Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/3/10.1118/1.4865784
1.
1. S. Miraux, S. Srrees, E. Thiaudiere, P. Canioni, M. Merle, and J. M. Franconi, “Gadolinium-enhanced small-animal TOF magnetic resonance angiography,” MAGMA 17, 348352 (2004).
http://dx.doi.org/10.1007/s10334-004-0064-6
2.
2. M. Morita, M. Ohkawa, S. Miyazaki, T. Ishimaru, K. Umetani, and K. Suzuki, “Simultaneous observation of superficial cortical and intracerebral microvessels in vivo during reperfusion after transient forebrain ischemia in rats using synchrotron radiation,” Brain Res. 1158, 116122 (2007).
http://dx.doi.org/10.1016/j.brainres.2007.04.060
3.
3. J. Z. Hu, T. D. Wu, L. Zeng, H. Q. Liu, Y. He, G. H. Du, and H. B. Lu, “Visualization of microvasculature by x-ray in-line phase contrast imaging in rat spinal cord,” Phys. Med. Biol. 57, N55N63 (2012).
http://dx.doi.org/10.1088/0031-9155/57/5/N55
4.
4. G. Figueiredo, C. Brockmann, H. Boll, M. Heilmann, S. J. Schambach, T. Fiebig, M. Kramer, C. Groden, and M. A. Brockmann, “Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice,” Clin. Neuroradiol. 22, 2128 (2012).
http://dx.doi.org/10.1007/s00062-011-0113-2
5.
5. P. Liu, X. X. Liu, J. Zhao, J. Q. Sun, X. Gu, T. Q. Xiao, and L. X. Xu, “Lung cancer and angiogenesis imaging using synchrotron radiation,” Phys. Med. Biol. 55, 23992409 (2010).
http://dx.doi.org/10.1088/0031-9155/55/8/017
6.
6. E. Rubenstein, R. Hofstadter, H. D. Zeman, A. C. Thompson, J. N. Otis, G. S. Brown, J. C. Giacomini, H. J. Gordon, R. S. Kernoff, and D. C. Harrison, “Transvenous coronary angiography in humans using synchrotron radiation,” Proc. Natl. Acad. Sci. U.S.A. 83, 97249728 (1986).
http://dx.doi.org/10.1073/pnas.83.24.9724
7.
7. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: From pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1R35 (2013).
http://dx.doi.org/10.1088/0031-9155/58/1/R1
8.
8. G. Margaritondo and R. Meuli, “Synchrotron radiation in radiology: Novel x-ray sources,” Eur. Radiol. 13, 26332641 (2003).
http://dx.doi.org/10.1007/s00330-003-2073-7
9.
9. M. Shirai, D. O. Schwenke, H. Tsuchimochi, K. Umetani, N. Yagi, and J. T. Pearson, “Synchrotron radiation imaging for advancing our understanding of cardiovascular function,” Circ. Res. 112, 209221 (2013).
http://dx.doi.org/10.1161/CIRCRESAHA.111.300096
10.
10. R. B. Tang, W. M. Chai, W. H. Ying, G. Y. Yang, H. L. Xie, H. Q. Liu, and K. M. Chen, “Anti-VEGFR2-conjugated PLGA microspheres as an x-ray phase contrast agent for assessing the VEGFR2 expression,” Phys. Med. Biol. 57, 30513063 (2012).
http://dx.doi.org/10.1088/0031-9155/57/10/3051
11.
11. K. Umetani, J. T. Pearson, D. O. Schwenke, and M. Shirai, “Development of synchrotron radiation x-ray intravital microscopy for in vivo imaging of rat heart vascular function,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 77917794 (2011).
12.
12. S. Matsushita, K. Hyodo, T. Imazuru, C. Tokunaga, F. Sato, Y. Enomoto, Y. Hiramatsu, and T. Sakakibara, “The minimum coronary artery diameter in which coronary spasm can be identified by synchrotron radiation coronary angiography,” Eur. J. Radiol. 68, S84S88 (2008).
http://dx.doi.org/10.1016/j.ejrad.2008.04.044
13.
13. T. Yamashita, S. Kawashima, M. Ozaki, M. Namiki, T. Hirase, N. Inoue, K. Hirata, K. Umetani, K. Sugimura, and M. Yokoyam, “Mouse coronary angiograph using synchrotron radiation microangiography,” Circulation 105, E3E4 (2002).
http://dx.doi.org/10.1161/hc0202.100423
14.
14. G. A. Eppel, D. L. Jacono, M. Shirai, K. Umetani, R. G. Evans, and J. T. Pearson, “Contrast angiography of the rat renal microcirculation in vivo using synchrotron radiation,” Am. J. Physiol. Renal Physiol. 296, F1023F1031 (2009).
http://dx.doi.org/10.1152/ajprenal.90499.2008
15.
15. U. Lundstrom, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. A. Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol. 57, 74317441 (2012).
http://dx.doi.org/10.1088/0031-9155/57/22/7431
16.
16. D. O. Schwenke, J. T. Pearson, K. Umetani, K. Kangawa, and M. Shirai, “Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography,” J. Appl. Physiol. 102, 787793 (2007).
http://dx.doi.org/10.1152/japplphysiol.00596.2006
17.
17. D. O. Schwenke, J. T. Pearson, T. Sonobe, H. Ishibashi-Ueda, A. Shimouchi, K. Kangawa, K. Umetani, and M. Shirai, “Role of Rho-kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension,” J. Appl. Physiol. 110, 901908 (2011).
http://dx.doi.org/10.1152/japplphysiol.01318.2010
18.
18. D. O. Schwenke, E. A. Gray, J. T. Pearson, T. Sonobe, H. Ishibashi-Ueda, I. Campillo, K. Kangawa, K. Umetani, and M. Shirai, “Exogenous ghrelin improves blood flow distribution in pulmonary hypertension-assessed using synchrotron radiation microangiography,” Pflugers Arch. 462, 397406 (2011).
http://dx.doi.org/10.1007/s00424-011-0992-8
19.
19. K. Kidoguchi, M. Tamaki, T. Mizobe, J. Koyama, T. Kondoh, E. Kohmura, T. Sakurai, K. Yokono, and K. Umetani, “In vivo x-ray angiography in the mouse brain using synchrotron radiation,” Stroke 37, 18561861 (2006).
http://dx.doi.org/10.1161/01.STR.0000226904.96059.a6
20.
20. P. Liu, J. Sun, J. Zhao, X. Liu, X. Gu, J. Li, T. Xiao, and L. X. Xu, “Microvascular imaging using synchrotron radiation,” J. Synchrotron Radiat. 17, 517521 (2010).
http://dx.doi.org/10.1107/S0909049510018832
21.
21. H. Yoshino, T. Sakurai, X. S. Oizumi, T. Akisaki, X. Wang, K. Yokono, T. Kondoh, E. Kohmura, and K. Umentani, “Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles: Simultaneous visualization of perforating and cortical vessels by in vivo microangiography,” Microvasc. Res. 77, 230233 (2009).
http://dx.doi.org/10.1016/j.mvr.2008.09.011
22.
22. M. Shirai, D. O. Schrnke, G. A. Eppet, R. G. Evans, A. J. Edgley, H. Tsuchimochi, K. Umetani, and J. T. Pearson, “Synchrotron-based angiography for investigation of the regulation of vasomotor function in the microcirculation,” Clin. Exp. Pharmacol. Physiol. 36, 107116 (2009).
http://dx.doi.org/10.1111/j.1440-1681.2008.05073.x
23.
23. A. Peterzol, A. Bravin, P. Coan, and H. Elleaume, “Performance of the K-edge digital subtraction angiography imaging system at the European Synchrotron Radiation Facility,” Radiat. Prot. Dosim. 117, 4449 (2005).
http://dx.doi.org/10.1093/rpd/nci710
24.
24. Y. Guan, Y. Wang, F. Yuan, H. Lu, Y. Ren, T. Xiao, K. Chen, D. A. Greenberg, K. Jin, and G. Y. Yang, “Effect of suture properties on stability of middle cerebral artery occlusion evaluated by synchrotron radiation angiography,” Stroke 43, 888891 (2012).
http://dx.doi.org/10.1161/STROKEAHA.111.636456
25.
25. F. Yuan, Y. Tang, X. Lin, Y. Xi, Y. Guan, T. Xiao, J. Chen, Z. Zhang, G. Y. Yang, and Y. Wang, “Optimizing suture middle cerebral artery occlusion model in C57BL/6 mice circumvents posterior communicating artery dysplasia,” J. Neurotrauma 29, 14991505 (2012).
http://dx.doi.org/10.1089/neu.2011.2105
26.
26. M. E. Kelly, E. Schultke, S. Fiedler, C. Nemoz, R. Guzman, S. Corde, F. Esteve, G. LeDuc, B. H. Juurlink, and K. Meguro, “Synchrotron-based intravenous cerebral angiography in a small animal model,” Phys. Med. Biol. 52, 10011012 (2007).
http://dx.doi.org/10.1088/0031-9155/52/4/009
27.
27. E. Schultke, M. E. Kelly, C. Nemoz, S. Fieldler, L. Ogieglo, P. Crawford, J. Paterson, C. Beavis, F. Esteve, T. Brochard, M. Renier, H. Requardt, D. Dallery, G. Le Duc, and K. Meguro, “Dual energy CT at the synchrotron: A piglet model for neurovascular research,” Eur. J. Radiol. 79, 323327 (2011).
http://dx.doi.org/10.1016/j.ejrad.2010.07.002
28.
28. E. Schultke, S. Fiedler, C. Nemoz, L. Ogieglo, M. E. Kelly, P. Crawford, F. Esteve, T. Brochard, M. Renier, H. Requardt, G. Le Duc, B. Juurlink, and K. Meguro, “Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study,” Eur. J. Radiol. 73, 677681 (2010).
http://dx.doi.org/10.1016/j.ejrad.2009.01.019
29.
29. C. Molina, J. A. Sabin, J. Montaner, A. Rovira, S. Abilleira, and A. Codina, “Impaired cerebrovascular reactivity as a risk marker for first-ever lacunar infarction: A case control study,” Stroke 30, 22962301 (1999).
http://dx.doi.org/10.1161/01.STR.30.11.2296
30.
30. A. Morishita, T. Kondoh, T. Sakurai, M. Ikeda, A. K. Bhattacharjee, S. Nakajima, E. Kohmura, K. Yokono, and K. Umetani, “Quantification of distension in rat cerebral perforating arteries,” Neuroreport 17, 15491553 (2006).
http://dx.doi.org/10.1097/01.wnr.0000234756.96183.29
31.
31. E. Tanaka, A. Tanaka, T. Sekka, Y. Shinozaki, K. Hyodo, K. Umetani, and H. Mori, “Digitized cerebral synchrotron radiation angiography: Quantitative evaluation of the canine circle of Willis and its large and small branches,” Am. J. Neuroradiol. 20, 801806 (1999).
32.
32. K. Myojin, A. Taguchi, K. Umetani, K. Fukushima, N. Nishiura, T. Matsuyama, H. Kimura, D. M. Stern, Y. Imai, and H. Mori, “Visualization of intracerebral arteries by synchrotron radiation microangiography,” Am. J. Neuroradiol. 28, 953957 (2007).
33.
33. M. Tamaki, K. Kidoguchi, T. Mizobe, J. Koyama, T. Kondoh, T. Sakurai, E. Kohmura, K. Yokono, and K. Umetani, “Carotid artery occlusion and collateral circulation in C57Black/6J mice detected by synchrotron radiation microangiography,” Kobe J. Med. Sci. 52, 111118 (2006).
34.
34. H. Lu, Y. Wang, X. He, F. Yuan, X. Lin, B. Xie, G. Tang, J. Huang, Y. Tang, K. Jin, S. Chen, and G. Y. Yang, “Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia,” Stroke 43, 838843 (2012).
http://dx.doi.org/10.1161/STROKEAHA.111.635235
35.
35. R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm after subarachnoid hemorrhage: The emerging revolution,” Nat. Clin. Pract. Neurol. 3, 256263 (2007).
http://dx.doi.org/10.1038/ncpneuro0490
36.
36. S. Nakajima, T. Kondoh, A. Morishita, H. Yamashita, E. Kohmura, T. Sakurai, K. Yokono, and K. Umetani, “Loss of CO2-induced distensibility in cerebral arteries with chronic hypertension or vasospasm after subarachnoid hemorrhage,” Kobe J. Med. Sci. 53, 317326 (2008).
37.
37. J. Cai, C. He, F. Yuan, L. Chen, and F. Ling, “A novel haemodynamic cerebral aneurysm model of rats with normal blood pressure,” J. Clin. Neurosci. 19, 135138 (2012).
http://dx.doi.org/10.1016/j.jocn.2011.07.023
38.
38. J. Cai, Y. Sun, F. Yuan, L. Chen, C. He, Y. Bao, Z. Chen, M. Lou, W. Xia, G. Y. Yang, and F. Ling, “A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: A study with synchrotron radiation angiography,” PLoS One 7, e33366 (2012).
http://dx.doi.org/10.1371/journal.pone.0033366
39.
39. D. Gao, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast radiography,” Radiographics 18, 12571267 (1998).
http://dx.doi.org/10.1148/radiographics.18.5.9747618
40.
40. S. A. Zhou and A. Brahme, “Development of phase-contrast x-ray imaging techniques and potential medical applications,” Phys. Med. 24, 129148 (2008).
http://dx.doi.org/10.1016/j.ejmp.2008.05.006
41.
41. J. Duan, C. Hu, and H. Chen, “High-resolution micro-CT for morphologic and quantitative assessment of the sinusoid in human cavernous hemangioma of the liver,” PLoS One 8, e53507 (2013).
http://dx.doi.org/10.1371/journal.pone.0053507
42.
42. M. A. Beltran, D. M. Paganin, K. K. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 73537369 (2011).
http://dx.doi.org/10.1088/0031-9155/56/23/002
43.
43. R. Tang, Y. Xi, W. M. Chai, Y. Wang, Y. Guan, G. Y. Yang, H. Xie, and K. M. Chen, “Microbubble-based synchrotron radiation phase contrast imaging: Basic study and angiography applications,” Phys. Med. Biol. 56, 35033512 (2011).
http://dx.doi.org/10.1088/0031-9155/56/12/004
44.
44. W. Lu, Z. Dong, Z. Liu, W. Fu, Y. Peng, S. Chen, T. Xiao, H. Xie, G. Du, B. Deng, and X. Zhang, “Detection of microvasculature in rat hind limb using synchrotron radiation,” J. Surg. Res. 164, e193e199 (2010).
http://dx.doi.org/10.1016/j.jss.2010.05.015
45.
45. R. Zehbe, A. Haibel, H. Riesemeier, U. Gross, C. J. Kirkpatrick, H. Schubert, and C. Brochhausen, “Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: From tissue morphology to individual cells,” J. R. Soc. Interface 7, 4959 (2010).
http://dx.doi.org/10.1098/rsif.2008.0539
46.
46. U. Lundstrom, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol. 57, 26032617 (2012).
http://dx.doi.org/10.1088/0031-9155/57/9/2603
47.
47. F. Pfeiffer, O. Bunk, C. David, M. Bech, D. G. Le, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 69236930 (2007).
http://dx.doi.org/10.1088/0031-9155/52/23/010
48.
48. D. M. Connor, H. Benveniste, F. A. Dilmanian, M. F. Kritzer, L. M. Miller, and Z. Zhong, “Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging,” Neuroimage 46, 908914 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2009.03.019
49.
49. B. R. Pinzer, M. Cacquevel, P. Modregger, S. A. McDonald, J. C. Bensadoun, T. Thuering, P. Aebischer, and M. Stampanoni, “Imaging brain amyloid deposition using grating-based differential phase contrast tomography,” Neuroimage 61, 13361346 (2012).
http://dx.doi.org/10.1016/j.neuroimage.2012.03.029
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4865784
Loading
/content/aapm/journal/medphys/41/3/10.1118/1.4865784
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/3/10.1118/1.4865784
2014-02-24
2016-09-28

Abstract

Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation . This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/3/1.4865784.html;jsessionid=7QzAtwoZvuDwE0fR1P0-dBK4.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/3/10.1118/1.4865784&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/41/3/10.1118/1.4865784&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/41/3/10.1118/1.4865784'
Right1,Right2,Right3,