1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Objective assessment of image quality and dose reduction in CT iterative reconstruction
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
    2 Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
    a) Author to whom correspondence should be addressed. Electronic mail: jay.vaishnav@fda.hhs.gov
    Med. Phys. 41, 071904 (2014); http://dx.doi.org/10.1118/1.4881148
/content/aapm/journal/medphys/41/7/10.1118/1.4881148
1.
1. D. J. Brenner and E. J. Hall, “Computed tomography — an increasing source of radiation exposure,” New Engl. J. Med. 357, 22772284 (2007).
http://dx.doi.org/10.1056/NEJMra072149
2.
2. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, New York, 2004).
3.
3.GE Healthcare, 510(k) Summary for the Discovery CT590 RT and Optima CT580W, FDA 510(k) Premarket Notification Database (GE Medical Systems, LLC, Waukesha, WI, 2014) (available URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K093581).
4.
4.Toshiba Medical Systems Corporation, 510(k) Summary for the TSX-302A, Aquilion Prime, FDA 510(k) Premarket Notification Database (Toshiba Me-dical Systems Corporation, Tustin, CA, 2011) (available URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K110066).
5.
5.Philips Medical Systems, Inc., 510(k) Summary for the Philips IMR Software Application, FDA 510(k) Premarket Notification Database (Philips Medical Systems, Inc., Cleveland, OH, 2013) (available URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K123576).
6.
6.Siemens Medical Systems, Inc., 510(k) Summary for the Somatom Definition Flash, FDA 510(k) Premarket Notification Database, FDA 510(k) Premarket Notification Database (Siemens Medical Systems, Inc., Malvern, PA, 2011) (available URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K113342).
7.
7. A. E. Burgess, “The Rose model, revisited,” J. Opt. Soc. Am. A 16, 633646 (1999).
http://dx.doi.org/10.1364/JOSAA.16.000633
8.
8. K. Boedeker and M. McNitt-Gray, “Application of the noise power spectrum in modern diagnostic MDCT: Part II. Noise power spectra and signal to noise,” Phys. Med. Biol. 52, 40474061 (2007).
http://dx.doi.org/10.1088/0031-9155/52/14/003
9.
9. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 17521759 (1985).
http://dx.doi.org/10.1364/JOSAA.2.001752
10.
10. Guidance for Industry and/or for FDA Reviewers/Staff and/or Compliance: Guidance for the Submission of 510(k)'s for Solid State X-ray Imaging Devices (available URL: http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073780.htm, August 1999).
11.
11. S. Richard, D. Husarik, G. Yadava, S. Murphy, and E. Samei, “Towards task-based assessment of CT performance: System and object MTF across different reconstruction algorithms,” Med. Phys. 39, 41154122 (2012).
http://dx.doi.org/10.1118/1.4725171
12.
12. A. Pineda, D. Tward, A. Gonzalez, and J. Siewerdsen, “Beyond noise power in 3D computed tomography: The local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 32403252 (2012).
http://dx.doi.org/10.1118/1.4705354
13.
13. J. Evans, D. Politte, B. Whiting, J. O'Sullivan, and J. Williamson, “Noise-resolution tradeoffs in x-ray CT imaging: A comparison of penalized alternating minimization and filtered backprojection algorithms,” Med. Phys. 38, 14441458 (2011).
http://dx.doi.org/10.1118/1.3549757
14.
14. C. C. Brunner, S. F. Abboud, C. Hoeschen, and I. S. Kyprianou, “Signal detection and location-dependent noise in cone-beam computed tomography using the spatial definition of the Hotelling SNR,” Med. Phys. 39, 32143228 (2012).
http://dx.doi.org/10.1118/1.4718572
15.
15. G. J. Gang, J. Lee, J. W. Stayman, D. J. Tward, W. Zbijewski, J. L. Prince, and J. H. Siewerdsen, “Analysis of Fourier-domain task-based detectability index in tomosynthesis and cone-beam CT in relation to human observer performance,” Med. Phys. 38, 17541768 (2011).
http://dx.doi.org/10.1118/1.3560428
16.
16. A. Hara, R. Paden, A. Silva, J. Kujak, H. Lawder, and W. Pavlicek, “Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study,” Am. J. Roentgenol. 193, 764771 (2009).
http://dx.doi.org/10.2214/AJR.09.2397
17.
17. F. A. Miéville, F. Gudinchet, F. Brunelle, F. O. Bochud, and F. R. Verdun, “Iterative reconstruction methods in two different MDCT scanners: Physical metrics and 4-alternative forced-choice detectability experiments–A phantom approach,” Phys. Med. 29, 99110 (2013).
http://dx.doi.org/10.1016/j.ejmp.2011.12.004
18.
18. K. Boedeker and M. McNitt-Gray, “Application of the noise power spectrum in modern diagnostic MDCT: Part I. Measurement of noise power spectra and noise equivalent quanta,” Phys. Med. Biol. 52, 40274046 (2007).
http://dx.doi.org/10.1088/0031-9155/52/14/002
19.
19. I. Hernandez-Girón, J. Geleijns, A. Calzado, and W. J. H. Veldkamp, “Automated assessment of low contrast sensitivity for CT systems using a model observer,” Med. Phys. 38, S25S35 (2011).
http://dx.doi.org/10.1118/1.3577757
20.
20. A. Wunderlich and F. Noo, “Confidence intervals for performance assessment of linear observers,” Med. Phys. 38, S57S68 (2011).
http://dx.doi.org/10.1118/1.3577764
21.
21. L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (9pp.) (2013).
http://dx.doi.org/10.1118/1.4794498
22.
22. L. M. Popescu and K. J. Myers, “CT image assessment by low contrast signal detectability evaluation with unknown signal location,” Med. Phys. 40, 111908 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4824055
23.
23. J. Fan, H.-W. Tseng, M. Kupinski, G. Cao, P. Sainath, and J. Hsieh, “Study of the radiation dose reduction capability of a CT reconstruction algorithm LCD performance assessment using mathematical model observers,” in Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, edited by C. K. Abbey and C. R. Mello-Thoms [Proc. SPIE 8673, 86731Q (2013)].
http://dx.doi.org/10.1117/12.2007307
24.
24. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966) [reprint (Krieger, New York, 1974)].
25.
25. L. M. Popescu and R. M. Lewitt, “Small nodule detectability evaluation using a generalized scan-statistic model,” Phys. Med. Biol. 51, 62256244 (2006).
http://dx.doi.org/10.1088/0031-9155/51/23/020
26.
26. L. M. Popescu, “Nonparametric ROC and LROC analysis,” Med. Phys. 34, 15561564 (2007).
http://dx.doi.org/10.1118/1.2717407
27.
27. L. M. Popescu, “Model for the detection of signals in images with multiple suspicious locations,” Med. Phys. 35, 55655574 (2008).
http://dx.doi.org/10.1118/1.3002413
28.
28. R. G. Swensson, “Unified measurement of observer performance in detecting and localizing target objects on images,” Med. Phys. 23, 17091725 (1996).
http://dx.doi.org/10.1118/1.597758
29.
29. S. Leng, L. Yu, Y. Zhang, R. Carter, A. Y. Toledano, and C. H. McCollough, “Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain,” Med. Phys. 40, 081908 (9pp.) (2013).
http://dx.doi.org/10.1118/1.4812430
30.
30. S. Leng et al., “Diagnostic performance assessment of an iterative reconstruction algorithm using a model observer: Correlation with human observers for a low contrast detection task with unknown lesion locations,” Radiological Society of North America SSE23-04, 13019225, 2013.
31.
31. L. M. Popescu, “Nonparametric signal detectability evaluation using an exponential transformation of the FROC curve,” Med. Phys. 38, 56905702 (2011).
http://dx.doi.org/10.1118/1.3633938
32.
32. A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643655 (1995).
http://dx.doi.org/10.1118/1.597576
33.
33. C. E. Metz, “Fundamental ROC analysis,” in Handbook of Medical Imaging. Vol 1: Physics and Psychophysics, edited by J. Beutel, H. L. Kundel, and R. L. Van Metter (SPIE, Bellingham, WA, 2000), pp. 751769.
34.
34. M. P. Eckstein, C. K. Abbey, and F. O. Bochud, “Practical guide to model observers for visual detection in synthetic and natural noisy images,” in Handbook of Medical Imaging. Volume 1. Physics and Psychophysics, edited by J. Beutel, H. L. Kundel, and R. L. Van Metter (SPIE, Bellingham, WA, 2000), pp. 629654.
35.
35. C. K. Abbey and F. Bochud, “Modeling visual detection tasks in correlated image noise with linear model observers,” in Handbook of Medical Imaging. Volume 1. Physics and Psychophysics (SPIE, Bellingham, WA, 2000), pp. 629654.
36.
36. K. J. Myers and H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 24472457 (1987).
http://dx.doi.org/10.1364/JOSAA.4.002447
37.
37. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. U.S.A. 90, 97589765 (1993).
http://dx.doi.org/10.1073/pnas.90.21.9758
38.
38. C. K. Abbey and F. O. Bochud, “Modeling visual detection tasks in correlated noise with linear model observers,” in Handbook of Medical Imaging. Vol 1: Physics and Psychophysics, edited by J. Beutel, H. L. Kundel, and R. L. Van Metter (SPIE, Bellingham, WA, 2000), pp. 629654.
39.
39. B. D. Gallas and H. H. Barrett, “Validating the use of channels to estimate the ideal linear observer,” J. Opt. Soc. Am. A 20, 17251738 (2003).
http://dx.doi.org/10.1364/JOSAA.20.001725
40.
40. H. H. Barrett, C. K. Abbey, B. D. Gallas, and M. P. Eckstein, “Stabilized estimates of Hotelling-observer detection performance inpatient-structured noise,” Proc. SPIE 3340, 2743 (1998).
http://dx.doi.org/10.1117/12.306181
41.
41. C. K. Abbey and H. H. Barrett, “Human and model-observer performance in ramp-spectrum noise: Effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473488 (2001).
http://dx.doi.org/10.1364/JOSAA.18.000473
42.
42. A. Chawla, “Correlation imaging for improved cancer detection,” Ph.D. thesis, Duke University, 2008.
43.
43. A. Yendiki and J. Fessler, “Analysis of observer performance in known-location tasks for tomographic image reconstruction,” IEEE Trans. Med. Imaging 25, 2841 (2006).
http://dx.doi.org/10.1109/TMI.2005.859714
44.
44. A. Yendiki and J. Fessler, “Analysis of observer performance in unknown-location tasks for tomographic image reconstruction,” J. Opt. Soc. Am. A 24, B99B109 (2007).
http://dx.doi.org/10.1364/JOSAA.24.000B99
45.
45. E. Sidky, S. LaRoque, and X. Pan, “Accurate computation of the Hotelling observer for the evaluation of image reconstruction algorithms in helical, cone-beam CT,” Nucl. Sci. Symp. Conf. Rec. 5, 32333236 (2007).
http://dx.doi.org/10.1109/NSSMIC.2007.4436828
46.
46. A. Wunderlich and F. Noo, “Image covariance and lesion detectability in direct fan-beam x-ray computed tomography,” Phys. Med. Biol. 53, 24712493 (2008).
http://dx.doi.org/10.1088/0031-9155/53/10/002
47.
47. P. F. Judy and R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 1323 (1981).
http://dx.doi.org/10.1118/1.594903
48.
48. A. E. Burgess, “Statistically defined backgrounds: Performance of a modified non-prewhitening matched filter model,” J. Opt. Soc. Am. A 11, 12371242 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001237
49.
49. P. Khurd and G. Gindi, “Decision strategies that maximize the area under the LROC curve,” IEEE Trans. Med. Imaging 24, 16261636 (2005).
http://dx.doi.org/10.1109/TMI.2005.859210
50.
50. M. Whitaker, E. Clarkson, and H. Barrett, “Estimating random signal parameters from noisy images with nuisance parameters: Linear and scanning-linear methods,” Opt. Express 16, 81508173 (2008).
http://dx.doi.org/10.1364/OE.16.008150
51.
51. A. Wunderlich and F. Noo, “A nonparametric procedure for comparing the areas under correlated LROC curves,” IEEE Trans. Med. Imaging 31, 20502061 (2012).
http://dx.doi.org/10.1109/TMI.2012.2205015
52.
52. B. D. Gallas et al., “Evaluating imaging and computer-aided detection and diagnosis devices at the FDA,” Acad. Radiol. 19, 463477 (2012).
http://dx.doi.org/10.1016/j.acra.2011.12.016
53.
53. N. Petrick, B. Sahiner, S. G. Armato III, A. Bert, L. Correale, S. Delsanto, M. T. Freedman, D. Fryd, D. Gur, L. Hadjiiski, Z. Huo, Y. Jiang, L. Morra, S. Paquerault, V. Raykar, F. Samuelson, R. M. Summers, G. Tourassi, H. Yoshida, B. Zheng, C. Zhou, and H.-P. Chan, “Evaluation of computer-aided detection and diagnosis systems,” Med. Phys. 40, 087001 (17pp.) (2013).
http://dx.doi.org/10.1118/1.4816310
54.
54. C. E. Metz, “ROC analysis in medical imaging: A tutorial review of the literature,” Radiol. Phys. Technol. 1, 212 (2008).
http://dx.doi.org/10.1007/s12194-007-0002-1
55.
55. X. He and B. D. Gallas, “iMRMC, analyzing and sizing multi-reader multi-case ROC trials,” 2012 (available URL: http://js.cx/~xin/index.html).
56.
56. S. Leng, L. Yu, L. Chen, J. C. R. Giraldo, and C. H. McCollough, “Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain,” Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83131M (24 February 2012).
http://dx.doi.org/10.1117/12.912126
57.
57.Metz ROC Software at The University of Chicago (available URL: http://metz-roc.uchicago.edu/).
58.
58.OR-DBM MRMC 2.4 Software, Medical Image Perception Laboratory, University of Iowa, 2013 (available URL: http://perception.radiology.uiowa.edu/Software/ReceiverOperatingCharacteristicROC/MRMCAnalysis/tabid/116/Default.aspx).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/7/10.1118/1.4881148
Loading
/content/aapm/journal/medphys/41/7/10.1118/1.4881148
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/7/10.1118/1.4881148
2014-06-10
2014-08-30

Abstract

Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve.

The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction.

The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance.

Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/7/1.4881148.html;jsessionid=1al29h2pjjsq9.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/7/10.1118/1.4881148&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Objective assessment of image quality and dose reduction in CT iterative reconstruction
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/7/10.1118/1.4881148
10.1118/1.4881148
SEARCH_EXPAND_ITEM