Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. V. Raman, “A new type of secondary radiation,” Nature (London) 121(3048), 501502 (1928).
2. J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy (Academic Press, Burlington, MA, 2002).
3. S. Barbara, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, NJ, 2004).
4. J. J. Laserna, Modern Techniques in Raman Spectroscopy (Wiley, England, 2006).
5. P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
6. M. E. Keating and H. J. Byrne, “Raman spectroscopy in nanomedicine: Current status and future prospective,” Nanomedicine 8(8), 13351351 (2013).
7. S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman scattering (CARS) resonances originate from double-slit interference of two-photon stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 48254829 (2010).
8. G. M. Cooper, The Cell: A Molecular Approach 2nd ed. (Sinauer Associates, Sunderland, MA, 2000).
9. T. Strachan and A. P. Read, Human Molecular Genetics, 2nd ed. (Wiley-Liss, New York, 1999).
10. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542554 (2004).
11. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probe for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121147 (2003).
12. A. Mahadaven-Jensen and R. Richards-Kortum, “Raman spectroscopy for cancer detection: A review,” in Proceedings of 19th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (IEEE-EMBS) (IEEE, Chicago, IL, 1997), Vol. 6, pp. 27222727.
13. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vibrational Spectrosc. 57, 163176 (2011).
14. M. D. Keller, E. M. Kanter, and A. Mahadevan-Jansen, “Raman spectroscopy for cancer diagnosis,” Spectroscopy 21(11), 3341 (2006).
15. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for the diagnosis of cervical precancers,” Photochem. Photobiol. 68(1), 123132 (1998).
16. A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, and R. J. Rabah, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38, 11991205 (2007).
17. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 10471052 (2003).
18. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1R59 (2000).
19. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. 42, 493541 (2007).
20. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database f Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 11331147 (2007).
21. C. J. Frank and R. L. McCreery, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777783 (1995).
22. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 1237112376 (2005).
23. I. T. Jolliffe, Principal Components Analysis, 2nd ed. (Springer-Verlag, New York, 2002).
24. W. R. Klecka, Discriminant Analysis, Series: Quantitative Applications in the Social Sciences (Sage, Newbury Park, 1980).
25. J. Mazanec, M. Melišek, M. Oravec, and J. Pavlovičová, “Support vector machines, PCA and LDA in face recognition,” J. Electr. Eng. 59(4), 203209 (2008).
26. C. M. Bishop, Neural Networks for Pattern Recognition, 3rd ed. (Oxford University Press, USA, 1995).
27. L. A. Nafie, “Recent advances in linear and nonlinear Raman spectroscopy. Part VI,” J. Raman Spectrosc. 43, 18451863 (2012).
28. C. Mallidis, V. Sanchez, J. Wistuba, F. Wuebbeling, M. Burger, C. Fallinich, and S. Schlatt, “Raman microspectroscopy: shining a new light on reproductive medicine,” Human Reproduction Update 0(0), 112 (2013).
29. C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Ther. 10, 207219 (2013).
30. H. G. Schulze, C. J. Barbosa, L. S. Greek, R. F. B. Turner, C. A. Haynes, K.-F. Klein, and M. W. Blades, “Advances in fiber-optic based UV resonance Raman spectroscopy techniques for anatomical and physiological investigations,” Proc. SPIE 3608, 157166 (1999).
32. P. Crow, N. Stone, C. A. Kendall, J. S. Uff, J. A. M. Barr, and M. Wright, “The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro,” Br. J. Cancer 89(1), 106108 (2003).
33. P. Crow, A. Molckovsky, N. Stone, J. Uff, B. Wilson, and L. M. WongKeeSong, “Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer,” Urology 65(6), 11261130 (2005).
34. S. Devpura, J. S. Thakur, F. H. Sarkar, W. A. Sakr, V. M. Naik, and R. Naik, “Detection of benign epithelia, prostatic Intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vibrational Spectrosc. 53, 227232 (2010).
35. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141157 (2004).
36. A. S. Haka, Z. Volynskaya, J. Gardecki, J. Nazemi, J. Lyons, D. , Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy,” Cancer Res. 66, 33173322 (2006).
37. A. S. Haka, Z. Volynskaya, J. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: Prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
38. A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1(1), 3170 (1996).
39. S. K. Majumder, F. I. Boulos, M. C. Kelley, A. Mahadevan-Jansen, and M. D. Keller, “Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination,” J. Biomed. Opt. 13(5), 054009 (2008).
40. N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564573 (2002).
41. P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int. 93(9), 12321236 (2004).
42. S. Koljenovic, L.-P. Choo-Smith, T. C. B. Schut, J. M. Kros, H. J. van den Berge, and J. G. Puppels, “Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy,” Lab. Invest. 82, 12651277 (2002).
43. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst 130, 10701077 (2005).
44. S. Koljenović, T. C. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77(24), 79587965 (2005).
45. K. Gajjar, L. D. Heppenstall, W. Pang, K. M. Ashton, J. Trevisan, I. I. Patel, V. Llabjani, H. F. Stringfellow, P. L. Martin-Hirsch, T. Dawsonb, and F. L. Martin, “Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis,” Anal. Methods 5, 89102, (2013).
46. S. N. Kalkanis, R. E. Kast, M. L. Rosenblum, T. Mikkelsen, S. M. Yurgelevic, K. M. Nelson, A. Raghunathan, L. M. Poisson, and G. W. Auner, “Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections,” Neurooncol. 116(3), 477485 (2014).
47. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 6469 (2002).
48. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491500 (2012).
50. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40, 461467 (2008).
51.Article appeared in, see
52. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 8390 (2008).
53. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33, 511516 (2002).
54. H. Kim, K. M. Kosuda, R. P. Van Duynea, and P. C. Stair, “Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions,” Chem. Soc. Rev. 39, 48204844 (2010).
55. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572580 (2003).
56. J. Choi, J. Choo, H. Chung, D.-G. Gweon, J. Park, H. J. Kim, S. Park, and C.-H. Oh, “Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy,” Biopolymers 77, 264272 (2005).
57. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581591 (2005).
58. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Rev. Anal. Chem. 1, 883909 (2008).
59. R. Manoharan, Y. Wang, R. R. Dasari, S. S. Singer, R. P. Rava, and M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Laser Life Sci. 6(4), 217227 (1995).
60. N. N. Boustany, R. Manoharan, R. R. Dasari, and M. S. Feld, “Ultraviolet resonance Raman spectroscopy of bulk and microscopic human colon tissue,” Appl. Spectrosc. 54(1), 2430 (2000).
61. M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
62. C. M. Krishna, G. D. Sockalingum, J. Kurien, L. Rao, L. Venteo, M. Pluot, and V. B. Kartha, “Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma,” Appl. Spectrosc. 58(9), 11281135 (2004).
63. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study,” Biopolymers 81, 179193 (2006).
64. E. Vargis, E. M. Kanter, S. K. Majumder, M. D. Keller, R. B. Beaven, G. G. Raod, and A. Mahadevan-Jansen, “Effect of normal variations on disease classification of Raman spectra from cervical tissue,” Analyst 136, 29812987 (2011).
65. C. M. Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41, 136141 (2006).
66. U. Utzinger, A. Mahadevan-Jansen, D. Hinzelman, M. Follen, and R. Richards-Kortum, “Near Infrared Raman Spectroscopy for In Vivo Detection of Cervical Precancers,” Applied Spectroscopy 55(8), 955959 (2001).
67. Y.-K. Min, T. Yamamoto, E. Kohda, T. Ito, and H.-o. Hamaguchi, “1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues,” J. Raman Spectrosc. 36, 7376 (2005).
68. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: Elucidation of biochemical changes in carcinogenesis of oesophagus,”Br. J. Cancer 94, 14601464 (2006).
69. D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx—Preliminary findings,” Lasers Surg. Med. 32, 210214 (2003).
70. D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, D. W., K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: Preliminary findings,” Lasers Surg. Med. 37, 192200 (2005).
71. S. Devpura, J. S. Thakur, S. Sethi, V. M. Naik, and R. Naik, “Diagnosis of head and neck squamous cell carcinoma using Raman spectroscopy: Tongue tissues,” J. Raman Spectrosc. 43, 490496 (2012).
72. S. Devpura, J. S. Thakur, J. M. Poulik, R. Rabah, V. M. Naik, and R. Naik, “Raman spectroscopic investigation of frozen and formalin-fixed paraffin processed tissues of pediatric tumors: Neuroblastoma and ganglioneuroma,” J. Raman Spectrosc. 44(3), 370376 (2013).
73. B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin, and M. Wesson, “Tolerance of normal tissue to therapeutic irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 21(1), 10922 (1991).
74. S. M. Bentzen, L. S. Constine, J. O. Deasy, A. Eisbruch, A. Jackson, L. B. Marks, R. K. T. Haken, and E. D. Yorke, “Quantitative analyses of normal tissue effects in the clinic (QUANTEC): An introduction to the scientific issues,” Int. J. Radiat. Oncol., Biol., Phys. 76(3), S3S9 (2010).
75. P. Okunieff, Y. Chen, D. J. Maguire, and A. K. Huser, “Molecular markers of radiation-related normal tissue toxicity,” Cancer Metastasis Rev. 27(3), 363374 (2008).
76. Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Variability in Raman spectra of single human tumor cells cultured in vitro: Correlation with cell cycle and culture confluency,” Appl. Spectrosc. 64, 871887 (2010).
77. Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy,” Phys. Med. Biol. 56, 68396855 (2011).
78. R. J. Lakshmi, M. Alexander, J. Kurien, K. K. Mahato, and V. B. Kartha, “Osteoradionecrosis (ORN) of the mandible: A laser Raman spectroscopic study,” Appl. Spectrosc. 57(9), 11001116 (2003).
79. M. S. Vidyasagar, K. Maheedhar, B. M. Vadhiraja, D. J. Fernendes, V. B. Kartha, and C. M. Krishna, “Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: A pilot study,” Biopolymers 89, 530537 (2008).
80. R. J. Lakshmi, V. B. Karth, C. M. Krishna, J. G. R. Solomon, G. Ullas, and P. U. Devi, “Tissue Raman spectroscopy for the study of radiation damage: Brain irradiation of mice,” Radiat. Res. 157(2), 175182 (2002).[0175:TRSFTS]2.0.CO;2
81. B. Gong, M. E. Oest, K. A. Mann, T. A. Damron, and M. D. Morris, “Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation,” Bone 57(1), 252258 (2013).
82. H. D. Barth, E. A. Zimmermann, E. Schaible, S. Y. Tang, T. Alliston, and R. O. Ritchie, “Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone,” Biomaterials 32(34), 88928904 (2011).
83. C. N. Tchanque-Fossuo, B. Gong, B. Poushanchi, A. Donneys, D. Sarhaddi, K. K. Gallagher, S. S. Deshpande, S. A. Goldstein, M. D. Morris, and S. R. Buchman, “Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible,” Bone 52(2), 712717 (2013).
84. I. Notingher, “Raman spectroscopy cell-based biosensors,” Sensor 7, 13431358 (2007).
85. N. M. Greenberg, F. DeMayo, M. J. Finegold, D. Medina, W. D. Tilley, J. O. Aspinall, G. R. Cunha, A. A. Donjacour, R. J. Matusik, and J. M. Rosen, “Prostate cancer in a transgenic mouse,” Proc. Natl. Acad. Sci. U.S.A. 92(8), 34393443 (1995).
86. J. R. Gingrich, R. J. Barrios, B. A. Morton, B. F. Boyce, F. J. DeMayo, M. J. Finegold, R. Angelopoulou, J. M. Rosen, and N. M. Greenberg, “Metastatic prostate cancer in a transgenic mouse,” Cancer Res. 56(18), 4096102 (1996).
87. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
88. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13(2), 020506 (2008).
89. P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 719 (2013).
90. M. G. Shim and B. C. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectrosc. 28, 131142 (1997).<131::AID-JRS68>3.0.CO;2-S
91. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619627 (1999).
92. M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: Demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146150 (2000).
93. A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396402 (2003).
94. R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 076017 (2012).
95. M. S. Bergholt, W. Zheng, K. Y. Ho, K. G. Yeoh, and Z. Huang, “Raman Endoscopy for Objective Diagnosis of Early Cancer in the Gastrointestinal System,” J Gastroint. Dig. Syst. S1:008 (2013).
96. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach,” Analyst 135, 31623168 (2010).
97. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, J. B. So, A. Shabbir, and Z. Huang, “In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling,” Technol. Cancer Res. Treat. 10, 103112 (2011).
98. S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17(8), 081418 (2012).
99. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54, 70777087 (2009).
100. C. Kendall, J. Day, J. Hutchings, B. Smith, N. Shepherd, H. Barr, and N. Stone, “Evaluation of Raman probe for oesophageal cancer diagnostics,” Analyst 135, 30383041 (2010).
101. C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288E2297 (2013).
102. E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
103. Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649655 (2003).
104. E. O’Faolaoin, M. Hunter, J. Byrne, P. Kellehan, M. McNamara, H. Byrne, and F. Lyng, “A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy,” Vibrational Spec. 38(1–2), 121127 (2005).
105. W. C. Allsbrook, K. A. Mangold, M. H. Johnson, R. B. Lane, C. G. Lane, and J. I. Epstein, “Interobserver reproducibility of Gleason grading of prostatic carcinoma: General pathologists,” Human Pathol. 32(1), 8188 (2001).
106. F. Dost, K. A. Lê Cao, P. J. Ford, and C. S. Farah, “A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 725733 (2013).
107. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 80(2), 188191 (1995).
108. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, and D. J. Krutchkoff, “The effect of clinical information on the histopathologic diagnosis of oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85(1), 7477 (1998).

Data & Media loading...


Article metrics loading...



Raman spectroscopy is an optical technique capable of identifying chemical constituents of a sample by their unique set of molecular vibrations. Research on the applicability of Raman spectroscopy in the differentiation of cancerous versus normal tissues has been ongoing for many years, and has yielded successful results in the context of prostate, breast, brain, skin, and head and neck cancers as well as pediatric tumors. Recently, much effort has been invested on developing noninvasive “Raman” probes to provide real-time diagnosis of potentially cancerous tumors. In this regard, it is feasible that the Raman technique might one day be used to provide rapid, minimally invasive real-time diagnosis of tumors in patients. Raman spectroscopy is relatively new to the field of radiation therapy. Recent work involving cell lines has shown that the Raman technique is able to identify proteins and other markers affected by radiation therapy. Although this work is preliminary, one could ask whether or not the Raman technique might be used to identify molecular markers that predict radiation response. This paper provides a brief review of Raman spectroscopic investigations in cancer detection, benefits and limitations of this method, advances in instrument development, and also preliminary studies related to the application of this technology in radiation therapy response assessment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd