Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Lewis, C. Hall, A. Hufton, S. Evans, R. Menk, F. Arfelli, L. Rigon, G. Tromba, D. Dance, I. Ellis, A. Evans, E. Jacobs, S. Pinder, and K. Rogers, “X-ray refraction effects: Application to the imaging of biological tissues,” Br. J. Radiol. 76, 301308 (2003).
2. A. Bravin, P. Coan, and P. Suortti, “X-ray phase contrast imaging: From pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1R35 (2013).
3. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2(4), 473475 (1996).
4. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75(19), 29122914 (1999).
5. F. Dilmanian, Z. Zhong, B. Ren, X. Wu, L. Chapman, I. Orion, and W. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol. 45, 933946 (2000).
6. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 62966304 (2005).
7. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based x-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 1357613581 (2010).
8. C. K. Hagen, P. C. Diemoz, M. Endrizzi, L. Rigon, D. Droessi, F. Arfelli, F. C. M. Lopez, R. Longo, and A. Olivo, “Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography,” Opt. Express 22(7), 79898000 (2014).
9. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258261 (2006).
10. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
11. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424428 (2012).
12. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapcchi, “Fourier x-ray scattering radiography yields bone structural information,” Radiology 251(3), 910918 (2009).
13. C. Parham, Z. Zhong, D. M. Connor, D. Chapman, and E. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol. 16(8), 911917 (2009).
14. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. Menk, S. Pani, M. Prest, P. Poporat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 16101619 (2001).
15. T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. Speller, and A. Olivo, “Method for the automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84, 083702 (2013).
16. P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. Pesic, C. Rau, A. Bravin, I. Robinson, and A. Olivo, “X-ray phase contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110, 138105 (2013).
17. P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination x-ray phase-contrast imaging,” Appl. Phys. Lett. 103, 244104 (2013).
18. A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional sources,” Med. Phys. 40(9), 090701 (6pp.) (2013).
19. P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture x-ray phase imaging,” Opt. Express 21(9), 1118711201 (2013).
20. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, NY, 1988).
21. Z. Huang, K. Kang, Z. Li, P. Zhu, Q. Yuan, W. Huang, J. Huang, D. Zhang, and A. Yu, “Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging,” Appl. Phys. Lett. 89, 041124 (2006).
22. P. R. T. Munro and A. Olivo, “X-ray phase contrast imaging with polychromatic sources and the concept of effective energy,” Phys. Rev. A 87, 053838 (2013).
23. R. E. Guldberg, A. S. P. Lin, R. Coleman, G. Robertson, and C. Duvall, “Microcomputed tomography imaging of skeleteral development and growth,” Birth Defects Res. C 72, 250259 (2004).
24. See supplementary material at for an assessment of the quantitative accuracy of tomographic EI XPCi measurements with a polychromatic x-ray tube. [Supplementary Material]

Data & Media loading...


Article metrics loading...



The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented.

Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed.

The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity.

The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd