Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Reynaert, S. Vandermarck, D. Schaart, W. Vanderzee, C. Vanvlietvroegindeweij, M. Tomsej, J. Jansen, B. Heijmen, M. Coghe, and C. Dewagter, “Monte carlo treatment planning for photon and electron beams,” Radiat. Phys. Chem. 76, 643686 (2007).
2. M. J. Murphy, J. M. Balter, S. Balter, J. A. BenComo, I. J. Das, S. B. Jiang, C.-M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F.-F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34, 40414063 (2007).
3. X. Zhu, S. España, J. Daartz, N. Liebsch, J. Ouyang, H. Paganetti, T. R. Bortfeld, and G. El Fakhri, “Monitoring proton radiation therapy with in-room PET imaging,” Phys. Med. Biol. 56, 40414057 (2011).
4. K. Parodi, T. Bortfeld, and T. Haberer, “Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities,” Int. J. Radiat. Oncol., Biol., Phys. 71, 945956 (2008).
5. C.-H. Min, C. H. Kim, M.-Y. Youn, and J.-W. Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett. 89, 183517 (2006).
6. E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Létang, J. Poizat, C. Ray, and M. Testa, “Monitoring the bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements,” Appl. Phys. Lett. 93, 093506 (2008).
7. P. Henriquet, E. Testa, M. Chevallier, D. Dauvergne, G. Dedes, N. Freud, J. Krimmer, J. M. Létang, C. Ray, M.-H. Richard, and F. Sauli, “Interaction vertex imaging (IVI) for carbon ion therapy monitoring: A feasibility study,” Phys. Med. Biol. 57, 46554669 (2012).
8. M. Ljungberg and S. E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput Methods Programs Biomed 29, 257272 (1989).
9. R. Harrison and S. Vannoy, “Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (1993), pp. 11541158.
10. M. Cañadas, P. Arce, and P. Rato Mendes, “Validation of a small-animal pet simulation using gamos: A GEANT4-based framework,” Phys. Med. Biol. 56, 273288 (2011).
11. LANL, MCNPX 2.6.0 Users's Guide, Technical Report No. LA-CP-07 1473, 2008.
12. G. Battistoni, S. Muraro, P. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso, and J. Ranft, “The FLUKA code: Description and benchmarking,” in Hadronic Shower Simulations Workshop, edited by M. Albrow and R. Raja (AIP Conference, Fermilab, Batavia, IL, 2006), Vol. 896, pp. 3149.
13. A. Ferrari, P. Sala, A. Fasso, and J. Ranft, FLUKA: A Multi-Particle Transport Code, Technical Report No. INFN/TC 05/11, SLAC-R-773, CERN-2005-10, 2005.
14. J. Perl, J. Shin, B. Faddegon, and H. Paganetti, “TOPAS: An innovative proton Monte Carlo platform for research,” Med. Phys. 39, 68186837 (2012).
15. B. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, “History by history statistical estimators in the beam code system,” Med. Phys. 29, 27452752 (2002).
16. I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45, 21632183 (2000).
17. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P.-F. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. V. D. Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J.-M. M. Vieira, D. Visvikis, R. V. D. Walle, E. Wieërs, C. Morel, K. Assie, M. Bardies, D. J. van der Laan, R. Van de Walle, and E. Wieers, “Gate: A simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 45434561 (2004).
18. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881901 (2011).
19. The OpenGate Collaboration,, 2014.
20. The OpenGate Collaboration,, 2014.
21. I. J. Chetty, M. Rosu, M. L. Kessler, B. A. Fraass, R. K. Ten Haken, F.-M. S. Kong, and D. L. McShan, “Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 65, 12491259 (2006).
22. H. Paganetti, “Dose to water versus dose to medium in proton beam therapy,” Phys. Med. Biol. 54, 43994421 (2009).
23. L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, “Gate as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans,” Phys. Med. Biol. 57, 42234244 (2012).
24. Å. C. Tedgren and G. A. Carlsson, “Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy,” Phys. Med. Biol. 58, 25612579 (2013).
25. H. Jiang and H. Paganetti, “Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data,” Med. Phys. 31, 28112818 (2004).
26. H. Jiang, J. Seco, and H. Paganetti, “Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations,” Med. Phys. 34, 14391449 (2007).
27. W. Schneider, T. Bortfeld, and W. Schlegel, “Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions,” Phys. Med. Biol. 45, 459478 (2000).
28. D. Sarrut and L. Guigues, “Region-oriented CT image representation for reducing computing time of Monte Carlo simulations,” Med. Phys. 35, 14521463 (2008).
29. L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J. Badel, and D. Sarrut, “Simulation of a 6 MV Elekta Precise linac photon beam using GATE/GEANT4,” Phys. Med. Biol. 56, 903918 (2011).
30. N. S. Rehfeld, S. Stute, J. Apostolakis, M. Soret, and I. Buvat, “Introducing improved voxel navigation and fictitious interaction tracking in gate for enhanced efficiency,” Phys. Med. Biol. 54, 21632178 (2009).
31. J. J. DeMarco, I. J. Chetty, and T. D. Solberg, “A Monte Carlo tutorial and the application for radiotherapy treatment planning,” Med. Dosim. 27, 4350 (2002).
32. A. Mittone et al., “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synchrotron Radiat. 20, 785792 (2013).
33. G. Poludniowski, P. M. Evans, V. N. Hansen, and S. Webb, “An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT,” Phys. Med. Biol. 54, 38473864 (2009).
34. F. Smekens, N. Freud, J. M. Létang, J.-F. Adam, C. Ferrero, H. Elleaume, A. Bravin, F. Estève, and D. Babot, “Simulation of dose deposition in stereotactic synchrotron radiation therapy: A fast approach combining Monte Carlo and deterministic algorithms,” Phys. Med. Biol. 54, 46714685 (2009).
35. J. Bert, H. Perez-Ponce, Z. E. Bitar, S. Jan, Y. Boursier, D. Vintache, A. Bonissent, C. Morel, D. Brasse, and D. Visvikis, “GEANT4-based Monte Carlo simulations on GPU for medical applications,” Phys. Med. Biol. 58, 55935611 (2013).
36. M. J. Berger, Improved Point Kernels for Electron and Beta-Ray Dosimetry (US Department of Commerce, National Bureau of Standards NBSIR, Washington DC, 1973), pp. 73107.
37. D. J. Simpkin and T. R. Mackie, “EGS4 Monte Carlo determination of the beta dose kernel in water,” Med. Phys. 17, 179186 (1990).
38. M. Bardiès, C. S. Kwok, and G. Sgouros, “Dose point-kernel for radionuclide dosimetry,” in Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine, edited by H. Zaidi and G. Sgouros (Institute of Physics Publishing, London, 2002), Chap. 7.
39. H. Uusijarvi, N. Chouin, P. Bernhardt, L. Ferrer, M. Bardies, and E. Forssell-Aronsson, “Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN,” Cancer Biother. Radiopharm. 24, 461467 (2009).
40. F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. Di Dia, A. Fasso, A. Ferrari, M. Ferrari, G. Paganelli, G. Pedroli, and M. Valente, “Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy,” Med. Phys. 38, 39443954 (2011).
41. J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 15, p. 223.
42. L. Ferrer, N. Chouin, A. Bitar, A. Lisbona, and M. Bardies, “Implementing dosimetry in GATE: dose-point kernel validation with GEANT4 4.8.1,” Cancer Biother. Radiopharm. 22, 125129 (2007).
43. L. Maigne, Y. Perrot, D. R. Schaart, D. Donnarieix, and V. Breton, “Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV,” Phys. Med. Biol. 56, 811827 (2011).
44. D. R. Schaart, J. T. M. Jansen, J. Zoetelief, and P. F. A. de Leege, “A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: Influence of voxel size, substeps and energy indexing algorithm,” Phys. Med. Biol. 47, 14591484 (2002).
45. G. Loudos, I. Tsougos, S. Boukis, N. Karakatsanis, P. Georgoulias, K. Theodorou, K. Nikita, and C. Kappas, “A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels,” Nucl. Med. Commun. 30, 504512 (2009).
46. P. Papadimitroulas, G. Loudos, G. Nikiforidis, and G. Kagadis, “A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes,” Med. Phys. 39, 52385247 (2012).
47. E. Amato, A. Italiano, F. Minutoli, and S. Baldari, “Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. A 708, 1518 (2013).
48. N. Chouin, K. Bernardeau, F. Davodeau, M. Cherel, A. Faivre-Chauvet, M. Bourgeois, C. Apostolidis, A. Morgenstern, A. Lisbona, and M. Bardies, “Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. I. Presentation and validation of a microdosimetric model,” Radiat. Res. 171, 657663 (2009).
49. L. Thijssen, D. R. Schaart, D. de Vries, A. Morgenstern, F. Bruchertseifer, and A. G. Denkova, “Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: A feasibility study,” Radiochim. Acta 100, 473482 (2012).
50. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Gueye, R. Capra, P. Nieminen, and C. Zacharatou, “Comparison of GEANT4 very low energy cross section models with experimental data in water,” Med. Phys. 37, 46924708 (2010).
51. C. Villagrasa, Z. Francis, and S. Incerti, “Physical models implemented in the GEANT4-DNA extension of the GEANT4 toolkit for calculating initial radiation damage at the molecular level,” Radiat. Protect. Dosim. 143, 214218 (2011).
52. R. Loevinger, T. Budinger, and E. Watson, MIRD Primer for Absorbed Dose Calculations. Revised, Technical Report (The Society of Nuclear Medicine, New York, 1991).
53. M. Stabin, “Nuclear medicine dosimetry,” Phys. Med. Biol. 51, R187R202 (2006).
54. M. G. Stabin, M. A. Emmons, W. P. Segars, and M. J. Fernald, “Realistic reference adult and paediatric phantom series for internal and external dosimetry,” Radiat. Protect. Dosim. 149, 5659 (2012).
55. M. A. Keenan, M. G. Stabin, W. P. Segars, and M. J. Fernald, “RADAR realistic animal model series for dose assessment,” J. Nucl. Med. 51, 471476 (2010).
56. R. Taschereau and A. F. Chatziioannou, “Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds,” Med. Phys. 34, 10261036 (2007).
57. W. Segars, B. Tsui, and E. Frey, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149159 (2004).
58. T. Mauxion, J. Barbet, J. Suhard, J.-P. Pouget, M. Poirot, and M. Bardiès, “Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data,” Med. Phys. 40, 052501 (11pp.) (2013).
59. T. Mauxion, J. Barbet, J. Suhard, and M. Bardiès, “Validation of a scaled digital phantom Moby based on 18F S-values calculation with Monte Carlo codes GATE v6.1 and MCNPX v2.7,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
60. T. Mauxion, J. Barbet, J. Suhard, and M. Bardiès, “Reference rodent S-values based on Monte Carlo simulation with GATE (v6.1) for radionuclides of interest in μ-PET imaging,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
61. C. Williams, D. Burckhardt, and J. Engdahl, “Evaluation and validation of GATE-based absorbed dose calculation for 3D patient-specific internal dosimetry,” Med. Phys. 33, 2098 (2006).
62. A. A. Parach, H. Rajabi, and M. A. Askari, “Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code,” Radiat. Environ. Biophys. 50, 441450 (2011).
63. W. S. Snyder, H. L. Fisher, M. R. Ford, and G. G. Warner, “Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom,” J. Nucl. Med. 3, 752 (1969).
64. S. Chiavassa, M. Bardies, F. Guiraud-Vitaux, D. Bruel, J. R. Jourdain, D. Franck, and I. Aubineau-Laniece, “Oedipe: A personalized dosimetric tool associating voxel-based models with mcnpx,” Cancer Biother. Radiopharm. 20, 325332 (2005).
65. M. G. Stabin and H. Yoriyaz, “Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom,” Health Phys. 82, 2144 (2002).
66. H. Yoriyaz, A. dos Santos, M. G. Stabin, and R. Cabezas, “Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code,” Med. Phys. 27, 15551562 (2000).
67. I. Zubal, C. Harrell, and E. Smith, “Computerized three-dimensional segmented human anatomy,” Med. Phys. 21, 298305 (1994).
68. E. Saeedzadeh, S. Sarkar, A. Abbaspour Tehrani-Fard, M. R. Ay, H. R. Khosravi, and G. Loudos, “3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study,” Radiat. Protect. Dosim. 150, 298305 (2012).
69. D. Villoing, B. McParland, J. Suhard, L. Ferrer, and M. Bardiès, “Dosimetric calculation with Monte Carlo simulation of a PET radiotracer: Comparison between the standard and the personalized approach,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
70. J. Seco and F. Verhaegen, “Monte Carlo methods and applications for brachytherapy dosimetry and treatment planning,” Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 9, p. 125.
71. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. Saiful Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
72. L. Beaulieu, A. Carlsson Tedgren, J.-F. Carrier, S. D. Davis, F. Mourtada, M. J. Rivard, R. M. Thomson, F. Verhaegen, T. A. Wareing, and J. F. Williamson, “Report of the task group 186 on model-based dose calculation methods in brachytherapy beyond the tg-43 formalism: Current status and recommendations for clinical implementation,” Med. Phys. 39, 62086236 (2012).
73. J.-F. Carrier and L. Beaulieu, “Impact of interseed attenuation and tissue composition for permanent,” Med. Phys. 33, 595604 (2006).
74. H. Afsharpour, M. D'Amours, B. Coté, J.-F. Carrier, F. Verhaegen, and L. Beaulieu, “A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants,” Med. Phys. 35, 36713681 (2008).
75. R. Nath, H. Amols, C. Coffey, D. Duggan, S. Jani, Z. Li, M. Schell, C. Soares, J. Whiting, P. E. Cole, I. Crocker, and R. Schwartz, “Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60,” Med. Phys. 26, 119152 (1999).
76. S.-T. Chiu-Tsao, D. R. Schaart, C. G. Soares, and R. Nath, “Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149,” Med. Phys. 34, 41264157 (2007).
77. C. O. Thiam, V. Breton, D. Donnarieix, B. Habib, and L. Maigne, “Validation of a dose deposited by low-energy photons using GATE/GEANT4,” Phys. Med. Biol. 53, 30393055 (2008).
78. D. Granero, J. Pérez-Calatayud, F. Ballester, E. Casal, and J. M. De Frutos, “Dosimetric study of the 15 mm ROPES eye plaque,” Med. Phys. 31, 33303336 (2004).
79. J. Pérez-Calatayud, D. Granero, and F. Ballester, “Phantom size in brachytherapy source dosimetric studies,” Med. Phys. 31, 20752081 (2004).
80. J. Pérez-Calatayud, D. Granero, E. Casal, F. Ballester, and V. Puchades, “Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources,” Med. Phys. 32, 2836 (2005).
81. A. S. Meigooni, C. Wright, R. a. Koona, S. B. Awan, D. Granero, J. Perez-Calatayud, and F. Ballester, “TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source,” Med. Phys. 36, 47114712 (2009).
82. S. S. O. Fonseca-Rodrigues, M. C. Martins, M. Begalli, P. P. Q. Filho, and D. D. Souza-Santos, “Calculation of dosimetry parameters for 192Ir and 125I brachytherapy sources using GEANT4,” in Proceeding of the Nuclear Science Symposium Conference Record, 2010.
83. S. S. O. Fonseca-Rodrigues, M. Begalli, P. P. Q. Filho, and D. Souza-Santos, “Monte Carlo simulation of an Ir-192 brachytherapy source spectra, geometry and anysotropy factors using GEANT4 code,” in Proceeding of the Nuclear Science Symposium Conference Record, 2008.
84. D. Granero, J. Pérez-Calatayud, and F. Ballester, “Monte Carlo calculation of the TG-43 dosimetric parameters of a new BEBIG Ir-192 HDR source,” Radiother. Oncol. 76, 7985 (2005).
85. D. Granero, J. Vijande, F. Ballester, and M. J. Rivard, “Dosimetry revisited for the hdr 192Ir brachytherapy source model mHDR-v2,” Med. Phys. 38, 487494 (2011).
86. D. Granero, J. Pérez-Calatayud, E. Casal, F. Ballester, and J. Venselaar, “A dosimetric study on the Ir-192 high dose rate flexisource,” Med. Phys. 33, 45784582 (2006).
87. D. Granero, J. Pérez-Calatayud, J. Gimeno, F. Ballester, E. Casal, V. Crispín, and R. Van Der Laarse, “Design and evaluation of a hdr skin applicator with flattening filter,” Med. Phys. 35, 495503 (2008).
88. J. Pérez-Calatayud, D. Granero, F. Ballester, V. Crispín, and R. Van Der Laarse, “Technique for routine output verification of leipzig applicators with a well chamber,” Med. Phys. 33, 1620 (2006).
89. J. Pérez-Calatayud, D. Granero, F. Ballester, V. Puchades, E. Casal, A. Soriano, and V. Crispín, “A dosimetric study of Leipzig applicators,” Int. J. Radiat. Oncol., Biol., Phys. 62, 579584 (2005).
90. S. Enger, M. D'Amours, and L. Beaulieu, “Modeling a hypothetical 170Tm source for brachytherapy applications,” Med. Phys. 38, 53075310 (2011).
91. S. Enger, H. Lundqvist, M. D'Amours, and L. Beaulieu, “Exploring (57)Co as a new isotope for brachytherapy applications,” Med. Phys. 39, 23422345 (2012).
92. D. Liu, E. Poon, M. Bazalova, B. Reniers, M. Evans, T. Rusch, and F. Verhaegen, “Spectroscopic characterization of a novel electronic brachytherapy system,” Phys. Med. Biol. 53, 6175 (2008).
93. G. Landry, B. Reniers, L. Murrer, L. Lutgens, E. Bloemen-Van Gurp, J.-P. Pignol, B. Keller, L. Beaulieu, and F. Verhaegen, “Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition,” Med. Phys. 37, 51885198 (2010).
94. G. Landry, P. V. Granton, B. Reniers, M. C. Öllers, L. Beaulieu, J. E. Wildberger, and F. Verhaegen, “Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations,” Phys. Med. Biol. 56, 6257 (2011).
95. E. Poon, Y. Le, J. F. Williamson, and F. Verhaegen, “BrachyGUI: An adjunct to an accelerated Monte Carlo photon transport code for patient-specific brachytherapy dose calculations and analysis,” J. Phys.: Conf. Ser. 102, 012018 (2008).
96. H. Afsharpour, G. Landry, M. D'Amours, S. Enger, B. Reniers, E. Poon, J.-F. Carrier, F. Verhaegen, and L. Beaulieu, “Algebra: Algorithm for the heterogeneous dosimetry based on GEANT4 for brachytherapy,” Phys. Med. Biol. 57, 32733280 (2012).
97. J. Torres, M. J. Buades, J. F. Almansa, R. Guerrero, and A. M. Lallena, “Dosimetry characterization of 32P intravascular brachytherapy source wires using Monte Carlo codes PENELOPE and GEANT4,” Med. Phys. 31, 296304 (2004).
98. D. Bouzid, N. Boussion, S. Benhalouche, O. Pradier, A.-S. Lucia, and D. Visvikis, “[simulation Monte Carlo sur GATE V6.1 d'un appareil peropératoire intrabeam pour le cancer du sein],” Cancer Radiothér. 16, 528529 (2012).
99. J. Seco and F. Verhaegen, “Monte Carlo modeling of external photon beams in radiotherapy,” Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 5, p. 63.
100. M. Fragoso, I. Kawrakow, B. A. Faddegon, T. D. Solberg, and I. J. Chetty, “Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data,” Med. Phys. 36, 54515466 (2009).
101. L. Brualla, R. Palanco-Zamora, K.-P. Steuhl, N. Bornfeld, and W. Sauerwein, “Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment,” Strahlenther. Onkol. 187, 492498 (2011).
102. N. Chofor, D. Harder, K. Willborn, A. Rühmann, and B. Poppe, “Low-energy photons in high-energy photon fields–Monte Carlo generated spectra and a new descriptive parameter,” Z. Med. Phys. 21, 183197 (2011).
103. E. Sterpin, Y. Chen, Q. Chen, W. Lu, T. R. Mackie, and S. Vynckier, “Monte Carlo-based simulation of dynamic jaws tomotherapy,” Med. Phys. 38, 52305238 (2011).
104. M. K. Fix, W. Volken, D. Frei, D. Frauchiger, E. J. Born, and P. Manser, “Monte Carlo implementation, validation, and characterization of a 120 leaf MLC,” Med. Phys. 38, 53115320 (2011).
105. J. Belec, N. Ploquin, D. J. La Russa, and B. G. Clark, “Position-probability-sampled Monte Carlo calculation of VMAT, 3DCRT, step-shoot IMRT, and helical tomotherapy dose distributions using BEAMnrc/DOSXYZnrc,” Med. Phys. 38, 948960 (2011).
106. B. Vanderstraeten, N. Reynaert, L. Paelinck, I. Madani, C. De Wagter, W. De Gersem, W. De Neve, and H. Thierens, “Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations,” Med. Phys. 33, 31493158 (2006).
107. L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, “A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4,” Phys. Med. Biol. 56, 52035219 (2011).
108. S. Benhalouche, S. Edel, D. Visvikis, O. Pradier, and N. Boussion, “Gate Monte Carlo simulation of a 6 MV siemens oncor linear accelerator photon beam: Feasibility and preliminary dosimetric study,” Med. Phys. 38, 3655 (2011).
109. L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut, N. Freud, and D. Sarrut, “Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE,” Nucl. Instrum. Meth. Phys. Res. Sect. B 268, 32953305 (2010).
110. H. Paganetti, “Four-dimensional Monte Carlo simulation of time-dependent geometries,” Phys. Med. Biol. 49, N75 (2004).
111. H. Paganetti, H. Jiang, S.-Y. Lee, and H. M. Kooy, “Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility,” Med. Phys. 31, 21072118 (2004).
112. H. Paganetti, H. Jiang, J. A. Adams, G. T. Y. Chen, and E. Rietzel, “Monte carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution,” Int. J. Radiat. Oncol., Biol., Phys. 60, 942950 (2004).
113. G. Cirrone, G. Cuttone, F. Di Rosa, S. Mazzaglia, F. Romano, A. Attili, F. Bourhaleb, G. Russo, P. Kataniemi, A. Heikkinen, and F. Marchetto, “Hadrontherapy: An open source, GEANT4-based application for proton-ion therapy studies,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2009), p. 4186.
114. M. Fippel, “Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning,” Med. Phys. 31, 12351242 (2004).
115. M. Fippel and M. Soukup, “A Monte Carlo dose calculation algorithm for proton therapy,” Med. Phys. 31, 22632273 (2004).
116. M. Soukup, M. Fippel, and M. Alber, “A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations,” Phys. Med. Biol. 50, 50895104 (2005).
117. S. W. Peterson, J. Polf, M. Bues, G. Ciangaru, L. Archambault, S. Beddar, and A. Smith, “Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons,” Phys. Med. Biol. 54, 32173229 (2009).
118. T. Inaniwa, T. Furukawa, Y. Kase, N. Matsufuji, T. Toshito, Y. Matsumoto, Y. Furusawa, and K. Noda, “Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model,” Phys. Med. Biol. 55, 67216737 (2010).
119. Y. Jia, C. Beltran, D. J. Indelicato, S. Flampouri, Z. Li, and T. E. Merchant, “Proton therapy dose distribution comparison between Monte Carlo and a treatment planning system for pediatric patients with ependymoma,” Med. Phys. 39, 47424747 (2012).
120. K. Parodi, W. Enghardt, and T. Haberer, “In-beam pet measurements of beta+ radioactivity induced by proton beams,” Phys. Med. Biol. 47, 2136 (2002).
121. S. Agostinelli, “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth. Phys. Res. Sect. A 506, 250303 (2003).
122. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. Wellisch, D. Williams, D. Wright, and H. Yoshida, “GEANT4 developments and applications,” IEEE Trans. Nucl. Sci. 53, 270278 (2006).
123. S. Jan, T. Frisson, and D. Sarrut, “Gate simulation of 12C hadrontherapy treatment combined with a PET imaging system for dose monitoring: A feasibility study,” IEEE Trans. Nucl. Sci. 60, 423429 (2013).
124. C. Robert, N. Fourrier, D. Sarrut, S. Stute, P. Gueth, L. Grevillot, and I. Buvat, “PET-based dose delivery verification in proton therapy: A GATE based simulation study of five PET system designs in clinical conditions,” Phys. Med. Biol. 58, 68676885 (2013).
125. E. Seravalli, C. Robert, J. Bauer, F. Stichelbaut, C. Kurz, J. Smeets, C. Van Ngoc Ty, D. R. Schaart, I. Buvat, K. Parodi, and F. Verhaegen, “Monte Carlo calculations of positron emitter yields in proton radiotherapy,” Phys. Med. Biol. 57, 16591673 (2012).
126. I. Pshenichnov, I. Mishustin, and W. Greiner, “Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4,” Phys. Med. Biol. 51, 60996112 (2006).
127. S. España, X. Zhu, J. Daartz, G. El Fakhri, T. Bortfeld, and H. Paganetti, “The reliability of proton-nuclear interaction cross-section data to predict proton-induced pet images in proton therapy,” Phys. Med. Biol. 56, 26872698 (2011).
128. L. Lestand, G. Montarou, P. Force, and N. Pauna, “In-beam quality assurance using induced β(+) activity in hadrontherapy: A preliminary physical requirements study using GEANT4,” Phys. Med. Biol. 57, 64976518 (2012).
129. H. Mizuno, T. Tomitani, M. Kanazawa, A. Kitagawa, J. Pawelke, Y. Iseki, E. Urakabe, M. Suda, A. Kawano, R. Iritani, S. Matsushita, T. Inaniwa, T. Nishio, S. Furukawa, K. Ando, Y. K. Nakamura, T. Kanai, and K. Ishii, “Washout measurement of radioisotope implanted by radioactive beams in the rabbit,” Phys. Med. Biol. 48, 22692281 (2003).
130. S. Surti, W. Zou, M. E. Daube-Witherspoon, J. McDonough, and J. S. Karp, “Design study of an in situ PET scanner for use in proton beam therapy,” Phys. Med. Biol. 56, 26672685 (2011).
131. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, and L. Trache, “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
132. P. Gueth, D. Dauvergne, N. Freud, J. M. Létang, C. Ray, E. Testa, and D. Sarrut, “Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy,” Phys. Med. Biol. 58, 45634577 (2013).
133. F. Le Foulher, M. Bajard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriquet, S. Karkar, J. M. Létang, L. Lestand, R. Plescak, C. Ray, D. Schardt, E. Testa, and M. Testa, “Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation,” IEEE Trans. Nucl. Sci. 57, 27682772 (2010).
134. Envision, ENVISION delivrable D3.1, Technical Report, 2012.
135. M. Frandes, A. Zoglauer, V. Maxim, and R. Prost, “A tracking compton-scattering imaging system for hadron therapy monitoring,” IEEE Trans. Nucl. Sci. 57, 144150 (2010).
136. S. W. Peterson, D. Robertson, and J. Polf, “Optimizing a three-stage compton camera for measuring prompt gamma rays emitted during proton radiotherapy,” Phys. Med. Biol. 55, 68416856 (2010).
137. M.-H. Richard, D. Dauvergne, M. Dahoumane, N. Freud, P. Henriquet, J. M. Létang, J. Krimmer, C. Ray, E. Testa, and A. H. Walenta, “Design of a Compton camera for hadrontherapy on-line control using GEANT4,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 2011.
138. V. Bom, L. Joulaeizadeh, and F. Beekman, “Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit,” Phys. Med. Biol. 57, 297308 (2012).
139. P. Cambraia-Lopes, M. Pinto, H. Simões, A. Biegun, P. Dendooven, D. Oxley, K. Parodi, D. Schaart, and P. Crespo, “Optimization of collimator designs for real-time proton range verification by measuring prompt gamma rays,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 2012.
140. A. K. Biegun, E. Seravalli, P. C. Lopes, I. Rinaldi, M. Pinto, D. C. Oxley, P. Dendooven, F. Verhaegen, K. Parodi, P. Crespo, and D. R. Schaart, “Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: A simulation study,” Phys. Med. Biol. 57, 64296444 (2012).
141. M. Moteabbed, S. Espana, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and pet imaging for range verification in proton therapy,” Phys. Med. Biol. 56, 10631082 (2011).
142. C. Robert, G. Dedes, G. Battistoni, T. T. Böhlen, I. Buvat, F. Cerutti, M. P. W. Chin, A. Ferrari, P. Gueth, C. Kurz, L. Lestand, A. Mairani, G. Montarou, R. Nicolini, P. G. Ortega, K. Parodi, Y. Prezado, P. R. Sala, D. Sarrut, and E. Testa, “Distributions of secondary particles in proton and carbon-ion therapy: A comparison between GATE/Geant4 and FLUKA Monte Carlo codes,” Phys. Med. Biol. 58, 28792899 (2013).
143. T. Bohlen, F. Cerutti, M. Dosanjh, A. Ferrari, I. Gudowska, A. Mairani, J. Quesada, and T. Böhlen, “Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy,” Phys. Med. Biol. 55, 58335847 (2010).

Data & Media loading...


Article metrics loading...



In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd