Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/41/6/10.1118/1.4871617
1.
1. N. Reynaert, S. Vandermarck, D. Schaart, W. Vanderzee, C. Vanvlietvroegindeweij, M. Tomsej, J. Jansen, B. Heijmen, M. Coghe, and C. Dewagter, “Monte carlo treatment planning for photon and electron beams,” Radiat. Phys. Chem. 76, 643686 (2007).
http://dx.doi.org/10.1016/j.radphyschem.2006.05.015
2.
2. M. J. Murphy, J. M. Balter, S. Balter, J. A. BenComo, I. J. Das, S. B. Jiang, C.-M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F.-F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34, 40414063 (2007).
http://dx.doi.org/10.1118/1.2775667
3.
3. X. Zhu, S. España, J. Daartz, N. Liebsch, J. Ouyang, H. Paganetti, T. R. Bortfeld, and G. El Fakhri, “Monitoring proton radiation therapy with in-room PET imaging,” Phys. Med. Biol. 56, 40414057 (2011).
http://dx.doi.org/10.1088/0031-9155/56/13/019
4.
4. K. Parodi, T. Bortfeld, and T. Haberer, “Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities,” Int. J. Radiat. Oncol., Biol., Phys. 71, 945956 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2008.02.033
5.
5. C.-H. Min, C. H. Kim, M.-Y. Youn, and J.-W. Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett. 89, 183517 (2006).
http://dx.doi.org/10.1063/1.2378561
6.
6. E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, N. Freud, J. Létang, J. Poizat, C. Ray, and M. Testa, “Monitoring the bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements,” Appl. Phys. Lett. 93, 093506 (2008).
http://dx.doi.org/10.1063/1.2975841
7.
7. P. Henriquet, E. Testa, M. Chevallier, D. Dauvergne, G. Dedes, N. Freud, J. Krimmer, J. M. Létang, C. Ray, M.-H. Richard, and F. Sauli, “Interaction vertex imaging (IVI) for carbon ion therapy monitoring: A feasibility study,” Phys. Med. Biol. 57, 46554669 (2012).
http://dx.doi.org/10.1088/0031-9155/57/14/4655
8.
8. M. Ljungberg and S. E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput Methods Programs Biomed 29, 257272 (1989).
http://dx.doi.org/10.1016/0169-2607(89)90111-9
9.
9. R. Harrison and S. Vannoy, “Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (1993), pp. 11541158.
10.
10. M. Cañadas, P. Arce, and P. Rato Mendes, “Validation of a small-animal pet simulation using gamos: A GEANT4-based framework,” Phys. Med. Biol. 56, 273288 (2011).
http://dx.doi.org/10.1088/0031-9155/56/1/016
11.
11. LANL, MCNPX 2.6.0 Users's Guide, Technical Report No. LA-CP-07 1473, 2008.
12.
12. G. Battistoni, S. Muraro, P. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso, and J. Ranft, “The FLUKA code: Description and benchmarking,” in Hadronic Shower Simulations Workshop, edited by M. Albrow and R. Raja (AIP Conference, Fermilab, Batavia, IL, 2006), Vol. 896, pp. 3149.
http://dx.doi.org/10.1063/1.2720455
13.
13. A. Ferrari, P. Sala, A. Fasso, and J. Ranft, FLUKA: A Multi-Particle Transport Code, Technical Report No. INFN/TC 05/11, SLAC-R-773, CERN-2005-10, 2005.
14.
14. J. Perl, J. Shin, B. Faddegon, and H. Paganetti, “TOPAS: An innovative proton Monte Carlo platform for research,” Med. Phys. 39, 68186837 (2012).
http://dx.doi.org/10.1118/1.4758060
15.
15. B. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, “History by history statistical estimators in the beam code system,” Med. Phys. 29, 27452752 (2002).
http://dx.doi.org/10.1118/1.1517611
16.
16. I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45, 21632183 (2000).
http://dx.doi.org/10.1088/0031-9155/45/8/308
17.
17. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P.-F. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. V. D. Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J.-M. M. Vieira, D. Visvikis, R. V. D. Walle, E. Wieërs, C. Morel, K. Assie, M. Bardies, D. J. van der Laan, R. Van de Walle, and E. Wieers, “Gate: A simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 45434561 (2004).
http://dx.doi.org/10.1088/0031-9155/49/19/007
18.
18. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881901 (2011).
http://dx.doi.org/10.1088/0031-9155/56/4/001
19.
19. The OpenGate Collaboration, http://www.opengatecollaboration.org, 2014.
20.
20. The OpenGate Collaboration, http://git.opengatecollaboration.org/git/opengate-public.git, 2014.
21.
21. I. J. Chetty, M. Rosu, M. L. Kessler, B. A. Fraass, R. K. Ten Haken, F.-M. S. Kong, and D. L. McShan, “Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 65, 12491259 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.03.039
22.
22. H. Paganetti, “Dose to water versus dose to medium in proton beam therapy,” Phys. Med. Biol. 54, 43994421 (2009).
http://dx.doi.org/10.1088/0031-9155/54/14/004
23.
23. L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, “Gate as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans,” Phys. Med. Biol. 57, 42234244 (2012).
http://dx.doi.org/10.1088/0031-9155/57/13/4223
24.
24. Å. C. Tedgren and G. A. Carlsson, “Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy,” Phys. Med. Biol. 58, 25612579 (2013).
http://dx.doi.org/10.1088/0031-9155/58/8/2561
25.
25. H. Jiang and H. Paganetti, “Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data,” Med. Phys. 31, 28112818 (2004).
http://dx.doi.org/10.1118/1.1796952
26.
26. H. Jiang, J. Seco, and H. Paganetti, “Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations,” Med. Phys. 34, 14391449 (2007).
http://dx.doi.org/10.1118/1.2715481
27.
27. W. Schneider, T. Bortfeld, and W. Schlegel, “Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions,” Phys. Med. Biol. 45, 459478 (2000).
http://dx.doi.org/10.1088/0031-9155/45/2/314
28.
28. D. Sarrut and L. Guigues, “Region-oriented CT image representation for reducing computing time of Monte Carlo simulations,” Med. Phys. 35, 14521463 (2008).
http://dx.doi.org/10.1118/1.2884854
29.
29. L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J. Badel, and D. Sarrut, “Simulation of a 6 MV Elekta Precise linac photon beam using GATE/GEANT4,” Phys. Med. Biol. 56, 903918 (2011).
http://dx.doi.org/10.1088/0031-9155/56/4/002
30.
30. N. S. Rehfeld, S. Stute, J. Apostolakis, M. Soret, and I. Buvat, “Introducing improved voxel navigation and fictitious interaction tracking in gate for enhanced efficiency,” Phys. Med. Biol. 54, 21632178 (2009).
http://dx.doi.org/10.1088/0031-9155/54/7/021
31.
31. J. J. DeMarco, I. J. Chetty, and T. D. Solberg, “A Monte Carlo tutorial and the application for radiotherapy treatment planning,” Med. Dosim. 27, 4350 (2002).
http://dx.doi.org/10.1016/S0958-3947(02)00087-0
32.
32. A. Mittone et al., “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synchrotron Radiat. 20, 785792 (2013).
http://dx.doi.org/10.1107/S0909049513017184
33.
33. G. Poludniowski, P. M. Evans, V. N. Hansen, and S. Webb, “An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT,” Phys. Med. Biol. 54, 38473864 (2009).
http://dx.doi.org/10.1088/0031-9155/54/12/016
34.
34. F. Smekens, N. Freud, J. M. Létang, J.-F. Adam, C. Ferrero, H. Elleaume, A. Bravin, F. Estève, and D. Babot, “Simulation of dose deposition in stereotactic synchrotron radiation therapy: A fast approach combining Monte Carlo and deterministic algorithms,” Phys. Med. Biol. 54, 46714685 (2009).
http://dx.doi.org/10.1088/0031-9155/54/15/003
35.
35. J. Bert, H. Perez-Ponce, Z. E. Bitar, S. Jan, Y. Boursier, D. Vintache, A. Bonissent, C. Morel, D. Brasse, and D. Visvikis, “GEANT4-based Monte Carlo simulations on GPU for medical applications,” Phys. Med. Biol. 58, 55935611 (2013).
http://dx.doi.org/10.1088/0031-9155/58/16/5593
36.
36. M. J. Berger, Improved Point Kernels for Electron and Beta-Ray Dosimetry (US Department of Commerce, National Bureau of Standards NBSIR, Washington DC, 1973), pp. 73107.
37.
37. D. J. Simpkin and T. R. Mackie, “EGS4 Monte Carlo determination of the beta dose kernel in water,” Med. Phys. 17, 179186 (1990).
http://dx.doi.org/10.1118/1.596565
38.
38. M. Bardiès, C. S. Kwok, and G. Sgouros, “Dose point-kernel for radionuclide dosimetry,” in Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine, edited by H. Zaidi and G. Sgouros (Institute of Physics Publishing, London, 2002), Chap. 7.
39.
39. H. Uusijarvi, N. Chouin, P. Bernhardt, L. Ferrer, M. Bardies, and E. Forssell-Aronsson, “Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN,” Cancer Biother. Radiopharm. 24, 461467 (2009).
http://dx.doi.org/10.1089/cbr.2008.0573
40.
40. F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. Di Dia, A. Fasso, A. Ferrari, M. Ferrari, G. Paganelli, G. Pedroli, and M. Valente, “Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy,” Med. Phys. 38, 39443954 (2011).
http://dx.doi.org/10.1118/1.3586038
41.
41. J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 15, p. 223.
42.
42. L. Ferrer, N. Chouin, A. Bitar, A. Lisbona, and M. Bardies, “Implementing dosimetry in GATE: dose-point kernel validation with GEANT4 4.8.1,” Cancer Biother. Radiopharm. 22, 125129 (2007).
http://dx.doi.org/10.1089/cbr.2007.304
43.
43. L. Maigne, Y. Perrot, D. R. Schaart, D. Donnarieix, and V. Breton, “Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV,” Phys. Med. Biol. 56, 811827 (2011).
http://dx.doi.org/10.1088/0031-9155/56/3/017
44.
44. D. R. Schaart, J. T. M. Jansen, J. Zoetelief, and P. F. A. de Leege, “A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: Influence of voxel size, substeps and energy indexing algorithm,” Phys. Med. Biol. 47, 14591484 (2002).
http://dx.doi.org/10.1088/0031-9155/47/9/303
45.
45. G. Loudos, I. Tsougos, S. Boukis, N. Karakatsanis, P. Georgoulias, K. Theodorou, K. Nikita, and C. Kappas, “A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels,” Nucl. Med. Commun. 30, 504512 (2009).
http://dx.doi.org/10.1097/MNM.0b013e3283299a11
46.
46. P. Papadimitroulas, G. Loudos, G. Nikiforidis, and G. Kagadis, “A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes,” Med. Phys. 39, 52385247 (2012).
http://dx.doi.org/10.1118/1.4737096
47.
47. E. Amato, A. Italiano, F. Minutoli, and S. Baldari, “Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. A 708, 1518 (2013).
http://dx.doi.org/10.1016/j.nima.2013.01.014
48.
48. N. Chouin, K. Bernardeau, F. Davodeau, M. Cherel, A. Faivre-Chauvet, M. Bourgeois, C. Apostolidis, A. Morgenstern, A. Lisbona, and M. Bardies, “Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. I. Presentation and validation of a microdosimetric model,” Radiat. Res. 171, 657663 (2009).
http://dx.doi.org/10.1667/RR1371.1
49.
49. L. Thijssen, D. R. Schaart, D. de Vries, A. Morgenstern, F. Bruchertseifer, and A. G. Denkova, “Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: A feasibility study,” Radiochim. Acta 100, 473482 (2012).
http://dx.doi.org/10.1524/ract.2012.1935
50.
50. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Gueye, R. Capra, P. Nieminen, and C. Zacharatou, “Comparison of GEANT4 very low energy cross section models with experimental data in water,” Med. Phys. 37, 46924708 (2010).
http://dx.doi.org/10.1118/1.3476457
51.
51. C. Villagrasa, Z. Francis, and S. Incerti, “Physical models implemented in the GEANT4-DNA extension of the GEANT4 toolkit for calculating initial radiation damage at the molecular level,” Radiat. Protect. Dosim. 143, 214218 (2011).
http://dx.doi.org/10.1093/rpd/ncq537
52.
52. R. Loevinger, T. Budinger, and E. Watson, MIRD Primer for Absorbed Dose Calculations. Revised, Technical Report (The Society of Nuclear Medicine, New York, 1991).
53.
53. M. Stabin, “Nuclear medicine dosimetry,” Phys. Med. Biol. 51, R187R202 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/R12
54.
54. M. G. Stabin, M. A. Emmons, W. P. Segars, and M. J. Fernald, “Realistic reference adult and paediatric phantom series for internal and external dosimetry,” Radiat. Protect. Dosim. 149, 5659 (2012).
http://dx.doi.org/10.1093/rpd/ncr383
55.
55. M. A. Keenan, M. G. Stabin, W. P. Segars, and M. J. Fernald, “RADAR realistic animal model series for dose assessment,” J. Nucl. Med. 51, 471476 (2010).
http://dx.doi.org/10.2967/jnumed.109.070532
56.
56. R. Taschereau and A. F. Chatziioannou, “Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds,” Med. Phys. 34, 10261036 (2007).
http://dx.doi.org/10.1118/1.2558115
57.
57. W. Segars, B. Tsui, and E. Frey, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149159 (2004).
http://dx.doi.org/10.1016/j.mibio.2004.03.002
58.
58. T. Mauxion, J. Barbet, J. Suhard, J.-P. Pouget, M. Poirot, and M. Bardiès, “Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data,” Med. Phys. 40, 052501 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4800801
59.
59. T. Mauxion, J. Barbet, J. Suhard, and M. Bardiès, “Validation of a scaled digital phantom Moby based on 18F S-values calculation with Monte Carlo codes GATE v6.1 and MCNPX v2.7,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
60.
60. T. Mauxion, J. Barbet, J. Suhard, and M. Bardiès, “Reference rodent S-values based on Monte Carlo simulation with GATE (v6.1) for radionuclides of interest in μ-PET imaging,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
61.
61. C. Williams, D. Burckhardt, and J. Engdahl, “Evaluation and validation of GATE-based absorbed dose calculation for 3D patient-specific internal dosimetry,” Med. Phys. 33, 2098 (2006).
http://dx.doi.org/10.1118/1.2241137
62.
62. A. A. Parach, H. Rajabi, and M. A. Askari, “Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code,” Radiat. Environ. Biophys. 50, 441450 (2011).
http://dx.doi.org/10.1007/s00411-011-0370-0
63.
63. W. S. Snyder, H. L. Fisher, M. R. Ford, and G. G. Warner, “Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom,” J. Nucl. Med. 3, 752 (1969).
64.
64. S. Chiavassa, M. Bardies, F. Guiraud-Vitaux, D. Bruel, J. R. Jourdain, D. Franck, and I. Aubineau-Laniece, “Oedipe: A personalized dosimetric tool associating voxel-based models with mcnpx,” Cancer Biother. Radiopharm. 20, 325332 (2005).
http://dx.doi.org/10.1089/cbr.2005.20.325
65.
65. M. G. Stabin and H. Yoriyaz, “Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom,” Health Phys. 82, 2144 (2002).
http://dx.doi.org/10.1097/00004032-200201000-00005
66.
66. H. Yoriyaz, A. dos Santos, M. G. Stabin, and R. Cabezas, “Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code,” Med. Phys. 27, 15551562 (2000).
http://dx.doi.org/10.1118/1.599021
67.
67. I. Zubal, C. Harrell, and E. Smith, “Computerized three-dimensional segmented human anatomy,” Med. Phys. 21, 298305 (1994).
http://dx.doi.org/10.1118/1.597290
68.
68. E. Saeedzadeh, S. Sarkar, A. Abbaspour Tehrani-Fard, M. R. Ay, H. R. Khosravi, and G. Loudos, “3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study,” Radiat. Protect. Dosim. 150, 298305 (2012).
http://dx.doi.org/10.1093/rpd/ncr411
69.
69. D. Villoing, B. McParland, J. Suhard, L. Ferrer, and M. Bardiès, “Dosimetric calculation with Monte Carlo simulation of a PET radiotracer: Comparison between the standard and the personalized approach,” in Proceedings of the European Association of Nuclear Medicine Congress, 2012.
70.
70. J. Seco and F. Verhaegen, “Monte Carlo methods and applications for brachytherapy dosimetry and treatment planning,” Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 9, p. 125.
71.
71. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. Saiful Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
72.
72. L. Beaulieu, A. Carlsson Tedgren, J.-F. Carrier, S. D. Davis, F. Mourtada, M. J. Rivard, R. M. Thomson, F. Verhaegen, T. A. Wareing, and J. F. Williamson, “Report of the task group 186 on model-based dose calculation methods in brachytherapy beyond the tg-43 formalism: Current status and recommendations for clinical implementation,” Med. Phys. 39, 62086236 (2012).
http://dx.doi.org/10.1118/1.4747264
73.
73. J.-F. Carrier and L. Beaulieu, “Impact of interseed attenuation and tissue composition for permanent,” Med. Phys. 33, 595604 (2006).
http://dx.doi.org/10.1118/1.2168295
74.
74. H. Afsharpour, M. D'Amours, B. Coté, J.-F. Carrier, F. Verhaegen, and L. Beaulieu, “A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants,” Med. Phys. 35, 36713681 (2008).
http://dx.doi.org/10.1118/1.2955754
75.
75. R. Nath, H. Amols, C. Coffey, D. Duggan, S. Jani, Z. Li, M. Schell, C. Soares, J. Whiting, P. E. Cole, I. Crocker, and R. Schwartz, “Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60,” Med. Phys. 26, 119152 (1999).
http://dx.doi.org/10.1118/1.598496
76.
76. S.-T. Chiu-Tsao, D. R. Schaart, C. G. Soares, and R. Nath, “Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149,” Med. Phys. 34, 41264157 (2007).
http://dx.doi.org/10.1118/1.2767184
77.
77. C. O. Thiam, V. Breton, D. Donnarieix, B. Habib, and L. Maigne, “Validation of a dose deposited by low-energy photons using GATE/GEANT4,” Phys. Med. Biol. 53, 30393055 (2008).
http://dx.doi.org/10.1088/0031-9155/53/11/019
78.
78. D. Granero, J. Pérez-Calatayud, F. Ballester, E. Casal, and J. M. De Frutos, “Dosimetric study of the 15 mm ROPES eye plaque,” Med. Phys. 31, 33303336 (2004).
http://dx.doi.org/10.1118/1.1812605
79.
79. J. Pérez-Calatayud, D. Granero, and F. Ballester, “Phantom size in brachytherapy source dosimetric studies,” Med. Phys. 31, 20752081 (2004).
http://dx.doi.org/10.1118/1.1759826
80.
80. J. Pérez-Calatayud, D. Granero, E. Casal, F. Ballester, and V. Puchades, “Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources,” Med. Phys. 32, 2836 (2005).
http://dx.doi.org/10.1118/1.1834835
81.
81. A. S. Meigooni, C. Wright, R. a. Koona, S. B. Awan, D. Granero, J. Perez-Calatayud, and F. Ballester, “TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source,” Med. Phys. 36, 47114712 (2009).
http://dx.doi.org/10.1118/1.3224462
82.
82. S. S. O. Fonseca-Rodrigues, M. C. Martins, M. Begalli, P. P. Q. Filho, and D. D. Souza-Santos, “Calculation of dosimetry parameters for 192Ir and 125I brachytherapy sources using GEANT4,” in Proceeding of the Nuclear Science Symposium Conference Record, 2010.
http://dx.doi.org/10.1109/NSSMIC.2010.5873956
83.
83. S. S. O. Fonseca-Rodrigues, M. Begalli, P. P. Q. Filho, and D. Souza-Santos, “Monte Carlo simulation of an Ir-192 brachytherapy source spectra, geometry and anysotropy factors using GEANT4 code,” in Proceeding of the Nuclear Science Symposium Conference Record, 2008.
http://dx.doi.org/10.1109/NSSMIC.2008.4774530
84.
84. D. Granero, J. Pérez-Calatayud, and F. Ballester, “Monte Carlo calculation of the TG-43 dosimetric parameters of a new BEBIG Ir-192 HDR source,” Radiother. Oncol. 76, 7985 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.06.016
85.
85. D. Granero, J. Vijande, F. Ballester, and M. J. Rivard, “Dosimetry revisited for the hdr 192Ir brachytherapy source model mHDR-v2,” Med. Phys. 38, 487494 (2011).
http://dx.doi.org/10.1118/1.3531973
86.
86. D. Granero, J. Pérez-Calatayud, E. Casal, F. Ballester, and J. Venselaar, “A dosimetric study on the Ir-192 high dose rate flexisource,” Med. Phys. 33, 45784582 (2006).
http://dx.doi.org/10.1118/1.2388154
87.
87. D. Granero, J. Pérez-Calatayud, J. Gimeno, F. Ballester, E. Casal, V. Crispín, and R. Van Der Laarse, “Design and evaluation of a hdr skin applicator with flattening filter,” Med. Phys. 35, 495503 (2008).
http://dx.doi.org/10.1118/1.2825622
88.
88. J. Pérez-Calatayud, D. Granero, F. Ballester, V. Crispín, and R. Van Der Laarse, “Technique for routine output verification of leipzig applicators with a well chamber,” Med. Phys. 33, 1620 (2006).
http://dx.doi.org/10.1118/1.2138008
89.
89. J. Pérez-Calatayud, D. Granero, F. Ballester, V. Puchades, E. Casal, A. Soriano, and V. Crispín, “A dosimetric study of Leipzig applicators,” Int. J. Radiat. Oncol., Biol., Phys. 62, 579584 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.028
90.
90. S. Enger, M. D'Amours, and L. Beaulieu, “Modeling a hypothetical 170Tm source for brachytherapy applications,” Med. Phys. 38, 53075310 (2011).
http://dx.doi.org/10.1118/1.3626482
91.
91. S. Enger, H. Lundqvist, M. D'Amours, and L. Beaulieu, “Exploring (57)Co as a new isotope for brachytherapy applications,” Med. Phys. 39, 23422345 (2012).
http://dx.doi.org/10.1118/1.3700171
92.
92. D. Liu, E. Poon, M. Bazalova, B. Reniers, M. Evans, T. Rusch, and F. Verhaegen, “Spectroscopic characterization of a novel electronic brachytherapy system,” Phys. Med. Biol. 53, 6175 (2008).
http://dx.doi.org/10.1088/0031-9155/53/1/004
93.
93. G. Landry, B. Reniers, L. Murrer, L. Lutgens, E. Bloemen-Van Gurp, J.-P. Pignol, B. Keller, L. Beaulieu, and F. Verhaegen, “Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition,” Med. Phys. 37, 51885198 (2010).
http://dx.doi.org/10.1118/1.3477161
94.
94. G. Landry, P. V. Granton, B. Reniers, M. C. Öllers, L. Beaulieu, J. E. Wildberger, and F. Verhaegen, “Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations,” Phys. Med. Biol. 56, 6257 (2011).
http://dx.doi.org/10.1088/0031-9155/56/19/007
95.
95. E. Poon, Y. Le, J. F. Williamson, and F. Verhaegen, “BrachyGUI: An adjunct to an accelerated Monte Carlo photon transport code for patient-specific brachytherapy dose calculations and analysis,” J. Phys.: Conf. Ser. 102, 012018 (2008).
http://dx.doi.org/10.1088/1742-6596/102/1/012018
96.
96. H. Afsharpour, G. Landry, M. D'Amours, S. Enger, B. Reniers, E. Poon, J.-F. Carrier, F. Verhaegen, and L. Beaulieu, “Algebra: Algorithm for the heterogeneous dosimetry based on GEANT4 for brachytherapy,” Phys. Med. Biol. 57, 32733280 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/3273
97.
97. J. Torres, M. J. Buades, J. F. Almansa, R. Guerrero, and A. M. Lallena, “Dosimetry characterization of 32P intravascular brachytherapy source wires using Monte Carlo codes PENELOPE and GEANT4,” Med. Phys. 31, 296304 (2004).
http://dx.doi.org/10.1118/1.1637970
98.
98. D. Bouzid, N. Boussion, S. Benhalouche, O. Pradier, A.-S. Lucia, and D. Visvikis, “[simulation Monte Carlo sur GATE V6.1 d'un appareil peropératoire intrabeam pour le cancer du sein],” Cancer Radiothér. 16, 528529 (2012).
http://dx.doi.org/10.1016/j.canrad.2012.07.040
99.
99. J. Seco and F. Verhaegen, “Monte Carlo modeling of external photon beams in radiotherapy,” Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013), Chap. 5, p. 63.
100.
100. M. Fragoso, I. Kawrakow, B. A. Faddegon, T. D. Solberg, and I. J. Chetty, “Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data,” Med. Phys. 36, 54515466 (2009).
http://dx.doi.org/10.1118/1.3253300
101.
101. L. Brualla, R. Palanco-Zamora, K.-P. Steuhl, N. Bornfeld, and W. Sauerwein, “Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment,” Strahlenther. Onkol. 187, 492498 (2011).
http://dx.doi.org/10.1007/s00066-011-2237-3
102.
102. N. Chofor, D. Harder, K. Willborn, A. Rühmann, and B. Poppe, “Low-energy photons in high-energy photon fields–Monte Carlo generated spectra and a new descriptive parameter,” Z. Med. Phys. 21, 183197 (2011).
http://dx.doi.org/10.1016/j.zemedi.2011.02.002
103.
103. E. Sterpin, Y. Chen, Q. Chen, W. Lu, T. R. Mackie, and S. Vynckier, “Monte Carlo-based simulation of dynamic jaws tomotherapy,” Med. Phys. 38, 52305238 (2011).
http://dx.doi.org/10.1118/1.3626486
104.
104. M. K. Fix, W. Volken, D. Frei, D. Frauchiger, E. J. Born, and P. Manser, “Monte Carlo implementation, validation, and characterization of a 120 leaf MLC,” Med. Phys. 38, 53115320 (2011).
http://dx.doi.org/10.1118/1.3626485
105.
105. J. Belec, N. Ploquin, D. J. La Russa, and B. G. Clark, “Position-probability-sampled Monte Carlo calculation of VMAT, 3DCRT, step-shoot IMRT, and helical tomotherapy dose distributions using BEAMnrc/DOSXYZnrc,” Med. Phys. 38, 948960 (2011).
http://dx.doi.org/10.1118/1.3538922
106.
106. B. Vanderstraeten, N. Reynaert, L. Paelinck, I. Madani, C. De Wagter, W. De Gersem, W. De Neve, and H. Thierens, “Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations,” Med. Phys. 33, 31493158 (2006).
http://dx.doi.org/10.1118/1.2241992
107.
107. L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, “A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4,” Phys. Med. Biol. 56, 52035219 (2011).
http://dx.doi.org/10.1088/0031-9155/56/16/008
108.
108. S. Benhalouche, S. Edel, D. Visvikis, O. Pradier, and N. Boussion, “Gate Monte Carlo simulation of a 6 MV siemens oncor linear accelerator photon beam: Feasibility and preliminary dosimetric study,” Med. Phys. 38, 3655 (2011).
http://dx.doi.org/10.1118/1.3612677
109.
109. L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut, N. Freud, and D. Sarrut, “Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE,” Nucl. Instrum. Meth. Phys. Res. Sect. B 268, 32953305 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.07.011
110.
110. H. Paganetti, “Four-dimensional Monte Carlo simulation of time-dependent geometries,” Phys. Med. Biol. 49, N75 (2004).
http://dx.doi.org/10.1088/0031-9155/49/6/N03
111.
111. H. Paganetti, H. Jiang, S.-Y. Lee, and H. M. Kooy, “Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility,” Med. Phys. 31, 21072118 (2004).
http://dx.doi.org/10.1118/1.1762792
112.
112. H. Paganetti, H. Jiang, J. A. Adams, G. T. Y. Chen, and E. Rietzel, “Monte carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution,” Int. J. Radiat. Oncol., Biol., Phys. 60, 942950 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.024
113.
113. G. Cirrone, G. Cuttone, F. Di Rosa, S. Mazzaglia, F. Romano, A. Attili, F. Bourhaleb, G. Russo, P. Kataniemi, A. Heikkinen, and F. Marchetto, “Hadrontherapy: An open source, GEANT4-based application for proton-ion therapy studies,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2009), p. 4186.
http://dx.doi.org/10.1109/NSSMIC.2009.5402279
114.
114. M. Fippel, “Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning,” Med. Phys. 31, 12351242 (2004).
http://dx.doi.org/10.1118/1.1710734
115.
115. M. Fippel and M. Soukup, “A Monte Carlo dose calculation algorithm for proton therapy,” Med. Phys. 31, 22632273 (2004).
http://dx.doi.org/10.1118/1.1769631
116.
116. M. Soukup, M. Fippel, and M. Alber, “A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations,” Phys. Med. Biol. 50, 50895104 (2005).
http://dx.doi.org/10.1088/0031-9155/50/21/010
117.
117. S. W. Peterson, J. Polf, M. Bues, G. Ciangaru, L. Archambault, S. Beddar, and A. Smith, “Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons,” Phys. Med. Biol. 54, 32173229 (2009).
http://dx.doi.org/10.1088/0031-9155/54/10/017
118.
118. T. Inaniwa, T. Furukawa, Y. Kase, N. Matsufuji, T. Toshito, Y. Matsumoto, Y. Furusawa, and K. Noda, “Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model,” Phys. Med. Biol. 55, 67216737 (2010).
http://dx.doi.org/10.1088/0031-9155/55/22/008
119.
119. Y. Jia, C. Beltran, D. J. Indelicato, S. Flampouri, Z. Li, and T. E. Merchant, “Proton therapy dose distribution comparison between Monte Carlo and a treatment planning system for pediatric patients with ependymoma,” Med. Phys. 39, 47424747 (2012).
http://dx.doi.org/10.1118/1.4736413
120.
120. K. Parodi, W. Enghardt, and T. Haberer, “In-beam pet measurements of beta+ radioactivity induced by proton beams,” Phys. Med. Biol. 47, 2136 (2002).
http://dx.doi.org/10.1088/0031-9155/47/1/302
121.
121. S. Agostinelli, “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth. Phys. Res. Sect. A 506, 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
122.
122. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. Wellisch, D. Williams, D. Wright, and H. Yoshida, “GEANT4 developments and applications,” IEEE Trans. Nucl. Sci. 53, 270278 (2006).
http://dx.doi.org/10.1109/TNS.2006.869826
123.
123. S. Jan, T. Frisson, and D. Sarrut, “Gate simulation of 12C hadrontherapy treatment combined with a PET imaging system for dose monitoring: A feasibility study,” IEEE Trans. Nucl. Sci. 60, 423429 (2013).
http://dx.doi.org/10.1109/TNS.2012.2233496
124.
124. C. Robert, N. Fourrier, D. Sarrut, S. Stute, P. Gueth, L. Grevillot, and I. Buvat, “PET-based dose delivery verification in proton therapy: A GATE based simulation study of five PET system designs in clinical conditions,” Phys. Med. Biol. 58, 68676885 (2013).
http://dx.doi.org/10.1088/0031-9155/58/19/6867
125.
125. E. Seravalli, C. Robert, J. Bauer, F. Stichelbaut, C. Kurz, J. Smeets, C. Van Ngoc Ty, D. R. Schaart, I. Buvat, K. Parodi, and F. Verhaegen, “Monte Carlo calculations of positron emitter yields in proton radiotherapy,” Phys. Med. Biol. 57, 16591673 (2012).
http://dx.doi.org/10.1088/0031-9155/57/6/1659
126.
126. I. Pshenichnov, I. Mishustin, and W. Greiner, “Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4,” Phys. Med. Biol. 51, 60996112 (2006).
http://dx.doi.org/10.1088/0031-9155/51/23/011
127.
127. S. España, X. Zhu, J. Daartz, G. El Fakhri, T. Bortfeld, and H. Paganetti, “The reliability of proton-nuclear interaction cross-section data to predict proton-induced pet images in proton therapy,” Phys. Med. Biol. 56, 26872698 (2011).
http://dx.doi.org/10.1088/0031-9155/56/9/003
128.
128. L. Lestand, G. Montarou, P. Force, and N. Pauna, “In-beam quality assurance using induced β(+) activity in hadrontherapy: A preliminary physical requirements study using GEANT4,” Phys. Med. Biol. 57, 64976518 (2012).
http://dx.doi.org/10.1088/0031-9155/57/20/6497
129.
129. H. Mizuno, T. Tomitani, M. Kanazawa, A. Kitagawa, J. Pawelke, Y. Iseki, E. Urakabe, M. Suda, A. Kawano, R. Iritani, S. Matsushita, T. Inaniwa, T. Nishio, S. Furukawa, K. Ando, Y. K. Nakamura, T. Kanai, and K. Ishii, “Washout measurement of radioisotope implanted by radioactive beams in the rabbit,” Phys. Med. Biol. 48, 22692281 (2003).
http://dx.doi.org/10.1088/0031-9155/48/15/302
130.
130. S. Surti, W. Zou, M. E. Daube-Witherspoon, J. McDonough, and J. S. Karp, “Design study of an in situ PET scanner for use in proton beam therapy,” Phys. Med. Biol. 56, 26672685 (2011).
http://dx.doi.org/10.1088/0031-9155/56/9/002
131.
131. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, and L. Trache, “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
http://dx.doi.org/10.1088/0031-9155/54/22/N02
132.
132. P. Gueth, D. Dauvergne, N. Freud, J. M. Létang, C. Ray, E. Testa, and D. Sarrut, “Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy,” Phys. Med. Biol. 58, 45634577 (2013).
http://dx.doi.org/10.1088/0031-9155/58/13/4563
133.
133. F. Le Foulher, M. Bajard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriquet, S. Karkar, J. M. Létang, L. Lestand, R. Plescak, C. Ray, D. Schardt, E. Testa, and M. Testa, “Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation,” IEEE Trans. Nucl. Sci. 57, 27682772 (2010).
http://dx.doi.org/10.1109/TNS.2010.2048042
134.
134. Envision, ENVISION delivrable D3.1, Technical Report, 2012.
135.
135. M. Frandes, A. Zoglauer, V. Maxim, and R. Prost, “A tracking compton-scattering imaging system for hadron therapy monitoring,” IEEE Trans. Nucl. Sci. 57, 144150 (2010).
http://dx.doi.org/10.1109/TNS.2009.2031679
136.
136. S. W. Peterson, D. Robertson, and J. Polf, “Optimizing a three-stage compton camera for measuring prompt gamma rays emitted during proton radiotherapy,” Phys. Med. Biol. 55, 68416856 (2010).
http://dx.doi.org/10.1088/0031-9155/55/22/015
137.
137. M.-H. Richard, D. Dauvergne, M. Dahoumane, N. Freud, P. Henriquet, J. M. Létang, J. Krimmer, C. Ray, E. Testa, and A. H. Walenta, “Design of a Compton camera for hadrontherapy on-line control using GEANT4,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 2011.
138.
138. V. Bom, L. Joulaeizadeh, and F. Beekman, “Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit,” Phys. Med. Biol. 57, 297308 (2012).
http://dx.doi.org/10.1088/0031-9155/57/2/297
139.
139. P. Cambraia-Lopes, M. Pinto, H. Simões, A. Biegun, P. Dendooven, D. Oxley, K. Parodi, D. Schaart, and P. Crespo, “Optimization of collimator designs for real-time proton range verification by measuring prompt gamma rays,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 2012.
140.
140. A. K. Biegun, E. Seravalli, P. C. Lopes, I. Rinaldi, M. Pinto, D. C. Oxley, P. Dendooven, F. Verhaegen, K. Parodi, P. Crespo, and D. R. Schaart, “Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: A simulation study,” Phys. Med. Biol. 57, 64296444 (2012).
http://dx.doi.org/10.1088/0031-9155/57/20/6429
141.
141. M. Moteabbed, S. Espana, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and pet imaging for range verification in proton therapy,” Phys. Med. Biol. 56, 10631082 (2011).
http://dx.doi.org/10.1088/0031-9155/56/4/012
142.
142. C. Robert, G. Dedes, G. Battistoni, T. T. Böhlen, I. Buvat, F. Cerutti, M. P. W. Chin, A. Ferrari, P. Gueth, C. Kurz, L. Lestand, A. Mairani, G. Montarou, R. Nicolini, P. G. Ortega, K. Parodi, Y. Prezado, P. R. Sala, D. Sarrut, and E. Testa, “Distributions of secondary particles in proton and carbon-ion therapy: A comparison between GATE/Geant4 and FLUKA Monte Carlo codes,” Phys. Med. Biol. 58, 28792899 (2013).
http://dx.doi.org/10.1088/0031-9155/58/9/2879
143.
143. T. Bohlen, F. Cerutti, M. Dosanjh, A. Ferrari, I. Gudowska, A. Mairani, J. Quesada, and T. Böhlen, “Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy,” Phys. Med. Biol. 55, 58335847 (2010).
http://dx.doi.org/10.1088/0031-9155/55/19/014
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/6/10.1118/1.4871617
Loading
/content/aapm/journal/medphys/41/6/10.1118/1.4871617
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/6/10.1118/1.4871617
2014-05-12
2016-09-29

Abstract

In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/6/1.4871617.html;jsessionid=wEQn7MT-mpt767uhA7UGUvK1.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/6/10.1118/1.4871617&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/41/6/10.1118/1.4871617&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/41/6/10.1118/1.4871617'
Right1,Right2,Right3,