Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Bloomquist, M. J. Yaffe, E. D. Pisano, R. E. Hendrick, G. E. Mawdsley, S. Bright, S. Z. Shen, M. Mahesh, E. L. Nickoloff, R. C. Fleischman, M. B. Williams, A. D. A. Maidment, D. J. Beideck, J. Och, J. A. Seibert, L. L. Fajardo, J. M. Boone, and K. Kanal, “Quality control for digital mammography in the ACRIN DMIST trial: Part I,” Med. Phys. 33, 719736 (2006).
2. R. van Engen, K. C. Young, and H. Bosmans, “The European protocol for the quality control of the physical and technical aspects of mammography screening,” Digital mammography. Part B (European Commission, National Expert and Training Centre for Breast Cancer Screening, Nijmegen, 2005), pp. 1114.
3. R. Van Metter, “Applying the European protocol for the quality control of the physical and technical aspects of mammography screening threshold contrast visibility assessment to digital systems,” Proc. SPIE 6142, 614205 (2006).
4. N. Karssemeijer and M. A. O. Thijssen, “Determination of contrast-detail curves of mammography systems by automated image analysis,” in Proceedings of the 3rd International Workshop on Digital Mammography, edited by K. Doi (Elsevier, Chicago, 1996), pp. 155160.
5. I. S. Kyprianou, S. Rudin, D. R. Bednarek, and K. R. Hoffmann, “Generalizing the MTF and DQE to include x-ray scatter and focal spot unsharpness: Application to a new microangiographic system,” Med. Phys. 32, 613626 (2005).
6. S. Richard, J. H. Siewerdsen, D. A. Jaffray, D. J. Moseley, and B. Bakhtiar, “Generalized DQE analysis of radiographic and dual-energy imaging using flat-panel detectors,” Med. Phys. 32, 13971413 (2005).
7. H. H. Barrett, J. P. Rolland, R. F. Wagner, and K. J. Myers, “Detection of known signals in inhomogeneous, random backgrounds,” Proc. SPIE 1090, 176182 (1989).
8. E. Samei, N. T. Ranger, J. T. Dobbins, and Y. Chen, “Intercomparison of methods for image quality characterization. I. Modulation transfer function,” Med. Phys. 33, 14541464 (2006).
9. J. T. Dobbins, E. Samei, N. T. Ranger, and Y. Chen, “Intercomparison of methods for image quality characterization II Noise power spectrum,” Med. Phys. 33, 14661475 (2006).
10. A. D. A. Maidment, M. Albert, P. C. Bunch, I. A. Cunningham, J. T. Dobbins, III, R. M. Gagne, R. M. Nishikawa, R. L. Van Metter, and R. F. Wagner, “Standardization of NPS measurement: interim report of AAPM TG16,” Proc. SPIE 5030, 523532 (2003).
11. M. J. Yaffe, J. M. Boone, N. Packard, O. Alonzo-proulx, S.-Y. Huang, C. L. Peressotti, A. Al-Mayah, and K. Brock, “The myth of the 50-50 breast,” Med. Phys. 36, 54375443 (2009).
12. H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Image 11, 3439 (1992).
13. A. D. A. Maidment and M. Albert, “Conditioning data for calculation of the modulation transfer function,” Med. Phys. 30, 248253 (2003).
14. S. Shen, G. E. Mawdsley, A. K. Bloomquist, J. G. Mainprize, and M. J. Yaffe, “Interpreting system MTF and NPS measured on clinical digital mammography systems,” in Proceedings of the International Workshop on Digital Mammography, Bremen, Germany (Springer Berlin Heidelberg, New York, 2002).
15. E. Salvagnini, H. Bosmans, L. Struelens, and N. W. Marshall, “Quantification of scattered radiation in projection mammography: Four practical methods compared,” Med. Phys. 39, 31673180 (2012).
16. V. N. Cooper, J. M. Boone, J. A. Seibert, and C. J. Pellot-Barakat, “An edge spread technique for measurement of the scatter-to-primary ratio in mammography,” Med. Phys. 27, 845853 (2000).
17. J. A. Seibert, “X-ray scatter removal by deconvolution,” Med. Phys. 15, 567575 (1988).
18. G. Wu, J. G. Mainprize, and M. J. Yaffe, “Spectral analysis of mammographic images using a multitaper method,” Med. Phys. 39, 801810 (2012).
19. D. R. Dance, C. L. Skinner, K. C. Young, J. R. Beckett, and C. J. Kotre, “Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol,” Phys. Med. Biol. 45, 32253240 (2000).
20. D. R. Dance, K. C. Young, and R. E. van Engen, “Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols,” Phys. Med. Biol. 54, 43614372 (2009).
21. ECRI, Radiographic Units, Mammographic: Stereotactic Systems, Biopsy, Mammographic (Plymouth Meeting, PA, 2003), p. 59.
22. C.-J. Lai, C. C. Shaw, W. Geiser, L. Chen, E. Arribas, T. Stephens, P. L. Davis, G. P. Ayyar, B. E. Dogan, V. a. Nguyen, G. J. Whitman, and W. T. Yang, “Comparison of slot scanning digital mammography system with full-field digital mammography system,” Med. Phys. 35, 23392346 (2008).
23. IMS, Giotto Image SD Service and Installation Manual (IMS, Bologna, 2004), p. 224.
24. Planmed Oy, Planmed Nuance & Planmed Nuance Excel FFDM X-Ray Unit Technical Manual (Planmed Oy, Helsinki, 2010).
25. N. W. Marshall, P. Monnin, H. Bosmans, F. O. Bochud, and F. R. Verdun, “Image quality assessment in digital mammography: Part I. Technical characterization of the systems,” Phys. Med. Biol. 56, 42014220 (2011).
26. P. Monnin and F. R. Verdun, Qualification of Digital Mammography Imaging Systems Kodak CR 975 – EHR-M2 & EHR-M3 Contents (Institut universitaire de Radiophysique Appliquée, Lausanne, 2009), pp. 19.
27. P. Monnin, D. Gutierrez, S. Bulling, D. Guntern, and F. R. Verdun, “A comparison of the performance of digital mammography systems,” Med. Phys. 34, 906914 (2007).
28. C. Ghetti, A. Borrini, O. Ortenzia, R. Rossi, and P. L. Ordóñez, “Physical characteristics of GE Senographe Essential and DS digital mammography detectors,” Med. Phys. 35, 456463 (2008).
29. O. Alonzo-Proulx, N. Packard, J. M. Boone, A. Al-Mayah, K. K. Brock, S. Z. Shen, and M. J. Yaffe, “Validation of a method for measuring the volumetric breast density from digital mammograms,” Phys. Med. Biol. 55, 30273044 (2010).
30. J. M. Boone, T. R. Fewell, and R. J. Jennings, “Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography,” Med. Phys. 24, 18631874 (1997).
31. H. K. Kim, C. H. Lim, J. Tanguay, S. Yun, and I. A. Cunningham, “Spectral analysis of fundamental signal and noise performances in photoconductors for mammography,” Med. Phys. 39, 24782490 (2012).
32. International Atomic Energy Agency, IAEA Human Health Series No. 17: Quality Assurance Programme for Digital Mammography (International Atomic Energy Agency, Vienna, 2011), p. 177.
33. H. Liu, “Task specific evaluation methodology for clinical full field digital mammography,” Ph.D. thesis (University of Maryland, College Park, Md, 2012), pp. 1102.

Data & Media loading...


Article metrics loading...



Current quality control protocols for digital mammography rely on subjective assessments of image quality or simple measures that are not comparable between vendor platforms. The noise-equivalent quanta (NEQ) can be expressed in units of image quanta (fluence) for the spatial frequency range of interest, enabling comparisons between systems and x-ray spectra. The purpose of this work is to explore use of a simple phantom to measure the components of the noise-equivalent quanta of digital mammography systems for use in routine quality control.

A simple phantom is imaged on six mammography systems from different vendors. The phantom contains uniform regions for measurement of noise power spectrum (NPS), slanted edges for measurement of modulation transfer function (MTF), and objects of various thicknesses for measurement of contrast. Images were acquired at a range of dose levels on each system to examine how measurements scale with dose, and multiple images were taken at a single dose point to examine measurement reproducibility.

The phantom and measurement methods show good reproducibility, with average coefficient of variation values of less than or equal to 15% on all systems evaluated. Measured MTF and NPS values are comparable to other published results when the increase in scattered radiation generated by placing the phantom on the breast support is accounted for.

Measurement of the parameters required to calculate NEQ from a single image of a simple phantom is practical, and shows promise as a method of evaluating image quality for routine quality control of digital mammography systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd