1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimizationa)
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/4/10.1118/1.4866886
1.
1. L. Xing, J. G. Li, S. Donaldson, Q. T. Le, and A. L. Boyer, “Optimization of importance factors in inverse planning,” Phys. Med. Biol. 44, 25252536 (1999).
http://dx.doi.org/10.1088/0031-9155/44/10/311
2.
2. L. Xing, J. G. Li, A. Pugachev, Q. T. Le, and A. L. Boyer, “Estimation theory and model parameter selection for therapeutic treatment plan optimization,” Med. Phys. 26, 23482348 (1999).
http://dx.doi.org/10.1118/1.598749
3.
3. K.-H. Küfer, H. W. Hamacher, T. R. Bortfeld, “A multicriteria optimization approach for inverse radiotherapy planning,” Presented at the 13th ICCR, Heidelberg (ICCR, Berlin: Springer, 2000), pp. 2629.
4.
4. C. Cotrutz, M. Lahanas, C. Kappas, and D. Baltas, “A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy,” Phys. Med. Biol. 46, 21612175 (2001).
http://dx.doi.org/10.1088/0031-9155/46/8/309
5.
5. H. W. Hamacher and K. H. Küfer, “Inverse radiation therapy planning: A multiple objective optimization approach,” Discrete Appl. Math. 118, 145161 (2002).
http://dx.doi.org/10.1016/S0166-218X(01)00261-X
6.
6. M. Lahanas, E. Schreibmann, and D. Baltas, “Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms,” Phys. Med. Biol. 48, 28432871 (2003).
http://dx.doi.org/10.1088/0031-9155/48/17/308
7.
7. K.-H. Küfer, A. Scherrer, M. Monz, F. Alonso, H. Trinkaus, T. Bortfeld, and C. Thieke, “Intensity-modulated radiotherapy: A large scale multi-criteria programming problem,” OR Spectrum 25, 223249 (2003).
http://dx.doi.org/10.1007/s00291-003-0125-7
8.
8. D. L. Craft, T. F. Halabi, H. A. Shih, and T. R. Bortfeld, “Approximating convex Pareto surfaces in multiobjective radiotherapy planning,” Med. Phys. 33, 33993399 (2006).
http://dx.doi.org/10.1118/1.2335486
9.
9. C. Thieke, K.-H. Küfer, M. Monz, A. Scherrer, F. Alonso, U. Oelfke, P. E. Huber, J. Debus, and T. Bortfeld, “A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation,” Radiother. Oncol. 85, 292298 (2007).
http://dx.doi.org/10.1016/j.radonc.2007.06.020
10.
10. L. Shao, and M. Ehrgott, “Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning,” Math. Methods Oper. Res. 68, 257276 (2008).
http://dx.doi.org/10.1007/s00186-008-0220-2
11.
11. D. Craft and T. Bortfeld, “How many plans are needed in an IMRT multi-objective plan database?,” Phys. Med. Biol. 53, 27852796 (2008).
http://dx.doi.org/10.1088/0031-9155/53/11/002
12.
12. M. Monz, K. H. Küfer, T. R. Bortfeld, and C. Thieke, “Pareto navigation: Algorithmic foundation of interactive multi-criteria IMRT planning,” Phys. Med. Biol. 53, 985998 (2008).
http://dx.doi.org/10.1088/0031-9155/53/4/011
13.
13. T. S. Hong, D. L. Craft, F. Carlsson, and T. R. Bortfeld, “Multicriteria optimization in intensity-modulated radiation therapy treatment planning for locally advanced cancer of the pancreatic head,” Int. J. Radiat. Oncol., Biol., Phys. 72, 12081214 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2008.07.015
14.
14. D. Craft, and M. Monz, “Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations,” Med. Phys. 37, 736741 (2010).
http://dx.doi.org/10.1118/1.3292636
15.
15. D. L. Craft, T. S. Hong, H. A. Shih, and T. R. Bortfeld, “Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 82, e83e90 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2010.12.007
16.
16. M. Langer, E. K. Lee, J. O. Deasy, R. L. Rardin, and J. A. Deye, “Operations research applied to radiotherapy: An NCI-NSF-sponsored workshop, February 7–9, 2002,” Int. J. Radiat. Oncol., Biol., Phys. 57, 762768 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00720-X
17.
17. K.-W. Jee, D. L. McShan, and B. A. Fraass, “Lexicographic ordering: Intuitive multicriteria optimization for IMRT,” Phys. Med. Biol. 52, 18451861 (2007).
http://dx.doi.org/10.1088/0031-9155/52/7/006
18.
18. J. J. Wilkens, J. R. Alaly, K. Zakarian, W. L. Thorstad, and J. O. Deasy, “IMRT treatment planning based on prioritizing prescription goals,” Phys. Med. Biol. 52, 16751692 (2007).
http://dx.doi.org/10.1088/0031-9155/52/6/009
19.
19. J. O. Deasy, J. R. Alaly, and K. Zakaryan, “Obstacles and advances in intensity-modulated radiation therapy treatment planning,” in Frontiers of Radiation Therapy and Oncology, edited by J. L. Meyer, B. D. Kavanagh, J. A. Purdy, and R. Timmerman (Karger, Basel, 2007), pp. 4258.
20.
20. V. H. Clark, Y. Chen, J. Wilkens, J. R. Alaly, K. Zakaryan, and J. O. Deasy, “IMRT treatment planning for prostate cancer using prioritized prescription optimization and mean-tail-dose functions,” Linear Algebra Appl. 428, 13451364 (2008).
http://dx.doi.org/10.1016/j.laa.2007.07.026
21.
21. T. Long, M. Matuszak, M. Feng, B. A. Fraass, R. K. T. Haken, and H. E. Romeijn, “Sensitivity analysis for lexicographic ordering in radiation therapy treatment planning,” Med. Phys. 39, 34453455 (2012).
http://dx.doi.org/10.1118/1.4720218
22.
22. M. Falkinger, S. Schell, J. Müller, and J. J. Wilkens, “Prioritized optimization in intensity modulated proton therapy,” Z. Med. Phys. 22, 2128 (2012).
http://dx.doi.org/10.1016/j.zemedi.2011.05.004
23.
23. H. E. Romeijn, J. F. Dempsey, and J. G. Li, “A unifying framework for multi-criteria fluence map optimization models,” Phys. Med. Biol. 49, 19912013 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/011
24.
24. D. Craft, T. Halabi, and T. Bortfeld, “Exploration of tradeoffs in intensity-modulated radiotherapy,” Phys. Med. Biol. 50, 58575857 (2005).
http://dx.doi.org/10.1088/0031-9155/50/24/007
25.
25. M. L. Kessler, D. L. McShan, M. A. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Lawrence, and B. A. Fraass, “Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans,” Optim. Eng. 6, 421448 (2005).
http://dx.doi.org/10.1007/s11081-005-2066-2
26.
26. P. Xia, N. Yu, L. Xing, X. Sun, and L. J. Verhey, “Investigation of using a power function as a cost function in inverse planning optimization,” Med. Phys. 32, 920920 (2005).
http://dx.doi.org/10.1118/1.1872552
27.
27. A. L. Hoffmann, D. den Hertog, A. Y. D. Siem, J. H. A. M. Kaanders, and H. Huizenga, “Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects,” Phys. Med. Biol. 53, 63456362 (2008).
http://dx.doi.org/10.1088/0031-9155/53/22/006
28.
28. C. Cotrutz and L. Xing, “Using voxel-dependent importance factors for interactive DVH-based dose optimization,” Phys. Med. Biol. 47, 16591669 (2002).
http://dx.doi.org/10.1088/0031-9155/47/10/304
29.
29. C. Cotrutz and L. Xing, “IMRT dose shaping with regionally variable penalty scheme,” Med. Phys. 30, 544544 (2003).
http://dx.doi.org/10.1118/1.1556610
30.
30. C. Wu, G. H. Olivera, R. Jeraj, H. Keller, and T. R. Mackie, “Treatment plan modification using voxel-based weighting factors/dose prescription,” Phys. Med. Biol. 48, 24792491 (2003).
http://dx.doi.org/10.1088/0031-9155/48/15/315
31.
31. Y. Yang, L. Xing, “Inverse treatment planning with adaptively evolving voxel-dependent penalty scheme,” Med. Phys. 31, 28392839 (2004).
http://dx.doi.org/10.1118/1.1799311
32.
32. S. Breedveld, P. R. M. Storchi, M. Keijzer, A. W. Heemink, and B. J. M. Heijmen, “A novel approach to multi-criteria inverse planning for IMRT,” Phys. Med. Biol. 52, 63396353 (2007).
http://dx.doi.org/10.1088/0031-9155/52/20/016
33.
33. Z. Shou, Y. Yang, C. Cotrutz, D. Levy, and L. Xing, “Quantitation of the a priori dosimetric capabilities of spatial points in inverse planning and its significant implication in defining IMRT solution space,” Phys. Med. Biol. 50, 14691482 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/010
34.
34. M. Zarepisheh, N. Li, L. Cervino, K. Moore, X. Jia, and S. Jiang, “A novel IMRT plan optimization algorithm for physician-driven plan tuning,” Med. Phys. 40, 340 (2013).
http://dx.doi.org/10.1118/1.4815016
35.
35. M. Zarepisheh, T. Long, N. Li, E. Romeijn, X. Jia, and S. Jiang, “A novel prior-knowledge-based optimization algorithm for automatic treatment planning and adaptive radiotherapy re-planning,” Med. Phys. 40, 530 (2013).
http://dx.doi.org/10.1118/1.4815738
36.
36. P. Lougovski, J. LeNoach, L. Zhu, Y. Ma, Y. Censor, and L. Xing, “Toward truly optimal IMRT dose distribution: Inverse planning with voxel-specific penalty,” Technol. Cancer Res. Treat. 9, 629636 (2010).
37.
37. M. Ehrgott, Multicriteria Optimization (Springer, Berlin, 2005).
38.
38. K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic Publishers, Dordrecht, 1999).
39.
39. S. Breedveld, P. R. M. Storchi, M. Keijzer, and B. J. M. Heijmen, “Fast, multiple optimizations of quadratic dose objective functions in IMRT,” Phys. Med. Biol. 51, 35693579 (2006).
http://dx.doi.org/10.1088/0031-9155/51/14/019
40.
40. M. Karimi, N. Li, M. Zarepisheh, L. Cervino, X. Jia, K. Moore, and S. Jiang, “Selecting reference patients for automatic treatment planning using multiple geometrical features,” Med. Phys. 40, 379 (2013).
http://dx.doi.org/10.1118/1.4815180
41.
41. K. G. Murty, Linear Programming (John Wiley & Sons, New York, 1983).
42.
42. M. Zarepisheh, “Transformation of multiobjective optimization problems with natural and lexicographical ordering,” Ph.D. thesis, Amirkabir University of Technology, Tehran, Iran, 2011.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/4/10.1118/1.4866886
Loading
/content/aapm/journal/medphys/41/4/10.1118/1.4866886
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/4/10.1118/1.4866886
2014-03-19
2014-07-24

Abstract

To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters.

In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems.

The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly allowing for the generation of plans with better trade-offs among different clinical objectives.

The authors have developed a mathematical framework for radiotherapy treatment optimization using voxel-based parameters. The authors can improve the plan quality by adjusting voxel-based weighting factors and exploring the unique and large Pareto surface which include all the Pareto surfaces that can be generated by organ-based model using different objective functions.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/4/1.4866886.html;jsessionid=29gf146trbft2.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/4/10.1118/1.4866886&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimizationa)
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/4/10.1118/1.4866886
10.1118/1.4866886
SEARCH_EXPAND_ITEM