Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/5/10.1118/1.4870981
1.
1. C. V. Raman, “A new type of secondary radiation,” Nature (London) 121(3048), 501502 (1928).
http://dx.doi.org/10.1038/121501c0
2.
2. J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy (Academic Press, Burlington, MA, 2002).
3.
3. S. Barbara, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, NJ, 2004).
4.
4. J. J. Laserna, Modern Techniques in Raman Spectroscopy (Wiley, England, 2006).
5.
5. P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
http://dx.doi.org/10.1117/1.JBO.18.4.046011
6.
6. M. E. Keating and H. J. Byrne, “Raman spectroscopy in nanomedicine: Current status and future prospective,” Nanomedicine 8(8), 13351351 (2013).
http://dx.doi.org/10.2217/nnm.13.108
7.
7. S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman scattering (CARS) resonances originate from double-slit interference of two-photon stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 48254829 (2010).
http://dx.doi.org/10.1073/pnas.0910120107
8.
8. G. M. Cooper, The Cell: A Molecular Approach 2nd ed. (Sinauer Associates, Sunderland, MA, 2000).
9.
9. T. Strachan and A. P. Read, Human Molecular Genetics, 2nd ed. (Wiley-Liss, New York, 1999).
10.
10. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542554 (2004).
http://dx.doi.org/10.1364/AO.43.000542
11.
11. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probe for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121147 (2003).
http://dx.doi.org/10.1117/1.1528207
12.
12. A. Mahadaven-Jensen and R. Richards-Kortum, “Raman spectroscopy for cancer detection: A review,” in Proceedings of 19th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (IEEE-EMBS) (IEEE, Chicago, IL, 1997), Vol. 6, pp. 27222727.
13.
13. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vibrational Spectrosc. 57, 163176 (2011).
http://dx.doi.org/10.1016/j.vibspec.2011.08.003
14.
14. M. D. Keller, E. M. Kanter, and A. Mahadevan-Jansen, “Raman spectroscopy for cancer diagnosis,” Spectroscopy 21(11), 3341 (2006).
15.
15. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for the diagnosis of cervical precancers,” Photochem. Photobiol. 68(1), 123132 (1998).
http://dx.doi.org/10.1111/j.1751-1097.1998.tb03262.x
16.
16. A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, and R. J. Rabah, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38, 11991205 (2007).
http://dx.doi.org/10.1002/jrs.1753
17.
17. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 10471052 (2003).
http://dx.doi.org/10.1002/ijc.11500
18.
18. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1R59 (2000).
http://dx.doi.org/10.1088/0031-9155/45/2/201
19.
19. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. 42, 493541 (2007).
http://dx.doi.org/10.1080/05704920701551530
20.
20. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database f Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 11331147 (2007).
http://dx.doi.org/10.1002/jrs.1734
21.
21. C. J. Frank and R. L. McCreery, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777783 (1995).
http://dx.doi.org/10.1021/ac00101a001
22.
22. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 1237112376 (2005).
http://dx.doi.org/10.1073/pnas.0501390102
23.
23. I. T. Jolliffe, Principal Components Analysis, 2nd ed. (Springer-Verlag, New York, 2002).
24.
24. W. R. Klecka, Discriminant Analysis, Series: Quantitative Applications in the Social Sciences (Sage, Newbury Park, 1980).
25.
25. J. Mazanec, M. Melišek, M. Oravec, and J. Pavlovičová, “Support vector machines, PCA and LDA in face recognition,” J. Electr. Eng. 59(4), 203209 (2008).
26.
26. C. M. Bishop, Neural Networks for Pattern Recognition, 3rd ed. (Oxford University Press, USA, 1995).
27.
27. L. A. Nafie, “Recent advances in linear and nonlinear Raman spectroscopy. Part VI,” J. Raman Spectrosc. 43, 18451863 (2012).
http://dx.doi.org/10.1002/jrs.4221
28.
28. C. Mallidis, V. Sanchez, J. Wistuba, F. Wuebbeling, M. Burger, C. Fallinich, and S. Schlatt, “Raman microspectroscopy: shining a new light on reproductive medicine,” Human Reproduction Update 0(0), 112 (2013).
http://dx.doi.org/10.1093/humupd/dmt055
29.
29. C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Ther. 10, 207219 (2013).
http://dx.doi.org/10.1016/j.pdpdt.2013.01.008
30.
30. H. G. Schulze, C. J. Barbosa, L. S. Greek, R. F. B. Turner, C. A. Haynes, K.-F. Klein, and M. W. Blades, “Advances in fiber-optic based UV resonance Raman spectroscopy techniques for anatomical and physiological investigations,” Proc. SPIE 3608, 157166 (1999).
http://dx.doi.org/10.1117/12.345397
32.
32. P. Crow, N. Stone, C. A. Kendall, J. S. Uff, J. A. M. Barr, and M. Wright, “The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro,” Br. J. Cancer 89(1), 106108 (2003).
http://dx.doi.org/10.1038/sj.bjc.6601059
33.
33. P. Crow, A. Molckovsky, N. Stone, J. Uff, B. Wilson, and L. M. WongKeeSong, “Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer,” Urology 65(6), 11261130 (2005).
http://dx.doi.org/10.1016/j.urology.2004.12.058
34.
34. S. Devpura, J. S. Thakur, F. H. Sarkar, W. A. Sakr, V. M. Naik, and R. Naik, “Detection of benign epithelia, prostatic Intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vibrational Spectrosc. 53, 227232 (2010).
http://dx.doi.org/10.1016/j.vibspec.2010.03.009
35.
35. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141157 (2004).
http://dx.doi.org/10.1039/b304992b
36.
36. A. S. Haka, Z. Volynskaya, J. Gardecki, J. Nazemi, J. Lyons, D. , Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy,” Cancer Res. 66, 33173322 (2006).
http://dx.doi.org/10.1158/0008-5472.CAN-05-2815
37.
37. A. S. Haka, Z. Volynskaya, J. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: Prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
http://dx.doi.org/10.1117/1.3247154
38.
38. A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1(1), 3170 (1996).
http://dx.doi.org/10.1117/12.227815
39.
39. S. K. Majumder, F. I. Boulos, M. C. Kelley, A. Mahadevan-Jansen, and M. D. Keller, “Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination,” J. Biomed. Opt. 13(5), 054009 (2008).
http://dx.doi.org/10.1117/1.2975962
40.
40. N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564573 (2002).
http://dx.doi.org/10.1002/jrs.882
41.
41. P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int. 93(9), 12321236 (2004).
http://dx.doi.org/10.1111/j.1464-410X.2004.04852.x
42.
42. S. Koljenovic, L.-P. Choo-Smith, T. C. B. Schut, J. M. Kros, H. J. van den Berge, and J. G. Puppels, “Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy,” Lab. Invest. 82, 12651277 (2002).
http://dx.doi.org/10.1097/01.LAB.0000032545.96931.B8
43.
43. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst 130, 10701077 (2005).
http://dx.doi.org/10.1039/b419232j
44.
44. S. Koljenović, T. C. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77(24), 79587965 (2005).
http://dx.doi.org/10.1021/ac0512599
45.
45. K. Gajjar, L. D. Heppenstall, W. Pang, K. M. Ashton, J. Trevisan, I. I. Patel, V. Llabjani, H. F. Stringfellow, P. L. Martin-Hirsch, T. Dawsonb, and F. L. Martin, “Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis,” Anal. Methods 5, 89102, (2013).
http://dx.doi.org/10.1039/c2ay25544h
46.
46. S. N. Kalkanis, R. E. Kast, M. L. Rosenblum, T. Mikkelsen, S. M. Yurgelevic, K. M. Nelson, A. Raghunathan, L. M. Poisson, and G. W. Auner, “Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections,” Neurooncol. 116(3), 477485 (2014).
http://dx.doi.org/10.1007/s11060-013-1326-9
47.
47. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 6469 (2002).
http://dx.doi.org/10.1046/j.1523-1747.2002.01807.x
48.
48. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491500 (2012).
http://dx.doi.org/10.1158/0008-5472.CAN-11-4061
50.
50. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40, 461467 (2008).
http://dx.doi.org/10.1002/lsm.20653
51.
51.Article appeared in medphysweb.org, see http://medicalphysicsweb.org/cws/article/newsfeed/56110.
52.
52. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 8390 (2008).
http://dx.doi.org/10.1038/nbt1377
53.
53. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33, 511516 (2002).
http://dx.doi.org/10.1002/jrs.883
54.
54. H. Kim, K. M. Kosuda, R. P. Van Duynea, and P. C. Stair, “Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions,” Chem. Soc. Rev. 39, 48204844 (2010).
http://dx.doi.org/10.1039/c0cs00044b
55.
55. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572580 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74501-9
56.
56. J. Choi, J. Choo, H. Chung, D.-G. Gweon, J. Park, H. J. Kim, S. Park, and C.-H. Oh, “Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy,” Biopolymers 77, 264272 (2005).
http://dx.doi.org/10.1002/bip.20236
57.
57. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581591 (2005).
http://dx.doi.org/10.1529/biophysj.105.061911
58.
58. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Rev. Anal. Chem. 1, 883909 (2008).
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112754
59.
59. R. Manoharan, Y. Wang, R. R. Dasari, S. S. Singer, R. P. Rava, and M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Laser Life Sci. 6(4), 217227 (1995).
http://dx.doi.org/10.1117/12.197502
60.
60. N. N. Boustany, R. Manoharan, R. R. Dasari, and M. S. Feld, “Ultraviolet resonance Raman spectroscopy of bulk and microscopic human colon tissue,” Appl. Spectrosc. 54(1), 2430 (2000).
http://dx.doi.org/10.1366/0003702001948330
61.
61. M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
http://dx.doi.org/10.1126/scitranslmed.3005954
62.
62. C. M. Krishna, G. D. Sockalingum, J. Kurien, L. Rao, L. Venteo, M. Pluot, and V. B. Kartha, “Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma,” Appl. Spectrosc. 58(9), 11281135 (2004).
http://dx.doi.org/10.1366/0003702041959460
63.
63. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study,” Biopolymers 81, 179193 (2006).
http://dx.doi.org/10.1002/bip.20398
64.
64. E. Vargis, E. M. Kanter, S. K. Majumder, M. D. Keller, R. B. Beaven, G. G. Raod, and A. Mahadevan-Jansen, “Effect of normal variations on disease classification of Raman spectra from cervical tissue,” Analyst 136, 29812987 (2011).
http://dx.doi.org/10.1039/c0an01020k
65.
65. C. M. Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41, 136141 (2006).
http://dx.doi.org/10.1016/j.vibspec.2006.01.011
66.
66. U. Utzinger, A. Mahadevan-Jansen, D. Hinzelman, M. Follen, and R. Richards-Kortum, “Near Infrared Raman Spectroscopy for In Vivo Detection of Cervical Precancers,” Applied Spectroscopy 55(8), 955959 (2001).
http://dx.doi.org/10.1366/0003702011953018
67.
67. Y.-K. Min, T. Yamamoto, E. Kohda, T. Ito, and H.-o. Hamaguchi, “1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues,” J. Raman Spectrosc. 36, 7376 (2005).
http://dx.doi.org/10.1002/jrs.1280
68.
68. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: Elucidation of biochemical changes in carcinogenesis of oesophagus,”Br. J. Cancer 94, 14601464 (2006).
http://dx.doi.org/10.1038/sj.bjc.6603102
69.
69. D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx—Preliminary findings,” Lasers Surg. Med. 32, 210214 (2003).
http://dx.doi.org/10.1002/lsm.10084
70.
70. D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, D. W., K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: Preliminary findings,” Lasers Surg. Med. 37, 192200 (2005).
http://dx.doi.org/10.1002/lsm.20226
71.
71. S. Devpura, J. S. Thakur, S. Sethi, V. M. Naik, and R. Naik, “Diagnosis of head and neck squamous cell carcinoma using Raman spectroscopy: Tongue tissues,” J. Raman Spectrosc. 43, 490496 (2012).
http://dx.doi.org/10.1002/jrs.3070
72.
72. S. Devpura, J. S. Thakur, J. M. Poulik, R. Rabah, V. M. Naik, and R. Naik, “Raman spectroscopic investigation of frozen and formalin-fixed paraffin processed tissues of pediatric tumors: Neuroblastoma and ganglioneuroma,” J. Raman Spectrosc. 44(3), 370376 (2013).
http://dx.doi.org/10.1002/jrs.4223
73.
73. B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin, and M. Wesson, “Tolerance of normal tissue to therapeutic irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 21(1), 10922 (1991).
http://dx.doi.org/10.1016/0360-3016(91)90171-Y
74.
74. S. M. Bentzen, L. S. Constine, J. O. Deasy, A. Eisbruch, A. Jackson, L. B. Marks, R. K. T. Haken, and E. D. Yorke, “Quantitative analyses of normal tissue effects in the clinic (QUANTEC): An introduction to the scientific issues,” Int. J. Radiat. Oncol., Biol., Phys. 76(3), S3S9 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.09.040
75.
75. P. Okunieff, Y. Chen, D. J. Maguire, and A. K. Huser, “Molecular markers of radiation-related normal tissue toxicity,” Cancer Metastasis Rev. 27(3), 363374 (2008).
http://dx.doi.org/10.1007/s10555-008-9138-7
76.
76. Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Variability in Raman spectra of single human tumor cells cultured in vitro: Correlation with cell cycle and culture confluency,” Appl. Spectrosc. 64, 871887 (2010).
http://dx.doi.org/10.1366/000370210792080966
77.
77. Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy,” Phys. Med. Biol. 56, 68396855 (2011).
http://dx.doi.org/10.1088/0031-9155/56/21/006
78.
78. R. J. Lakshmi, M. Alexander, J. Kurien, K. K. Mahato, and V. B. Kartha, “Osteoradionecrosis (ORN) of the mandible: A laser Raman spectroscopic study,” Appl. Spectrosc. 57(9), 11001116 (2003).
http://dx.doi.org/10.1366/00037020360695964
79.
79. M. S. Vidyasagar, K. Maheedhar, B. M. Vadhiraja, D. J. Fernendes, V. B. Kartha, and C. M. Krishna, “Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: A pilot study,” Biopolymers 89, 530537 (2008).
http://dx.doi.org/10.1002/bip.20923
80.
80. R. J. Lakshmi, V. B. Karth, C. M. Krishna, J. G. R. Solomon, G. Ullas, and P. U. Devi, “Tissue Raman spectroscopy for the study of radiation damage: Brain irradiation of mice,” Radiat. Res. 157(2), 175182 (2002).
http://dx.doi.org/10.1667/0033-7587(2002)157[0175:TRSFTS]2.0.CO;2
81.
81. B. Gong, M. E. Oest, K. A. Mann, T. A. Damron, and M. D. Morris, “Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation,” Bone 57(1), 252258 (2013).
http://dx.doi.org/10.1016/j.bone.2013.08.014
82.
82. H. D. Barth, E. A. Zimmermann, E. Schaible, S. Y. Tang, T. Alliston, and R. O. Ritchie, “Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone,” Biomaterials 32(34), 88928904 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.08.013
83.
83. C. N. Tchanque-Fossuo, B. Gong, B. Poushanchi, A. Donneys, D. Sarhaddi, K. K. Gallagher, S. S. Deshpande, S. A. Goldstein, M. D. Morris, and S. R. Buchman, “Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible,” Bone 52(2), 712717 (2013).
http://dx.doi.org/10.1016/j.bone.2012.07.029
84.
84. I. Notingher, “Raman spectroscopy cell-based biosensors,” Sensor 7, 13431358 (2007).
http://dx.doi.org/10.3390/s7081343
85.
85. N. M. Greenberg, F. DeMayo, M. J. Finegold, D. Medina, W. D. Tilley, J. O. Aspinall, G. R. Cunha, A. A. Donjacour, R. J. Matusik, and J. M. Rosen, “Prostate cancer in a transgenic mouse,” Proc. Natl. Acad. Sci. U.S.A. 92(8), 34393443 (1995).
http://dx.doi.org/10.1073/pnas.92.8.3439
86.
86. J. R. Gingrich, R. J. Barrios, B. A. Morton, B. F. Boyce, F. J. DeMayo, M. J. Finegold, R. Angelopoulou, J. M. Rosen, and N. M. Greenberg, “Metastatic prostate cancer in a transgenic mouse,” Cancer Res. 56(18), 4096102 (1996).
87.
87. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
http://dx.doi.org/10.1117/1.3600708
88.
88. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13(2), 020506 (2008).
http://dx.doi.org/10.1117/1.2904940
89.
89. P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 719 (2013).
http://dx.doi.org/10.1002/jbio.201200141
90.
90. M. G. Shim and B. C. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectrosc. 28, 131142 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<131::AID-JRS68>3.0.CO;2-S
91.
91. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619627 (1999).
http://dx.doi.org/10.1366/0003702991947225
92.
92. M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: Demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146150 (2000).
http://dx.doi.org/10.1562/0031-8655(2000)0720146IVNIRS2.0.CO2
93.
93. A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396402 (2003).
http://dx.doi.org/10.1067/mge.2003.105
94.
94. R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 076017 (2012).
http://dx.doi.org/10.1117/1.JBO.17.7.076017
95.
95. M. S. Bergholt, W. Zheng, K. Y. Ho, K. G. Yeoh, and Z. Huang, “Raman Endoscopy for Objective Diagnosis of Early Cancer in the Gastrointestinal System,” J Gastroint. Dig. Syst. S1:008 (2013).
http://dx.doi.org/10.4172/2161-069X.S1-008
96.
96. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. So, and Z. Huang, “Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach,” Analyst 135, 31623168 (2010).
http://dx.doi.org/10.1039/c0an00336k
97.
97. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, J. B. So, A. Shabbir, and Z. Huang, “In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling,” Technol. Cancer Res. Treat. 10, 103112 (2011).
http://dx.doi.org/10.7785/tcrt.2012.500185
98.
98. S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17(8), 081418 (2012).
http://dx.doi.org/10.1117/1.JBO.17.8.081418
99.
99. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54, 70777087 (2009).
http://dx.doi.org/10.1088/0031-9155/54/23/003
100.
100. C. Kendall, J. Day, J. Hutchings, B. Smith, N. Shepherd, H. Barr, and N. Stone, “Evaluation of Raman probe for oesophageal cancer diagnostics,” Analyst 135, 30383041 (2010).
http://dx.doi.org/10.1039/c0an00536c
101.
101. C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288E2297 (2013).
http://dx.doi.org/10.1073/pnas.1211309110
102.
102. E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
http://dx.doi.org/10.1117/1.JBO.18.9.096008
103.
103. Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649655 (2003).
http://dx.doi.org/10.3892/ijo.23.3.649
104.
104. E. O’Faolaoin, M. Hunter, J. Byrne, P. Kellehan, M. McNamara, H. Byrne, and F. Lyng, “A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy,” Vibrational Spec. 38(1–2), 121127 (2005).
http://dx.doi.org/10.1016/j.vibspec.2005.02.013
105.
105. W. C. Allsbrook, K. A. Mangold, M. H. Johnson, R. B. Lane, C. G. Lane, and J. I. Epstein, “Interobserver reproducibility of Gleason grading of prostatic carcinoma: General pathologists,” Human Pathol. 32(1), 8188 (2001).
http://dx.doi.org/10.1053/hupa.2001.21135
106.
106. F. Dost, K. A. Lê Cao, P. J. Ford, and C. S. Farah, “A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 725733 (2013).
http://dx.doi.org/10.1016/j.oooo.2013.08.005
107.
107. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 80(2), 188191 (1995).
http://dx.doi.org/10.1016/S1079-2104(05)80201-X
108.
108. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, and D. J. Krutchkoff, “The effect of clinical information on the histopathologic diagnosis of oral epithelial dysplasia,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85(1), 7477 (1998).
http://dx.doi.org/10.1016/S1079-2104(98)90401-2
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/5/10.1118/1.4870981
Loading
/content/aapm/journal/medphys/41/5/10.1118/1.4870981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/5/10.1118/1.4870981
2014-04-18
2016-09-29

Abstract

Raman spectroscopy is an optical technique capable of identifying chemical constituents of a sample by their unique set of molecular vibrations. Research on the applicability of Raman spectroscopy in the differentiation of cancerous versus normal tissues has been ongoing for many years, and has yielded successful results in the context of prostate, breast, brain, skin, and head and neck cancers as well as pediatric tumors. Recently, much effort has been invested on developing noninvasive “Raman” probes to provide real-time diagnosis of potentially cancerous tumors. In this regard, it is feasible that the Raman technique might one day be used to provide rapid, minimally invasive real-time diagnosis of tumors in patients. Raman spectroscopy is relatively new to the field of radiation therapy. Recent work involving cell lines has shown that the Raman technique is able to identify proteins and other markers affected by radiation therapy. Although this work is preliminary, one could ask whether or not the Raman technique might be used to identify molecular markers that predict radiation response. This paper provides a brief review of Raman spectroscopic investigations in cancer detection, benefits and limitations of this method, advances in instrument development, and also preliminary studies related to the application of this technology in radiation therapy response assessment.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/5/1.4870981.html;jsessionid=z8pJaxV4y5ZJilX1yAn41pXN.x-aip-live-06?itemId=/content/aapm/journal/medphys/41/5/10.1118/1.4870981&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/41/5/10.1118/1.4870981&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/41/5/10.1118/1.4870981'
Right1,Right2,Right3,