Phys. 30, 29372947 (2003).
http://dx.doi.org/10.1118/1.1617391
121.
121. N. Linthout, D. Verellen, S. Van Acker, and G. Storme, “A simple theoretical verification of monitor unit calculation for intensity modulated beams using dynamic mini-multileaf collimation,” J. Eur. Soc. Therap. Radiol. Oncol. 71, 235241 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.02.014
122.
122. X. Chen, N. J. Yue, W. Chen, C. B. Saw, D. E. Heron, D. Stefanik, R. Antemann, and M. S. Huq, “A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators,” Phys. Med. Biol. 50, 56415652 (2005).
http://dx.doi.org/10.1088/0031-9155/50/23/016
123.
123. K. M. Ayyangar, C. B. Saw, B. Shen, C. A. Enke, and P. S. Nizin, “Independent dose calculations for the PEACOCK system,” Med. Dosim. 26, 2935 (2001).
http://dx.doi.org/10.1016/S0958-3947(00)00057-1
124.
124. J. P. Gibbons, K. Smith, D. Cheek, and I. Rosen, “Independent calculation of dose for a helical tomotherapy unit,” J. Appl. Clin. Med. Phys. 10, 103119 (2009).
http://dx.doi.org/10.1120/jacmp.v10i1.2772
125.
125. Y. Watanabe, “Point dose calculations using an analytical pencil beam kernel for IMRT plan checking,” Phys. Med. Biol. 46, 10311038 (2001).
http://dx.doi.org/10.1088/0031-9155/46/4/309
126.
126. C. M. Ma, R. A. Price Jr., J. S. Li, L. Chen, L. Wang, E. Fourkal, L. Qin, and J. Yang, “Monitor unit calculation for Monte Carlo treatment planning,” Phys. Med. Biol. 49, 16711687 (2004).
http://dx.doi.org/10.1088/0031-9155/49/9/006
127.
127. J. Fan, J. Li, L. Chen, S. Stathakis, W. Luo, F. Du Plessis, W. Xiong, J. Yang, and C. M. Ma, “A practical Monte Carlo MU verification tool for IMRT quality assurance,” Phys. Med. Biol. 51, 25032515 (2006).
http://dx.doi.org/10.1088/0031-9155/51/10/010
128.
128. C. R. Baker, R. Clements, A. Gately, and G. J. Budgell, “A separated primary and scatter model for independent dose calculation of intensity modulated radiotherapy,” J. Eur. Soc. Therap. Radiol. Oncol. 80, 385390 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.08.011
129.
129. J. M. Galvin, G. Ezzell, A. Eisbrauch, C. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia, T. Lomax, D. A. Low, and J. Palta, “Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine,” Int. J. Radiat., Oncol., Biol., Phys. 58, 16161634 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2003.12.008
130.
130. T. Nyholm, J. Olofsson, A. Ahnesjo, D. Georg, and M. Karlsson, “Pencil kernel correction and residual error estimation for quality-index-based dose calculations,” Phys. Med. Biol. 51, 62456262 (2006).
http://dx.doi.org/10.1088/0031-9155/51/23/021
131.
131. J. S. Tsai, M. J. Engler, and J. Liu, “Quasi-independent monitor unit calculation for intensity modulated sequential tomotherapy,” J. Appl. Clin. Med. Phys. 3, 135153 (2002).
http://dx.doi.org/10.1120/1.1465772
132.
132. G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. X. Yu, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
http://dx.doi.org/10.1118/1.1591194
133.
133. G. S. Ibbott, A. Molineu, and D. S. Followill, “Independent evaluations of IMRT through the use of an anthropomorphic phantom,” Technol. Cancer Res. Treat. 5, 481487 (2006).
134.
134. J. A. Purdy, W. B. Harms, W. F. Hanson, P. Kennedy, T. Kirby, A. Niroomand-Rad, and J. R. Palta, AAPM RTC TG-46: X-ray Beam Central Axis Depth-Dose Data for Use in Radiation Therapy, 1997.
135.
135. E. D. Yorke, R. Alecu, L. Ding, D. Fontenla, A. M. Kalend, D. Kaurin, M. E. Masterson-McGary, G. Marinello, T. Matzen, A. Saini, J. Shi, W. E. Simon, T. C. Zhu, and X. R. Zhu, Report of Task Group 62 of the Radiation Therapy Committee: Diode In Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy, 2005.
136.
136. P. Vadash and B. Bjarngard, “An equivalent-square formula for head-scatter factors,” Med. Phys. 20, 733734 (1993).
http://dx.doi.org/10.1118/1.597024
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4864244
Loading
/content/aapm/journal/medphys/41/3/10.1118/1.4864244
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/3/10.1118/1.4864244
2014-02-26
2015-07-28

Abstract

A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, , that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of , with = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/3/1.4864244.html;jsessionid=2uchgpnpu5m9g.x-aip-live-03?itemId=/content/aapm/journal/medphys/41/3/10.1118/1.4864244&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4864244
10.1118/1.4864244
SEARCH_EXPAND_ITEM