1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/3/10.1118/1.4866380
1.
1. A. Chatziioannou, “Molecular imaging of small animals with dedicated pet tomographs,” Eur. J. Nucl. Med. Mol. Imaging 29(1), 98114 (2002).
http://dx.doi.org/10.1007/s00259-001-0683-3
2.
2. A. Jacobs, H. Li, A. Winkeler, R. Hilker, C. Knoess, A. Rueger, N. Galldiks, B. Schaller, J. Sobesky, and L. Kracht, “PET-based molecular imaging in neuroscience,” Eur. J. Nucl. Med. Mol. Imaging 30(7), 10511065 (2003).
http://dx.doi.org/10.1007/s00259-003-1202-5
3.
3. J. Lewis, S. Achilefu, J. Garbow, R. Laforest, and M. Welch, “Small animal imaging: Current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 21732188 (2002).
http://dx.doi.org/10.1016/S0959-8049(02)00394-5
4.
4. R. Myers, “The biological application of small animal PET imaging,” Nucl. Med. Biol. 28(5), 585593 (2001).
http://dx.doi.org/10.1016/S0969-8051(01)00213-X
5.
5. C. Xu, L. Mu, I. Roes, D. Miranda-Nieves, M. Nahrendorf, J. A. Ankrum, W. Zhao, and J. M. Karp, “Nanoparticle-based monitoring of cell therapy,” Nanotechnology 22(49), 494001 (2011).
http://dx.doi.org/10.1088/0957-4484/22/49/494001
6.
6. G. Loudos, G. C. Kagadis, and D. Psimadas, “Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles,” Eur. J. Radiol. 78(2), 287295 (2011).
http://dx.doi.org/10.1016/j.ejrad.2010.06.025
7.
7. S. R. Meikle, P. Kench, M. Kassiou, and R. B. Banati, “Small animal SPECT and its place in the matrix of molecular imaging technologies,” Phys. Med. Biol. 50(22), R45R61 (2005).
http://dx.doi.org/10.1088/0031-9155/50/22/R01
8.
8. T. Funk, P. Despres, W. C. Barber, K. S. Shah, and B. H. Hasegawa, “A multipinhole small animal SPECT system with submillimeter spatial resolution,” Med. Phys. 33(5), 12591268 (2006).
http://dx.doi.org/10.1118/1.2190332
9.
9. B. Vastenhouw and F. Beekman, “Submillimeter total-body murine imaging with U-SPECT-I,” J. Nucl. Med. 48(3), 487493 (2007).
10.
10. M. Freed, M. A. Kupinski, L. R. Furenlid, D. W. Wilson, and H. H. Barrett, “A prototype instrument for single pinhole small animal adaptive SPECT imaging,” Med. Phys. 35(5), 19121925 (2008).
http://dx.doi.org/10.1118/1.2896072
11.
11. F. van der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and F. J. Beekman, “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging,” J. Nucl. Med. 50(4), 599605 (2009).
http://dx.doi.org/10.2967/jnumed.108.056606
12.
12. T. Frese, N. Rouze, C. Bouman, K. Sauer, and G. Hutchins, “Quantitative comparison of FBP, EM and Bayesian reconstruction algorithms for the IndyPET scanner,” IEEE Trans. Med. Imaging 22(2), 258276 (2003).
http://dx.doi.org/10.1109/TMI.2002.808353
13.
13. K. Thielemans, C. Tsoumpas, S. Mustafovic, T. Beisel, P. Aguiar, N. Dikaios, and M. W. Jacobson, “STIR: Software for tomographic image reconstruction release 2,” Phys. Med. Biol. 57(4), 867883 (2012).
http://dx.doi.org/10.1088/0031-9155/57/4/867
14.
14. B. M. Fuster, C. Falcon, C. Tsoumpas, L. Livieratos, P. Aguiar, A. Cot, D. Ros, and K. Thielemans, “Integration of advanced 3D SPECT modeling into the open-source STIR framework,” Med. Phys. 40(9), 092502 (6pp.) (2013).
http://dx.doi.org/10.1118/1.4816676
15.
15. L. Shepp and Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113121 (1982).
http://dx.doi.org/10.1109/TMI.1982.4307558
16.
16. H. Hudson and R. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13(4), 601609 (1994).
http://dx.doi.org/10.1109/42.363108
17.
17. R. Siddon, “Fast calculation of the exact radiological path length for a three-dimensional CT array,” Med. Phys. 12, 252257 (1985).
http://dx.doi.org/10.1118/1.595715
18.
18. X. Wu, “An efficient anti-aliasing technique,” ACM Comput. Graph. Siggraph Conf. Proc. 25(4), 143152 (1991).
http://dx.doi.org/10.1145/127719.122734
19.
19. C. Schretter, “A fast tube of response ray-tracer,” Med. Phys. 33(12), 47444748 (2006).
http://dx.doi.org/10.1118/1.2369467
20.
20. J. Qi, R. Leahy, A. Chatziioannou, S. Cherry, and F. Farquhar, “High-resolution 3D Bayesian image reconstruction using the microPET small animal scanner,” Phys. Med. Biol. 43(7), 10011013 (1998).
http://dx.doi.org/10.1088/0031-9155/43/4/027
21.
21. Y. Du and E. C. Frey, “Quantitative evaluation of simultaneous reconstruction with model-based crosstalk compensation for 99mTc/123I dual-isotope simultaneous acquisition brain SPECT,” Med. Phys. 36(6), 20212033 (2009).
http://dx.doi.org/10.1118/1.3120411
22.
22. N. Song, Y. Du, B. He, and E. C. Frey, “Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT,” Med. Phys. 38(6), 31933204 (2011).
http://dx.doi.org/10.1118/1.3590382
23.
23. F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960971 (2008).
http://dx.doi.org/10.1109/TMI.2008.924644
24.
24. B. Feng, M. Chen, B. Bai, A. M. Smith, D. W. Austin, R. A. Mintzer, D. Osborne, and J. Gregor, “Modeling of the point spread function by numerical calculations in single-pinhole and multipinhole SPECT reconstruction,” IEEE Trans. Nucl. Sci. 57(1), 173180 (2010).
http://dx.doi.org/10.1109/TNS.2009.2034656
25.
25. D. Lazaro, Z. El Bitar, V. Breton, D. Hill, and I. Buvat, “Fully 3D Monte Carlo reconstruction in SPECT: A feasibility study,” Phys. Med. Biol. 50(16), 37393754 (2005).
http://dx.doi.org/10.1088/0031-9155/50/16/006
26.
26. J. Ouyang, G. El Fakhri, and S. C. Moore, “Fast Monte Carlo based joint iterative reconstruction for simultaneous 99mTc/123I SPECT imaging,” Med. Phys. 34(8), 32633272 (2007).
http://dx.doi.org/10.1118/1.2756601
27.
27. J. Ouyang, X. Zhu, C. M. Trott, and G. El Fakhri, “Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM,” Med. Phys. 36(2), 602611 (2009).
http://dx.doi.org/10.1118/1.3063544
28.
28. M. Elschot, M. G. Lam, M. A. van den Bosch, M. A. Viergever, and H. W. de Jong, “Quantitative Monte Carlo-based 90Y SPECT reconstruction,” J. Nucl. Med. 54(9), 15571563 (2013).
http://dx.doi.org/10.2967/jnumed.112.119131
29.
29. Z. El Bitar, D. Lazaro, C. Coello, V. Breton, D. Hill, and I. Buvat, “Fully 3D Monte Carlo image reconstruction in SPECT using functional regions,” Nucl. Instrum. Methods Phys. Res. A 569(2), 399403 (2006).
http://dx.doi.org/10.1016/j.nima.2006.08.055
30.
30. Z. El Bitar, R. H. Huesman, R. Boutchko, V. Bekaert, D. Brasse, and G. T. Gullberg, “A detector response function design in pinhole SPECT including geometrical calibration,” Phys. Med. Biol. 58(7), 23952411 (2013).
http://dx.doi.org/10.1088/0031-9155/58/7/2395
31.
31. M. Ljungberg and S. E. Strand, “Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: A Monte Carlo study,” J. Nucl. Med. 32, 12781284 (1991).
32.
32. H. Wang, R. J. Jaszczak, and R. E. Coleman, “Monte carlo modeling of penetration effect for iodine-131 pinhole imaging,” IEEE Trans. Nucl. Sci. 43(6), 32723277 (1996).
http://dx.doi.org/10.1109/23.552734
33.
33. M. Gieles, H. W. de Jong, and F. J. Beekman, “Monte Carlo simulations of pinhole imaging accelerated by kernel-based forced detection,” Phys. Med. Biol. 47(11), 18531867 (2002).
http://dx.doi.org/10.1088/0031-9155/47/11/302
34.
34. P. Aguiar, M. Rafecas, C. Falcon, J. Pavia, and D. Ros, “Geometrical and Monte Carlo projectors in 3D PET,” Med. Phys. 37(11), 56915702 (2010).
http://dx.doi.org/10.1118/1.3501884
35.
35. F. Pino, N. Roe, A. Orero, C. Falcon, S. Rojas, J. M. Benlloch, D. Ros, and J. Pavia, “Development of a variable-radius pinhole SPECT system with a portable gamma camera,” Rev. Esp. Med. Nucl. 30(5), 286291 (2011).
http://dx.doi.org/10.1016/j.remn.2011.03.004
36.
36. M. M. Fernandez, J. M. Benlloch, J. Cerda, B. Escat, E. N. Gimenez, N. Gimenez, C. W. Lerche, J. Martinez, N. Pavon, F. Sanchez, and A. Sebastia, “A flat-panel-based mini gamma camera for lymph nodes studies,” Nucl. Instrum. Methods Phys. Res. A 527, 9296 (2004).
http://dx.doi.org/10.1016/j.nima.2004.03.082
37.
37. S. Agostinelli et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A 506, 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
38.
38. Z. El Bitar, V. Breton, D. Hill, and I. Buvat, “Acceleration of fully 3D Monte-Carlo based system matrix computation for image reconstruction in small animal SPECT,” IEEE Trans. Nucl. Sci. 58(1), 121132 (2011).
http://dx.doi.org/10.1109/TNS.2010.2096292
39.
39. R. Accorsi and S. D. Metzler, “Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator,” IEEE Trans. Med. Imaging 23(6), 750763 (2004).
http://dx.doi.org/10.1109/TMI.2004.826951
40.
40. D. Beque, J. Nuyts, G. Bormans, P. Suetens, and P. Dupont, “Characterization of pinhole SPECT acquisition geometry,” IEEE Trans. Med. Imaging 22(5), 599612 (2003).
http://dx.doi.org/10.1109/TMI.2003.812258
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4866380
Loading
/content/aapm/journal/medphys/41/3/10.1118/1.4866380
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/3/10.1118/1.4866380
2014-03-03
2014-12-26

Abstract

To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction.

Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm.

Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the projection noise than MC-SRM.

The authors' findings show that both approaches provide good solutions to the problem of calculating the SRM in pinhole SPECT reconstruction. The AE-SRM was faster to create and handle the projection noise better than MC-SRM. Nevertheless, the AE-SRM required a tedious experimental characterization of the intrinsic detector response. Creation of the MC-SRM required longer computation time and handled the projection noise worse than the AE-SRM.

Nevertheless, the MC-SRM inherently incorporates extensive modeling of the system and therefore experimental characterization was not required.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/3/1.4866380.html;jsessionid=11eu2417hicnj.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/3/10.1118/1.4866380&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/3/10.1118/1.4866380
10.1118/1.4866380
SEARCH_EXPAND_ITEM