1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Interstitial rotating shield brachytherapy for prostate cancer
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/5/10.1118/1.4870441
1.
1. M. J. Zelefsky, S. A. Leibel, P. B. Gaudin, G. J. Kutcher, N. E. Fleshner, E. S. Venkatramen, V. E. Reuter, W. R. Fair, C. C. Ling, and Z. Fuks, “Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 41, 491500 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00091-1
2.
2. P. Kupelian, D. Kuban, H. Thames, L. Levy, E. Horwitz, A. Martinez, J. Michalski, T. Pisansky, H. Sandler, W. Shipley, M. Zelefsky, and A. Zietman, “Improved biochemical relapse-free survival with increased external radiation doses in patients with localized prostate cancer: The combined experience of nine institutions in patients treated in 1994 and 1995,” Int. J. Radiat. Oncol., Biol., Phys. 61, 415419 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.05.018
3.
3. A. A. Martinez, J. Gonzalez, H. Ye, M. Ghilezan, S. Shetty, K. Kernen, G. Gustafson, D. Krauss, F. Vicini, and L. Kestin, “Dose escalation improves cancer-related events at 10 years for intermediate- and high-risk prostate cancer patients treated with hypofractionated high-dose-rate boost and external beam radiotherapy,” Int. J. Radiat. Oncol. 79, 363370 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2009.10.035
4.
4. D. J. Demanes, R. R. Rodriguez, L. Schour, D. Brandt, and G. Altieri, “High-dose-rate intensity-modulated brachytherapy with external beam radiotherapy for prostate cancer: California endocurietherapy's 10-year results,” Int. J. Radiat. Oncol., Biol., Phys. 61, 13061316 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.08.014
5.
5. L. Astrom, D. Pedersen, C. Mercke, S. Holmang, and K. A. Johansson, “Long-term outcome of high dose rate brachytherapy in radiotherapy of localised prostate cancer,” Radiother. Oncol. 74, 157161 (2005).
http://dx.doi.org/10.1016/j.radonc.2004.10.014
6.
6. T. P. Mate, J. E. Gottesman, J. Hatton, M. Gribble, and L. Van Hollebeke, “High dose-rate afterloading 192Iridium prostate brachytherapy: Feasibility report,” Int. J. Radiat. Oncol., Biol., Phys. 41, 525533 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00097-2
7.
7. M. McGee, M. Ghilezan, and A. Martinez, “High-dose-rate brachytherapy for the treatment of low-, intermediate-, and high-risk prostate cancer,” in Treating Prostate Cancer and Related Genitourinary Applications, Robotic Radiosurgery, edited by L. E. Ponsky, D. B. Fuller, R. M. Meier, and C. Ma (Springer-Verlag, Berlin, 2012), Vol. 4, pp. 119132.
8.
8. R. M. Galalae, G. Kovacs, J. Schultze, T. Loch, P. Rzehak, R. Wilhelm, H. Bertermann, B. Buschbeck, P. Kohr, and B. Kimmig, “Long-term outcome after elective irradiation of the pelvic lymphatics and local dose escalation using high-dose-rate brachytherapy for locally advanced prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 52, 8190 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)01758-8
9.
9. M. Dattoli, K. Wallner, L. True, J. Cash, and R. Sorace, “Long-term outcomes after treatment with brachytherapy and supplemental conformal radiation for prostate cancer patients having intermediate and high-risk features,” Cancer 110, 551555 (2007).
http://dx.doi.org/10.1002/cncr.22810
10.
10. B. R. Pieters, E. D. Geijsen, K. Koedooder, L. E. C. M. Blank, E. Rezaie, J. N. B. van der Grient, T. M. de Reijke, and C. C. E. Koning, “Treatment results of PDR brachytherapy combined with external beam radiotherapy in 106 patients with intermediate- to high-risk prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 79, 10371042 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2009.12.044
11.
11. S. Lettmaier, M. Lotter, S. Kreppner, A. Strnad, R. Fietkau, and V. Strnad, “Long term results of a prospective dose escalation phase-II trial: Interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer,” Radiother. Oncol. 104, 181186 (2012).
http://dx.doi.org/10.1016/j.radonc.2012.07.003
12.
12. R. E. Peschel, Z. Chen, K. Roberts, and R. Nath, “Long-term complications with prostate implants: Iodine-125 vs. palladium-103,” Radiat. Oncol. Invest. 7, 278288 (1999).
http://dx.doi.org/10.1002/(SICI)1520-6823(1999)7:5<278::AID-ROI3>3.0.CO;2-3
13.
13. Y. Yoshioka, K. Konishi, I. Sumida, Y. Takahashi, F. Isohashi, T. Ogata, M. Koizumi, H. Yamazaki, N. Nonomura, A. Okuyama, and T. Inoue, “Monotherapeutic high-dose-rate brachytherapy for prostate cancer: Five-year results of an extreme hypofractionation regimen with 54 Gy in nine fractions,” Int. J. Radiat. Oncol., Biol., Phys. 80, 469475 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.02.013
14.
14. P. Hoskin, A. Rojas, G. Lowe, L. Bryant, P. Ostler, R. Hughes, J. Milner, and H. Cladd, “High-dose-rate brachytherapy alone for localized prostate cancer in patients at moderate or high risk of biochemical recurrence,” Int. J. Radiat. Oncol. 82, 13761384 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.04.031
15.
15. S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789799 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00069-3
16.
16. A. L. Potosky, W. W. Davis, R. M. Hoffman, J. L. Stanford, R. A. Stephenson, D. F. Penson, and L. C. Harlan, “Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: The prostate cancer outcomes study,” J. Natl. Cancer Inst. 96, 13581367 (2004).
http://dx.doi.org/10.1093/jnci/djh259
17.
17. A. L. Potosky, J. Legler, P. C. Albertsen, J. L. Stanford, F. D. Gilliland, A. S. Hamilton, J. W. Eley, R. A. Stephenson, and L. C. Harlan, “Health outcomes after prostatectomy or radiotherapy for prostate cancer: Results from the Prostate Cancer Outcomes Study,” J. Natl. Cancer Inst. 92, 15821592 (2000).
http://dx.doi.org/10.1093/jnci/92.19.1582
18.
18. R. C. Chen, J. A. Clark, and J. A. Talcott, “Individualizing quality-of-life outcomes reporting: How localized prostate cancer treatments affect patients with different levels of baseline urinary, bowel, and sexual function,” J. Clin. Oncol. 27, 39163922 (2009).
http://dx.doi.org/10.1200/JCO.2008.18.6486
19.
19. M. G. Sanda, R. L. Dunn, J. Michalski, H. M. Sandler, L. Northouse, L. Hembroff, X. Lin, T. K. Greenfield, M. S. Litwin, C. S. Saigal, A. Mahadevan, E. Klein, A. Kibel, L. L. Pisters, D. Kuban, I. Kaplan, D. Wood, J. Ciezki, N. Shah, and J. T. Wei, “Quality of life and satisfaction with outcome among prostate-cancer survivors,” N. Engl. J. Med. 358, 12501261 (2008).
http://dx.doi.org/10.1056/NEJMoa074311
20.
20. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA-Cancer J. Clin. 60, 277300 (2010).
http://dx.doi.org/10.3322/caac.20073
21.
21. J. T. Wei, R. L. Dunn, M. S. Litwin, H. M. Sandler, and M. G. Sanda, “Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer,” Urology 56, 899905 (2000).
http://dx.doi.org/10.1016/S0090-4295(00)00858-X
22.
22. S. Nag, R. J. Ellis, G. S. Merrick, R. Bahnson, K. Wallner, and R. Stock, “American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 54, 462470 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02937-1
23.
23. N. Mohammed, L. Kestin, M. Ghilezan, D. Krauss, F. Vicini, D. Brabbins, G. Gustafson, H. Ye, and A. Martinez, “Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer,” Int. J. Radiat. Oncol. 82, 204212 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2010.10.009
24.
24. D. R. Zwahlen, N. Andrianopoulos, B. Matheson, G. M. Duchesne, and J. L. Millar, “High-dose-rate brachytherapy in combination with conformal external beam radiotherapy in the treatment of prostate cancer,” Brachytherapy 9, 2735 (2010).
http://dx.doi.org/10.1016/j.brachy.2009.04.007
25.
25. F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Williams, Philadelphia, PA, 2003).
26.
26. M. A. Ebert, “Potential dose-conformity advantages with multi-source intensity-modulated brachytherapy (IMBT),” Australas. Phys. Eng. Sci. Med. 29, 165171 (2006).
http://dx.doi.org/10.1007/BF03178889
27.
27. L. Lin, R. R. Patel, B. R. Thomadsen, and D. L. Henderson, “The use of directional interstitial sources to improve dosimetry in breast brachytherapy,” Med. Phys. 35, 240247 (2008).
http://dx.doi.org/10.1118/1.2815623
28.
28. S. A. Enger, D. R. Fisher, and R. T. Flynn, “Gadolinium-153 as a brachytherapy isotope,” Phys. Med. Biol. 58, 957964 (2013).
http://dx.doi.org/10.1088/0031-9155/58/4/957
29.
29. M. A. Ebert, “Possibilities for intensity-modulated brachytherapy: Technical limitations on the use of non-isotropic sources,” Phys. Med. Biol. 47, 24952509 (2002).
http://dx.doi.org/10.1088/0031-9155/47/14/309
30.
30. T. Akimoto, K. Ito, J. Saitoh, S. E. Noda, K. Harashima, H. Sakurai, Y. Nakayama, T. Yamamoto, K. Suzuki, T. Nakano, and H. Niibe, “Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity,” Int. J. Radiat. Oncol., Biol., Phys. 63, 463471 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.11.041
31.
31. T. Akimoto, H. Katoh, Y. Kitamoto, K. Shirai, M. Shioya, and T. Nakano, “Anatomy-based inverse optimization in high-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: Comparison of incidence of acute genitourinary toxicity between anatomy-based inverse optimization and geometric optimization,” Int. J. Radiat. Oncol., Biol., Phys. 64, 13601366 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.10.005
32.
32. T. Akimoto, H. Katoh, S. E. Noda, K. Ito, T. Yamamoto, B. Kashiwagi, and T. Nakano, “Acute genitourinary toxicity after high dose rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity,” Int. J. Radiat. Oncol., Biol., Phys. 63, 472478 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.015
33.
33. G. C. Morton, D. A. Loblaw, H. Chung, G. Tsang, R. Sankreacha, A. Deabreu, L. Zhang, A. Mamedov, P. Cheung, D. Batchelar, C. Danjoux, and E. Szumacher, “Health-related quality of life after single-fraction high-dose-rate brachytherapy and hypofractionated external beam radiotherapy for prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 80, 12991305 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.04.046
34.
34. H. Ishiyama, M. Kitano, T. Satoh, S. Kotani, M. Uemae, K. Matsumoto, H. Okusa, K. Tabata, S. Baba, and K. Hayakawa, “Genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: An analysis to determine the correlation between dose-volume histogram parameters in HDR brachytherapy and severity of toxicity,” Int. J. Radiat. Oncol. 75, 2328 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.11.006
35.
35. I. C. Hsu, K. Bae, K. Shinohara, J. Pouliot, J. Purdy, G. Ibbott, J. Speight, E. Vigneault, R. Ivker, and H. Sandler, “Phase II trial of combined high-dose-rate brachytherapy and external beam radiotherapy for adenocarcinoma of the prostate: Preliminary results of RTOG 0321,” Int. J. Radiat. Oncol., Biol., Phys 78, 751758 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.08.048
36.
36.See http://mcnp-green.lanl.gov/pdf_files/MCNP5_manual_VOL_I.pdf for MCNP-A general Monte Carlo N-particle transport code, version 5.
37.
37. A. Angelopoulos, P. Baras, L. Sakelliou, P. Karaiskos, and P. Sandilos, “Monte Carlo dosimetry of a new 192Ir high dose rate brachytherapy source,” Med. Phys. 27, 25212527 (2000).
http://dx.doi.org/10.1118/1.1315316
38.
38. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
39.
39. E. C. White, M. R. Kamrava, J. Demarco, S. J. Park, P. C. Wang, O. Kayode, M. L. Steinberg, and D. J. Demanes, “High-dose-rate prostate brachytherapy consistently results in high quality dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 85, 543548 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2012.03.035
40.
40. J. J. Earley, A. M. Abdelbaky, M. J. Cunningham, E. Chadwick, S. E. Langley, and R. W. Laing, “Correlation between prostate brachytherapy-related urethral stricture and peri-apical urethral dosimetry: A matched case-control study,” Radiother. Oncol. 104, 187191 (2012).
http://dx.doi.org/10.1016/j.radonc.2012.06.001
41.
41. R. T. Flynn, D. L. Barbee, T. R. Mackie, and R. Jeraj, “Comparison of intensity modulated x-ray therapy and intensity modulated proton therapy for selective subvolume boosting: A phantom study,” Phys. Med. Biol. 52, 60736091 (2007).
http://dx.doi.org/10.1088/0031-9155/52/20/001
42.
42. S. R. Bowen, R. T. Flynn, S. M. Bentzen, and R. Jeraj, “On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function,” Phys. Med. Biol. 54, 14831501 (2009).
http://dx.doi.org/10.1088/0031-9155/54/6/007
43.
43. R. T. Flynn, S. R. Bowen, S. M. Bentzen, T. Rockwell Mackie, and R. Jeraj, “Intensity-modulated x-ray (IMXT) versus proton (IMPT) therapy for theragnostic hypoxia-based dose painting,” Phys. Med. Biol. 53, 41534167 (2008).
http://dx.doi.org/10.1088/0031-9155/53/15/010
44.
44. D. Granero, J. Perez-Calatayud, E. Casal, F. Ballester, and J. Venselaar, “A dosimetric study on the Ir-192 high dose rate flexisource,” Med. Phys. 33, 45784582 (2006).
http://dx.doi.org/10.1118/1.2388154
45.
45. P. Hoskin and C. Coyle, Radiotherapy in Practice, Brachytherapy, 2nd ed. (Oxford University Press, USA, 2011).
46.
46. D. M. Shepard, G. H. Olivera, P. J. Reckwerdt, and T. R. Mackie, “Iterative approaches to dose optimization in tomotherapy,” Phys. Med. Biol. 45, 6990 (2000).
http://dx.doi.org/10.1088/0031-9155/45/1/306
47.
47. A. M. Johnsen, C. Z. Soderquist, B. K. McNamara, and D. K. Fisher, US Patent Application 20120042748 A1 (23 February 2012).
48.
48. D. J. Demanes, R. R. Rodriguez, and G. A. Altieri, “High dose rate prostate brachytherapy: The California endocurietherapy (CET) method,” Radiother. Oncol. 57, 289296 (2000).
http://dx.doi.org/10.1016/S0167-8140(00)00291-7
49.
49. T. Akimoto, H. Katoh, Y. Kitamoto, T. Tamaki, K. Harada, K. Shirai, and T. Nakano, “Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: Impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding,” Int. J. Radiat. Oncol. 65, 364370 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.12.017
50.
50. T. Yamamoto, K. Ito, M. Miyakubo, H. Takechi, K. Suzuki, T. Akimoto, H. Ishikawa, and T. Nakano, “Nomogram ranking as new objective evaluation method in various treatment strategies for patients with prostate cancer with various clinicopathologic backgrounds,” Urology 72, 892897 (2008).
http://dx.doi.org/10.1016/j.urology.2007.12.088
51.
51. P. J. Prada, I. Jimenez, H. Gonzalez-Suarez, J. Fernandez, C. Cuervo-Arango, and L. Mendez, “High-dose-rate interstitial brachytherapy as monotherapy in one fraction and transperineal hyaluronic acid injection into the perirectal fat for the treatment of favorable stage prostate cancer: Treatment description and preliminary results,” Brachytherapy 11, 105110 (2012).
http://dx.doi.org/10.1016/j.brachy.2011.05.003
52.
52. S. A. Enger, H. Lundkvist, M. D'Amours, and L. Beaulieu, “Exploring 57Co as a new isotope for brachytherapy applications,” Med. Phys. 39, 23422345 (2012).
http://dx.doi.org/10.1118/1.3700171
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/5/10.1118/1.4870441
Loading
/content/aapm/journal/medphys/41/5/10.1118/1.4870441
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/5/10.1118/1.4870441
2014-04-09
2014-12-23

Abstract

To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT).

A wire-mounted 62 GBq153Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 m thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 m thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%.

The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume ( ), I-RSBT reduced urethral below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq 153Gd sources.

For the case considered, the proposed153Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows a urethral dose gradient volume of 0–5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed 153Gd-based I-RSBT technique in reasonable treatment times.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/5/1.4870441.html;jsessionid=goi9lrsqk2cnk.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/5/10.1118/1.4870441&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interstitial rotating shield brachytherapy for prostate cancer
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/5/10.1118/1.4870441
10.1118/1.4870441
SEARCH_EXPAND_ITEM