Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Miraux, S. Srrees, E. Thiaudiere, P. Canioni, M. Merle, and J. M. Franconi, “Gadolinium-enhanced small-animal TOF magnetic resonance angiography,” MAGMA 17, 348352 (2004).
2. M. Morita, M. Ohkawa, S. Miyazaki, T. Ishimaru, K. Umetani, and K. Suzuki, “Simultaneous observation of superficial cortical and intracerebral microvessels in vivo during reperfusion after transient forebrain ischemia in rats using synchrotron radiation,” Brain Res. 1158, 116122 (2007).
3. J. Z. Hu, T. D. Wu, L. Zeng, H. Q. Liu, Y. He, G. H. Du, and H. B. Lu, “Visualization of microvasculature by x-ray in-line phase contrast imaging in rat spinal cord,” Phys. Med. Biol. 57, N55N63 (2012).
4. G. Figueiredo, C. Brockmann, H. Boll, M. Heilmann, S. J. Schambach, T. Fiebig, M. Kramer, C. Groden, and M. A. Brockmann, “Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice,” Clin. Neuroradiol. 22, 2128 (2012).
5. P. Liu, X. X. Liu, J. Zhao, J. Q. Sun, X. Gu, T. Q. Xiao, and L. X. Xu, “Lung cancer and angiogenesis imaging using synchrotron radiation,” Phys. Med. Biol. 55, 23992409 (2010).
6. E. Rubenstein, R. Hofstadter, H. D. Zeman, A. C. Thompson, J. N. Otis, G. S. Brown, J. C. Giacomini, H. J. Gordon, R. S. Kernoff, and D. C. Harrison, “Transvenous coronary angiography in humans using synchrotron radiation,” Proc. Natl. Acad. Sci. U.S.A. 83, 97249728 (1986).
7. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: From pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1R35 (2013).
8. G. Margaritondo and R. Meuli, “Synchrotron radiation in radiology: Novel x-ray sources,” Eur. Radiol. 13, 26332641 (2003).
9. M. Shirai, D. O. Schwenke, H. Tsuchimochi, K. Umetani, N. Yagi, and J. T. Pearson, “Synchrotron radiation imaging for advancing our understanding of cardiovascular function,” Circ. Res. 112, 209221 (2013).
10. R. B. Tang, W. M. Chai, W. H. Ying, G. Y. Yang, H. L. Xie, H. Q. Liu, and K. M. Chen, “Anti-VEGFR2-conjugated PLGA microspheres as an x-ray phase contrast agent for assessing the VEGFR2 expression,” Phys. Med. Biol. 57, 30513063 (2012).
11. K. Umetani, J. T. Pearson, D. O. Schwenke, and M. Shirai, “Development of synchrotron radiation x-ray intravital microscopy for in vivo imaging of rat heart vascular function,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 77917794 (2011).
12. S. Matsushita, K. Hyodo, T. Imazuru, C. Tokunaga, F. Sato, Y. Enomoto, Y. Hiramatsu, and T. Sakakibara, “The minimum coronary artery diameter in which coronary spasm can be identified by synchrotron radiation coronary angiography,” Eur. J. Radiol. 68, S84S88 (2008).
13. T. Yamashita, S. Kawashima, M. Ozaki, M. Namiki, T. Hirase, N. Inoue, K. Hirata, K. Umetani, K. Sugimura, and M. Yokoyam, “Mouse coronary angiograph using synchrotron radiation microangiography,” Circulation 105, E3E4 (2002).
14. G. A. Eppel, D. L. Jacono, M. Shirai, K. Umetani, R. G. Evans, and J. T. Pearson, “Contrast angiography of the rat renal microcirculation in vivo using synchrotron radiation,” Am. J. Physiol. Renal Physiol. 296, F1023F1031 (2009).
15. U. Lundstrom, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. A. Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol. 57, 74317441 (2012).
16. D. O. Schwenke, J. T. Pearson, K. Umetani, K. Kangawa, and M. Shirai, “Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography,” J. Appl. Physiol. 102, 787793 (2007).
17. D. O. Schwenke, J. T. Pearson, T. Sonobe, H. Ishibashi-Ueda, A. Shimouchi, K. Kangawa, K. Umetani, and M. Shirai, “Role of Rho-kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension,” J. Appl. Physiol. 110, 901908 (2011).
18. D. O. Schwenke, E. A. Gray, J. T. Pearson, T. Sonobe, H. Ishibashi-Ueda, I. Campillo, K. Kangawa, K. Umetani, and M. Shirai, “Exogenous ghrelin improves blood flow distribution in pulmonary hypertension-assessed using synchrotron radiation microangiography,” Pflugers Arch. 462, 397406 (2011).
19. K. Kidoguchi, M. Tamaki, T. Mizobe, J. Koyama, T. Kondoh, E. Kohmura, T. Sakurai, K. Yokono, and K. Umetani, “In vivo x-ray angiography in the mouse brain using synchrotron radiation,” Stroke 37, 18561861 (2006).
20. P. Liu, J. Sun, J. Zhao, X. Liu, X. Gu, J. Li, T. Xiao, and L. X. Xu, “Microvascular imaging using synchrotron radiation,” J. Synchrotron Radiat. 17, 517521 (2010).
21. H. Yoshino, T. Sakurai, X. S. Oizumi, T. Akisaki, X. Wang, K. Yokono, T. Kondoh, E. Kohmura, and K. Umentani, “Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles: Simultaneous visualization of perforating and cortical vessels by in vivo microangiography,” Microvasc. Res. 77, 230233 (2009).
22. M. Shirai, D. O. Schrnke, G. A. Eppet, R. G. Evans, A. J. Edgley, H. Tsuchimochi, K. Umetani, and J. T. Pearson, “Synchrotron-based angiography for investigation of the regulation of vasomotor function in the microcirculation,” Clin. Exp. Pharmacol. Physiol. 36, 107116 (2009).
23. A. Peterzol, A. Bravin, P. Coan, and H. Elleaume, “Performance of the K-edge digital subtraction angiography imaging system at the European Synchrotron Radiation Facility,” Radiat. Prot. Dosim. 117, 4449 (2005).
24. Y. Guan, Y. Wang, F. Yuan, H. Lu, Y. Ren, T. Xiao, K. Chen, D. A. Greenberg, K. Jin, and G. Y. Yang, “Effect of suture properties on stability of middle cerebral artery occlusion evaluated by synchrotron radiation angiography,” Stroke 43, 888891 (2012).
25. F. Yuan, Y. Tang, X. Lin, Y. Xi, Y. Guan, T. Xiao, J. Chen, Z. Zhang, G. Y. Yang, and Y. Wang, “Optimizing suture middle cerebral artery occlusion model in C57BL/6 mice circumvents posterior communicating artery dysplasia,” J. Neurotrauma 29, 14991505 (2012).
26. M. E. Kelly, E. Schultke, S. Fiedler, C. Nemoz, R. Guzman, S. Corde, F. Esteve, G. LeDuc, B. H. Juurlink, and K. Meguro, “Synchrotron-based intravenous cerebral angiography in a small animal model,” Phys. Med. Biol. 52, 10011012 (2007).
27. E. Schultke, M. E. Kelly, C. Nemoz, S. Fieldler, L. Ogieglo, P. Crawford, J. Paterson, C. Beavis, F. Esteve, T. Brochard, M. Renier, H. Requardt, D. Dallery, G. Le Duc, and K. Meguro, “Dual energy CT at the synchrotron: A piglet model for neurovascular research,” Eur. J. Radiol. 79, 323327 (2011).
28. E. Schultke, S. Fiedler, C. Nemoz, L. Ogieglo, M. E. Kelly, P. Crawford, F. Esteve, T. Brochard, M. Renier, H. Requardt, G. Le Duc, B. Juurlink, and K. Meguro, “Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study,” Eur. J. Radiol. 73, 677681 (2010).
29. C. Molina, J. A. Sabin, J. Montaner, A. Rovira, S. Abilleira, and A. Codina, “Impaired cerebrovascular reactivity as a risk marker for first-ever lacunar infarction: A case control study,” Stroke 30, 22962301 (1999).
30. A. Morishita, T. Kondoh, T. Sakurai, M. Ikeda, A. K. Bhattacharjee, S. Nakajima, E. Kohmura, K. Yokono, and K. Umetani, “Quantification of distension in rat cerebral perforating arteries,” Neuroreport 17, 15491553 (2006).
31. E. Tanaka, A. Tanaka, T. Sekka, Y. Shinozaki, K. Hyodo, K. Umetani, and H. Mori, “Digitized cerebral synchrotron radiation angiography: Quantitative evaluation of the canine circle of Willis and its large and small branches,” Am. J. Neuroradiol. 20, 801806 (1999).
32. K. Myojin, A. Taguchi, K. Umetani, K. Fukushima, N. Nishiura, T. Matsuyama, H. Kimura, D. M. Stern, Y. Imai, and H. Mori, “Visualization of intracerebral arteries by synchrotron radiation microangiography,” Am. J. Neuroradiol. 28, 953957 (2007).
33. M. Tamaki, K. Kidoguchi, T. Mizobe, J. Koyama, T. Kondoh, T. Sakurai, E. Kohmura, K. Yokono, and K. Umetani, “Carotid artery occlusion and collateral circulation in C57Black/6J mice detected by synchrotron radiation microangiography,” Kobe J. Med. Sci. 52, 111118 (2006).
34. H. Lu, Y. Wang, X. He, F. Yuan, X. Lin, B. Xie, G. Tang, J. Huang, Y. Tang, K. Jin, S. Chen, and G. Y. Yang, “Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia,” Stroke 43, 838843 (2012).
35. R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm after subarachnoid hemorrhage: The emerging revolution,” Nat. Clin. Pract. Neurol. 3, 256263 (2007).
36. S. Nakajima, T. Kondoh, A. Morishita, H. Yamashita, E. Kohmura, T. Sakurai, K. Yokono, and K. Umetani, “Loss of CO2-induced distensibility in cerebral arteries with chronic hypertension or vasospasm after subarachnoid hemorrhage,” Kobe J. Med. Sci. 53, 317326 (2008).
37. J. Cai, C. He, F. Yuan, L. Chen, and F. Ling, “A novel haemodynamic cerebral aneurysm model of rats with normal blood pressure,” J. Clin. Neurosci. 19, 135138 (2012).
38. J. Cai, Y. Sun, F. Yuan, L. Chen, C. He, Y. Bao, Z. Chen, M. Lou, W. Xia, G. Y. Yang, and F. Ling, “A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: A study with synchrotron radiation angiography,” PLoS One 7, e33366 (2012).
39. D. Gao, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast radiography,” Radiographics 18, 12571267 (1998).
40. S. A. Zhou and A. Brahme, “Development of phase-contrast x-ray imaging techniques and potential medical applications,” Phys. Med. 24, 129148 (2008).
41. J. Duan, C. Hu, and H. Chen, “High-resolution micro-CT for morphologic and quantitative assessment of the sinusoid in human cavernous hemangioma of the liver,” PLoS One 8, e53507 (2013).
42. M. A. Beltran, D. M. Paganin, K. K. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 73537369 (2011).
43. R. Tang, Y. Xi, W. M. Chai, Y. Wang, Y. Guan, G. Y. Yang, H. Xie, and K. M. Chen, “Microbubble-based synchrotron radiation phase contrast imaging: Basic study and angiography applications,” Phys. Med. Biol. 56, 35033512 (2011).
44. W. Lu, Z. Dong, Z. Liu, W. Fu, Y. Peng, S. Chen, T. Xiao, H. Xie, G. Du, B. Deng, and X. Zhang, “Detection of microvasculature in rat hind limb using synchrotron radiation,” J. Surg. Res. 164, e193e199 (2010).
45. R. Zehbe, A. Haibel, H. Riesemeier, U. Gross, C. J. Kirkpatrick, H. Schubert, and C. Brochhausen, “Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: From tissue morphology to individual cells,” J. R. Soc. Interface 7, 4959 (2010).
46. U. Lundstrom, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol. 57, 26032617 (2012).
47. F. Pfeiffer, O. Bunk, C. David, M. Bech, D. G. Le, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 69236930 (2007).
48. D. M. Connor, H. Benveniste, F. A. Dilmanian, M. F. Kritzer, L. M. Miller, and Z. Zhong, “Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging,” Neuroimage 46, 908914 (2009).
49. B. R. Pinzer, M. Cacquevel, P. Modregger, S. A. McDonald, J. C. Bensadoun, T. Thuering, P. Aebischer, and M. Stampanoni, “Imaging brain amyloid deposition using grating-based differential phase contrast tomography,” Neuroimage 61, 13361346 (2012).

Data & Media loading...


Article metrics loading...



Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation . This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd