Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. J. Lagerwaard, N. E. Verstegen, C. J. Haasbeek, B. J. Slotman, M. A. Paul, E. F. Smit, and S. Senan, “Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 83, 348353 (2012).
2. J. Vansteenkiste, D. De Ruysscher, W. E. Eberhardt, E. Lim, S. Senan, E. Felip, and S. Peters, “Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,” Ann. Oncol. 24(suppl 6), vi89vi98 (2013).
3. S. Senthi, F. J. Lagerwaard, C. J. Haasbeek, B. J. Slotman, and S. Senan, “Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: A retrospective analysis,” Lancet Oncol. 13, 802809 (2012).
4. J. Van Dyk and R. P. Hill, “Post-irradiation lung density changes measured by computerized tomography,” Int. J. Radiat. Oncol., Biol., Phys. 9, 847852 (1983).
5. K. Mah, P. Y. Poon, J. Van Dyk, T. Keane, I. F. Majesky, and D. F. Rideout, “Assessment of acute radiation-induced pulmonary changes using computed tomography,” J. Comput. Assist. Tomogr. 10, 736743 (1986).
6. A. Takeda, E. Kunieda, T. Takeda, M. Tanaka, N. Sanuki, H. Fujii, N. Shigematsu, and A. Kubo, “Possible misinterpretation of demarcated solid patterns of radiation fibrosis on CT scans as tumor recurrence in patients receiving hypofractionated stereotactic radiotherapy for lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 70, 10571065 (2008).
7. A. Linda, M. Trovo, and J. D. Bradley, “Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: A timeline and pattern of CT changes,” Eur. J. Radiol. 79, 147154 (2011).
8. Y. Matsuo, Y. Nagata, T. Mizowaki, K. Takayama, T. Sakamoto, M. Sakamoto, Y. Norihisa, and M. Hiraoka, “Evaluation of mass-like consolidation after stereotactic body radiation therapy for lung tumors,” Int. J. Clin. Oncol. 12, 356362 (2007).
9. S. Kato, A. Nambu, H. Onishi, A. Saito, K. Kuriyama, T. Komiyama, K. Marino, and T. Araki, “Computed tomography appearances of local recurrence after stereotactic body radiation therapy for stage I non-small-cell lung carcinoma,” Jpn. J. Radiol. 28, 259265 (2010).
10. T. Ishimori, T. Saga, Y. Nagata, Y. Nakamoto, T. Higashi, M. Mamede, T. Mukai, Y. Negoro, T. Aoki, M. Hiraoka, and J. Konishi, “18F-FDG and 11C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy,” Ann. Nucl. Med. 18, 669674 (2004).
11. K. Huang, M. Dahele, S. Senan, M. Guckenberger, G. B. Rodrigues, A. Ward, R. G. Boldt, and D. A. Palma, “Radiographic changes after lung stereotactic ablative radiotherapy (SABR) - Can we distinguish recurrence from fibrosis? A systematic review of the literature,” Radiother. Oncol. 102, 335342 (2012).
12. D. J. Hoopes, M. Tann, J. W. Fletcher, J. A. Forquer, P. F. Lin, S. S. Lo, R. D. Timmerman, and R. C. McGarry, “FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer,” Lung Cancer 56, 229234 (2007).
13. P. D. Korfiatis, A. N. Karahaliou, A. D. Kazantzi, C. Kalogeropoulou, and L. I. Costaridou, “Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT,” IEEE Trans. Inf. Technol. Biomed. 14, 675680 (2010).
14. J. Yao, A. Dwyer, R. M. Summers, and D. J. Mollura, “Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification,” Acad. Radiol. 18, 306314 (2011).
15. S. A. Mattonen, D. A. Palma, C. J. Haasbeek, S. Senan, and A. D. Ward, “Distinguishing radiation fibrosis from tumour recurrence after stereotactic ablative radiotherapy (SABR) for lung cancer: A quantitative analysis of CT density changes,” Acta Oncol. 52, 910918 (2013).
16. S. A. Mattonen, D. A. Palma, C. J. Haasbeek, S. Senan, and A. D. Ward, “CT image feature analysis in distinguishing radiation fibrosis from tumour recurrence after stereotactic ablative radiotherapy (SABR) for lung cancer: A preliminary study,” Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 86720L (March 29, 2013).
17. M. Dahele, D. Palma, F. Lagerwaard, B. Slotman, and S. Senan, “Radiological changes after stereotactic radiotherapy for stage I lung cancer,” J. Thorac. Oncol. 6, 12211228 (2011).
18. P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” NeuroImage 31, 11161128 (2006).
19. D. M. Hansell, A. A. Bankier, H. MacMahon, T. C. McLoud, N. L. Muller, and J. Remy, “Fleischner Society: Glossary of terms for thoracic imaging,” Radiology 246, 697722 (2008).
20. E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1),” Eur. J. Cancer 45, 228247 (2009).
21. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cyber. 3, 610621 (1973).
22. R. W. Conners and C. A. Harlow, “A theoretical comparison of texture algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 204222 (1980).
23. R. W. Conners, M. M. Trivedi, and C. A. Harlow, “Segmentation of a high-resolution urban scene using texture operators,” Comput. Vision Graph. Image Process. 25, 273310 (1984).
24. R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67, 786804 (1979).
25. T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing Api: A technical report on ITK–the Insight Toolkit,” Stud. Health Technol. Inform. 85, 586592 (2002).
26. A. R. Webb and K. D. Copsey, Statistical Pattern Recognition (Hoboken, NJ, 2011).
27. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (Hoboken, NJ, 2001).
28. C. Liu and H. Wechsler, “Robust coding schemes for indexing and retrieval from large face databases,” IEEE Trans. Image Process. 9, 132137 (2000).
29. R. P. W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D. M. J. Tax, and S. Verzakov, PRTools4.1, A Matlab Toolbox for Pattern Recognition, Delft University of Technology, 2007.
30. J. Awad, A. Owrangi, L. Villemaire, E. O’Riordan, G. Parraga, and A. Fenster, “Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models,” Med. Phys. 39, 851865 (2012).
31. N. E. Dunlap, W. Yang, A. McIntosh, K. Sheng, S. H. Benedict, P. W. Read, and J. M. Larner, “Computed tomography-based anatomic assessment overestimates local tumor recurrence in patients with mass-like consolidation after stereotactic body radiotherapy for early-stage non-small cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 84, 10711077 (2012).
32. A. Takeda, E. Kunieda, H. Fujii, N. Yokosuka, Y. Aoki, Y. Oooka, Y. Oku, T. Ohashi, N. Sanuki, T. Mizuno, and Y. Ozawa, “Evaluation for local failure by 18F-FDG PET/CT in comparison with CT findings after stereotactic body radiotherapy (SBRT) for localized non-small-cell lung cancer,” Lung Cancer 79, 248253 (2013).
33. N. Nakajima, Y. Sugawara, M. Kataoka, Y. Hamamoto, T. Ochi, S. Sakai, T. Takahashi, M. Kajihara, N. Teramoto, M. Yamashita, and T. Mochizuki, “Differentiation of tumor recurrence from radiation-induced pulmonary fibrosis after stereotactic ablative radiotherapy for lung cancer: Characterization of 18F-FDG PET/CT findings,” Ann. Nucl. Med. 27, 261270 (2013).
34. M. Essler, J. Wantke, B. Mayer, K. Scheidhauer, R. A. Bundschuh, B. Haller, S. T. Astner, M. Molls, and N. Andratschke, “Positron-emission tomography CT to identify local recurrence in stage I lung cancer patients 1 year after stereotactic body radiation therapy,” Strahlenther. Onkol. 189, 495501 (2013).
35. V. R. Bollineni, J. Widder, J. Pruim, J. A. Langendijk, and E. M. Wiegman, “Residual (1)(8)F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control,” Int. J. Radiat. Oncol., Biol., Phys. 83, e551e555 (2012).
36. M. Vaidya, K. M. Creach, J. Frye, F. Dehdashti, J. D. Bradley, and I. El Naqa, “Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer,” Radiother. Oncol. 102, 239245 (2012).
37. M. W. Epperly, H. Guo, J. E. Gretton, and J. S. Greenberger, “Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis,” Am. J. Respir. Cell Mol. Biol. 29, 213224 (2003).
38. R. J. Lamers, G. J. Kemerink, M. Drent, and J. M. van Engelshoven, “Reproducibility of spirometrically controlled CT lung densitometry in a clinical setting,” Eur. Respir. J. 11, 942945 (1998).
39. R. Yuan, J. R. Mayo, J. C. Hogg, P. D. Pare, A. M. McWilliams, S. Lam, and H. O. Coxson, “The effects of radiation dose and CT manufacturer on measurements of lung densitometry,” Chest 132, 617623 (2007).

Data & Media loading...


Article metrics loading...



Benign computed tomography (CT) changes due to radiation induced lung injury (RILI) are common following stereotactic ablative radiotherapy (SABR) and can be difficult to differentiate from tumor recurrence. The authors measured the ability of CT image texture analysis, compared to more traditional measures of response, to predict eventual cancer recurrence based on CT images acquired within 5 months of treatment.

A total of 24 lesions from 22 patients treated with SABR were selected for this study: 13 with moderate to severe benign RILI, and 11 with recurrence. Three-dimensional (3D) consolidative and ground-glass opacity (GGO) changes were manually delineated on all follow-up CT scans. Two size measures of the consolidation regions (longest axial diameter and 3D volume) and nine appearance features of the GGO were calculated: 2 first-order features [mean density and standard deviation of density (first-order texture)], and 7 second-order texture features [energy, entropy, correlation, inverse difference moment (IDM), inertia, cluster shade, and cluster prominence]. For comparison, the corresponding response evaluation criteria in solid tumors measures were also taken for the consolidation regions. Prediction accuracy was determined using the area under the receiver operating characteristic curve (AUC) and two-fold cross validation (CV).

For this analysis, 46 diagnostic CT scans scheduled for approximately 3 and 6 months post-treatment were binned based on their recorded scan dates into 2–5 month and 5–8 month follow-up time ranges. At 2–5 months post-treatment, first-order texture, energy, and entropy provided AUCs of 0.79–0.81 using a linear classifier. On two-fold CV, first-order texture yielded 73% accuracy versus 76%–77% with the second-order features. The size measures of the consolidative region, longest axial diameter and 3D volume, gave two-fold CV accuracies of 60% and 57%, and AUCs of 0.72 and 0.65, respectively.

Texture measures of the GGO appearance following SABR demonstrated the ability to predict recurrence in individual patients within 5 months of SABR treatment. Appearance changes were also shown to be more accurately predictive of recurrence, as compared to size measures within the same time period. With further validation, these results could form the substrate for a clinically useful computer-aided diagnosis tool which could provide earlier salvage of patients with recurrence.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd