1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/41/6/10.1118/1.4873683
1.
1. J. Van Dyk, The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists (Medical Physics Publishing, Madison, WI, 1999).
2.
2. J. Van Dyk, The Modern Technology of Radiation Oncology, Volume 2: A Compendium for Medical Physicists and Radiation Oncologists (Medical Physics Publishing, Madison, WI, 2005).
3.
3. W. Zeman, H. J. Curtis, and C. P. Baker, “Histopathologic effect of high-energy-particle microbeams on the visual cortex of the mouse brain,” Radiat. Res. 15, 496514 (1961).
http://dx.doi.org/10.2307/3571293
4.
4. D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19, 13951400 (1992).
http://dx.doi.org/10.1118/1.596771
5.
5. J. A. Laissue, N. Lyubimova, H.-P. Wagner, D. W. Archer, D. N. Slatkin, M. Di Michiel, C. Nemoz, M. Renier, E. Brauer, P. O. Spanne, J.-O. Gebbers, K. Dixon, and H. Blattmann, “Microbeam radiation therapy,” Proc. SPIE 3770, 3845 (1999).
http://dx.doi.org/10.1117/12.368185
6.
6. D. N. Slatkin, P. Spanne, F. A. Dilmanian, J. O. Gebbers, and J. A. Laissue, “Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler,” Proc. Natl. Acad. Sci. U.S.A. 92, 87838787 (1995).
http://dx.doi.org/10.1073/pnas.92.19.8783
7.
7. J. A. Laissue, H. Blattmann, M. Di Michiel, D. N. Slatkin, N. Lyubimova, R. Guzman, W. Zimmermann, S. Birrer, T. Bley, P. Kircher, R. Stettler, R. Fatzer, A. Jaggy, H. Smilowitz, E. Brauer, A. Bravin, G. Le Duc, C. Nemoz, M. Renier, W. C. Thomlinson, J. Stepanek, and H.-P. Wagner, “Weanling piglet cerebellum: A surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology,” Proc. SPIE 4508, 6573 (2001).
http://dx.doi.org/10.1117/12.450774
8.
8. F. A. Dilmanian, G. M. Morris, G. Le Duc, X. Huang, B. Ren, T. Bacarian, J. C. Allen, J. Kalef-Ezra, I. Orion, E. M. Rosen, T. Sandhu, P. Sathé, X. Y. Wu, Z. Zhong, and H. L. Shivaprasad, “Response of avian embryonic brain to spatially segmented x-ray microbeams,” Cell. Mol. Biol. 47, 485493 (2001).
9.
9. J. A. Laissue, G. Geiser, P. O. Spanne, F. A. Dilmanian, J.-O. Gebbers, M. Geiser, X.-Y. Wu, M. S. Makar, P. L. Micca, M. M. Nawrocky, D. D. Joel, and D. N. Slatkin, “Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays,” Int. J. Cancer 78, 654660 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0215(19981123)78:5<654::AID-IJC21>3.0.CO;2-L
10.
10. F. A. Dilmanian, T. M. Button, G. Le Duc, N. Zhong, L. A. Pena, J. A. L. Smith, S. R. Martinez, T. Bacarian, J. Tammam, B. Ren, P. M. Farmer, J. Kalef-Ezra, P. L. Micca, M. M. Nawrocky, J. A. Niederer, F. P. Recksiek, A. Fuchs, and E. M. Rosen, “Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy,” Neurooncology 4, 2638 (2002).
11.
11. J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49, 577581 (2007).
http://dx.doi.org/10.1111/j.1469-8749.2007.00577.x
12.
12. Y. Prezado, S. Sarun, S. Gil, P. Deman, A. Bouchet, and G. Le Duc, “Increase of lifespan for glioma-bearing rats by using minibeam radiation therapy,” J. Synchrotron. Radiat. 19, 6065 (2012).
http://dx.doi.org/10.1107/S0909049511047042
13.
13. J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. Williams, and P. A. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol., Biol., Phys. 77, 886894 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2010.01.035
14.
14. A. Bouchet, B. Lemasson, G. Le Duc, C. Maisin, E. Brauer-Krisch, E. A. Siegbahn, L. Renaud, E. Khalil, C. Remy, C. Poillot, A. Bravin, J. A. Laissue, E. L. Barbier, and R. Serduc, “Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks,” Int. J. Radiat. Oncol., Biol., Phys. 78, 15031512 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2010.06.021
15.
15. J. Stepanek, H. Blattmann, J. A. Laissue, N. Lyubimova, M. Di Michiel, and D. N. Slatkin, “Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool,” Med. Phys. 27, 16641675 (2000).
http://dx.doi.org/10.1118/1.599034
16.
16. M. De Felici, R. Felici, M. S. del Rio, C. Ferrero, T. Bacarian, and F. A. Dilmanian, “Dose distribution from x-ray microbeam arrays applied to radiation therapy: An EGS4 Monte Carlo study,” Med. Phys. 32, 24552463 (2005).
http://dx.doi.org/10.1118/1.1951043
17.
17. E. A. Siegbahn, J. Stepanek, E. Bräuer-Krisch, and A. Bravin, “Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations,” Med. Phys. 33, 32483259 (2006).
http://dx.doi.org/10.1118/1.2229422
18.
18. S.-J. Tu, H.-L. Hsieh, T.-C. Chao, and C.-C. Lee, “Feasibility of using the micro CT imaging system as the conformal radiation therapy facility for small animals,” Proc. SPIE 7258, 72585T172585T8 (2009).
http://dx.doi.org/10.1117/12.813598
19.
19. J. Wong, E. Armour, P. Kazanzides, I. Iordachita, E. Tryggestad, H. Deng, M. Matinfar, C. Kennedy, Z. Liu, T. Chan, O. Gray, F. Verhaegen, T. McNutt, E. Ford, and T. L. DeWeese, “High-resolution, small animal radiation research platform with x-ray tomographic guidance capabilities,” Int. J. Radiat., Oncol., Biol., Phys. 71, 15911599 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2008.04.025
20.
20. E. W. Izaguirre, B. L. Kassebaum, J. Birch, I. T. Su, S. M. Goddu, and D. A. Low, “Development of a High Resolution Image Guided Microirradiator,” presented at the Nuclear Science Symposium Conference Record (NSS/MIC), IEEE2009, 2009, Institute of Electrical and Electronics Engineers (IEEE), pp. 26902693.
21.
21. F. Verhaegen, P. Granton, and E. Tryggestad, “Small animal radiotherapy research platforms,” Phys. Med. Biol. 56, R55R83 (2011).
http://dx.doi.org/10.1088/0031-9155/56/12/R01
22.
22. K. Huang, K. Yan, T. Podder, Y. Hu, and Y. Yu, presented at the AAPM Annual Meeting, Anaheim, CA, 2009 (unpublished).
23.
23. O. Z. Zhou and S. X. Chang, “Compact Microbeam Radiation Therapy Systems and Methods for Cancer Treatment and Research,” U.S. patent 8,600,003 B2 (3 December 2013).
24.
24. D. E. Bordelon, J. Zhang, S. Graboski, A. Cox, E. Schreiber, O. Z. Zhou, and S. Chang, “A nanotube based electron microbeam cellular irradiator for radiobiology research,” Rev. Sci. Instrum. 79, 125102 (2008).
http://dx.doi.org/10.1063/1.3043417
25.
25. S. Wang, X. Calderon, R. Peng, E. C. Schreiber, O. Zhou, and S. Chang, “A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application,” Appl. Phys. Lett. 98, 213701 (2011).
http://dx.doi.org/10.1063/1.3595268
26.
26. J. S. Maltz, F. Sprenger, J. Fuerst, A. Paidi, F. Fadler, and A. R. Bani-Hashemi, “Fixed gantry tomosynthesis system for radiation therapy image guidance based on a multiple source x-ray tube with carbon nanotube cathodes,” Med. Phys. 36, 16241636 (2009).
http://dx.doi.org/10.1118/1.3110067
27.
27. X. Qian, A. Tucker, E. Gidcumb, J. Shan, G. Yang, X. Calderon-Colon, S. Sultana, J. Lu, O. Zhou, D. Spronk, F. Sprenger, Y. Zhang, D. Kennedy, T. Farbizio, and Z. Jing, “High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array,” Med. Phys. 39, 20902099 (2012).
http://dx.doi.org/10.1118/1.3694667
28.
28. O. Zhou and X. Calderon-Colon, “Carbon nanotube-based field emission x-ray technology,” in Carbon Nanotube and Related Field Emitters, edited by Y. Saito (John Wiley & Sons, Hoboken, NJ, 2010), pp. 417437.
29.
29. G. Cao, Y. Z. Lee, R. Peng, Z. Liu, R. Rajaram, X. Calderon-Colon, L. An, P. Wang, T. Phan, S. Sultana, D. S. Lalush, J. P. Lu, and O. Zhou, “A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source,” Phys. Med. Biol. 54, 23232340 (2009).
http://dx.doi.org/10.1088/0031-9155/54/8/005
30.
30. Y. Z. Lee, L. M. Burk, K. H. Wang, G. Cao, J. Volmer, J. Lu, and O. Zhou, “Prospective respiratory gated carbon nanotube micro computed tomography,” Acad. Radiol. 18, 588593 (2011).
http://dx.doi.org/10.1016/j.acra.2010.11.022
31.
31. E. C. Schreiber and S. X. Chang, “Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology,” Med. Phys. 39, 46694678 (2012).
http://dx.doi.org/10.1118/1.4728220
32.
32. G. Cao, L. M. Burk, Y. Z. Lee, X. Calderon-Colon, S. Sultana, J. Lu, and O. Zhou, “Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray,” Med. Phys. 37, 53065312 (2010).
http://dx.doi.org/10.1118/1.3491806
33.
33. Z. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. Lu, and O. Zhou, “Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography,” Appl. Phys. Lett. 89, 103111 (2006).
http://dx.doi.org/10.1063/1.2345829
34.
34. S. Sultana, X. Calderón-Colón, G. Cao, O. Zhou, and J. Lu, “Design and characterization of a carbon-nanotube-based micro-focus x-ray tube for small animal imaging,” Proc. SPIE 7622, 76225G176225G9 (2010).
http://dx.doi.org/10.1117/12.844350
35.
35. S. Devic, J. Seuntjens, E. Sham, E. B. Podgorsak, C. R. Schmidtlein, A. S. Kirov, and C. G. Soares, “Precise radiochromic film dosimetry using a flat-bed document scanner,” Med. Phys. 32, 22452253 (2005).
http://dx.doi.org/10.1118/1.1929253
36.
36. L. Burk, “Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research,” (University Microfilms International (UMI) or Proquest LLC, Ann Arbor, MI, 2013), p. 173.
37.
37. P. Regnard, G. Le Duc, E. Brauer-Krisch, I. Tropres, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a synchrotron: Balance between curing and sparing,” Phys. Med. Biol. 53, 861878 (2008).
http://dx.doi.org/10.1088/0031-9155/53/4/003
38.
38. R. Serduc, A. Bouchet, E. Bräuer-Krisch, J. A. Laissue, J. Spiga, S. Sarun, A. Bravin, C. Fonta, L. Renaud, J. Boutonnat, E. A. Siegbahn, F. Estève, and G. Le Duc, “Synchrotron microbeam radiation therapy for rat brain tumor palliation—Influence of the microbeam width at constant valley dose,” Phys. Med. Biol. 54, 67116724 (2009).
http://dx.doi.org/10.1088/0031-9155/54/21/017
39.
39. Y. Prezado, M. Renier, and A. Bravin, “A New Synchrotron Radiotherapy Technique with Future Clinical Potential: Minibeams Radiation Therapy,” in World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009, edited by O. Dössel and W. Schlegel (Springer, Berlin, 2009), vol. 25/1, pp. 2932.
40.
40. F. A. Dilmanian, Z. Zhong, T. Bacarian, H. Benveniste, P. Romanelli, R. Wang, J. Welwart, T. Yuasa, E. M. Rosen, and D. J. Anschel, “Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential,” Proc. Natl. Acad. Sci. U.S.A. 103, 97099714 (2006).
http://dx.doi.org/10.1073/pnas.0603567103
41.
41. R. Serduc, E. Bräuer-Krisch, E. A. Siegbahn, A. Bouchet, B. Pouyatos, R. Carron, N. Pannetier, L. Renaud, G. Berruyer, C. Nemoz, T. Brochard, C. Rémy, E. L. Barbier, A. Bravin, G. Le Duc, A. Depaulis, F. Estève, and J. A. Laissue, “High-precision radiosurgical dose delivery by interlaced microbeam arrays of high-flux low-energy synchrotron X-rays,” PLoS One 5, e90281e902812 (2010).
http://dx.doi.org/10.1371/journal.pone.0009028
42.
42. E. Bräuer-Krisch, H. Requardt, P. Régnard, S. Corde, E. Siegbahn, G. LeDuc, T. Brochard, H. Blattmann, J. Laissue, and A. Bravin, “New irradiation geometry for microbeam radiation therapy,” Phys. Med. Biol. 50, 31033111 (2005).
http://dx.doi.org/10.1088/0031-9155/50/13/009
43.
43. F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley & Sons, Hoboken, NJ, 1986).
44.
44. N. Suchowerska, P. Hoban, M. Butson, A. Davison, and P. Metcalfe, “Directional dependence in film dosimetry: Radiographic and radiochromic film,” Phys. Med. Biol. 46, 13911397 (2001).
http://dx.doi.org/10.1088/0031-9155/46/5/305
45.
45. N. Suchowerska, P. Hoban, A. Davison, and P. Metcalfe, “Perturbation of radiotherapy beams by radiographic film: Measurements and Monte Carlo simulations,” Phys. Med. Biol. 44, 17551765 (1999).
http://dx.doi.org/10.1088/0031-9155/44/7/314
46.
46. R. P. Srivastava and C. De Wagter, “The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification,” Med. Phys. 39, 61296138 (2012).
http://dx.doi.org/10.1118/1.4752236
47.
47. J. H. Hubbell and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest,” The National Institute of Standards and Technology (NIST) Report NISTIR 5632, 1995.
48.
48. D. J. Anschel, A. Bravin, and P. Romanelli, “Microbeam radiosurgery using synchrotron-generated submillimetric beams: A new tool for the treatment of brain disorders,” Neurosurg. Rev. 34, 133142 (2010).
http://dx.doi.org/10.1007/s10143-010-0292-3
49.
49. H. Nettelbeck, G. J. Takacs, M. L. F. Lerch, and A. B. Rosenfeld, “Microbeam radiation therapy: A Monte Carlo study of the influence of the source, multislit collimator, and beam divergence on microbeams,” Med. Phys. 36, 447456 (2009).
http://dx.doi.org/10.1118/1.3049786
50.
50. F. Sprenger, X. Calderon-Colon, Y. Cheng, K. Englestad, J. Lu, J. Maltz, A. Paidi, X. Qian, D. Spronk, S. Sultana, G. Yang, and O. Zhou, “Distributed source x-ray tube technology for tomosynthesis imaging,” Proc. SPIE 7622, 76225M176225M8 (2010).
http://dx.doi.org/10.1117/12.844586
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/6/10.1118/1.4873683
Loading
/content/aapm/journal/medphys/41/6/10.1118/1.4873683
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/6/10.1118/1.4873683
2014-05-15
2014-07-22

Abstract

Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system.

The microbeam dose distribution was generated by our CNT micro-CT scanner (100m focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams.

Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300m (calculated value was 290 m). Also, during the multiple beam simulation, a peak to valley dose ratio of ∼10 was found when the phantom translation distance was roughly 4x the beam width. The first prototype CNT-based x-ray tube dedicated to the development of compact MRT technology development was proposed and planned based on the preliminary experimental results presented here and the previous corresponding Monte Carlo simulations.

The authors have demonstrated the feasibility of creating microbeam dose distributions at a high dose rate using a proposed compact MRT system. The flexibility of CNT field emission x-ray sources could possibly bring compact and low cost MRT devices to the larger research community and assist in the translational research of this promising new approach to radiation therapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/6/1.4873683.html;jsessionid=ag7drcai2qi55.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/6/10.1118/1.4873683&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/6/10.1118/1.4873683
10.1118/1.4873683
SEARCH_EXPAND_ITEM