1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Low-dose phase contrast tomography with conventional x-ray sources
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
    2 Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
    3 Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
    a) Electronic mail: charlotte.hagen.10@ucl.ac.uk
    Med. Phys. 41, 070701 (2014); http://dx.doi.org/10.1118/1.4884297
/content/aapm/journal/medphys/41/7/10.1118/1.4884297
1.
1. R. Lewis, C. Hall, A. Hufton, S. Evans, R. Menk, F. Arfelli, L. Rigon, G. Tromba, D. Dance, I. Ellis, A. Evans, E. Jacobs, S. Pinder, and K. Rogers, “X-ray refraction effects: Application to the imaging of biological tissues,” Br. J. Radiol. 76, 301308 (2003).
http://dx.doi.org/10.1259/bjr/32889803
2.
2. A. Bravin, P. Coan, and P. Suortti, “X-ray phase contrast imaging: From pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1R35 (2013).
http://dx.doi.org/10.1088/0031-9155/58/1/R1
3.
3. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2(4), 473475 (1996).
http://dx.doi.org/10.1038/nm0496-473
4.
4. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75(19), 29122914 (1999).
http://dx.doi.org/10.1063/1.125225
5.
5. F. Dilmanian, Z. Zhong, B. Ren, X. Wu, L. Chapman, I. Orion, and W. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol. 45, 933946 (2000).
http://dx.doi.org/10.1088/0031-9155/45/4/309
6.
6. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 62966304 (2005).
http://dx.doi.org/10.1364/OPEX.13.006296
7.
7. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based x-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 1357613581 (2010).
http://dx.doi.org/10.1073/pnas.1003198107
8.
8. C. K. Hagen, P. C. Diemoz, M. Endrizzi, L. Rigon, D. Droessi, F. Arfelli, F. C. M. Lopez, R. Longo, and A. Olivo, “Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography,” Opt. Express 22(7), 79898000 (2014).
http://dx.doi.org/10.1364/OE.22.007989
9.
9. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258261 (2006).
http://dx.doi.org/10.1038/nphys265
10.
10. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
http://dx.doi.org/10.1063/1.2772193
11.
11. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424428 (2012).
http://dx.doi.org/10.1118/1.3672163
12.
12. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapcchi, “Fourier x-ray scattering radiography yields bone structural information,” Radiology 251(3), 910918 (2009).
http://dx.doi.org/10.1148/radiol.2521081903
13.
13. C. Parham, Z. Zhong, D. M. Connor, D. Chapman, and E. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol. 16(8), 911917 (2009).
http://dx.doi.org/10.1016/j.acra.2009.02.007
14.
14. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. Menk, S. Pani, M. Prest, P. Poporat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 16101619 (2001).
http://dx.doi.org/10.1118/1.1388219
15.
15. T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. Speller, and A. Olivo, “Method for the automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84, 083702 (2013).
http://dx.doi.org/10.1063/1.4816827
16.
16. P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. Pesic, C. Rau, A. Bravin, I. Robinson, and A. Olivo, “X-ray phase contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110, 138105 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.138105
17.
17. P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination x-ray phase-contrast imaging,” Appl. Phys. Lett. 103, 244104 (2013).
http://dx.doi.org/10.1063/1.4845015
18.
18. A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional sources,” Med. Phys. 40(9), 090701 (6pp.) (2013).
http://dx.doi.org/10.1118/1.4817480
19.
19. P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture x-ray phase imaging,” Opt. Express 21(9), 1118711201 (2013).
http://dx.doi.org/10.1364/OE.21.011187
20.
20. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, NY, 1988).
21.
21. Z. Huang, K. Kang, Z. Li, P. Zhu, Q. Yuan, W. Huang, J. Huang, D. Zhang, and A. Yu, “Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging,” Appl. Phys. Lett. 89, 041124 (2006).
http://dx.doi.org/10.1063/1.2219405
22.
22. P. R. T. Munro and A. Olivo, “X-ray phase contrast imaging with polychromatic sources and the concept of effective energy,” Phys. Rev. A 87, 053838 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.053838
23.
23. R. E. Guldberg, A. S. P. Lin, R. Coleman, G. Robertson, and C. Duvall, “Microcomputed tomography imaging of skeleteral development and growth,” Birth Defects Res. C 72, 250259 (2004).
http://dx.doi.org/10.1002/bdrc.20016
24.
24. See supplementary material at http://dx.doi.org/10.1118/1.4884297 for an assessment of the quantitative accuracy of tomographic EI XPCi measurements with a polychromatic x-ray tube. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/7/10.1118/1.4884297
Loading
/content/aapm/journal/medphys/41/7/10.1118/1.4884297
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/7/10.1118/1.4884297
2014-06-24
2014-08-20

Abstract

The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented.

Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed.

The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity.

The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/7/1.4884297.html;jsessionid=wu1gheegw94k.x-aip-live-03?itemId=/content/aapm/journal/medphys/41/7/10.1118/1.4884297&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Low-dose phase contrast tomography with conventional x-ray sources
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/7/10.1118/1.4884297
10.1118/1.4884297
SEARCH_EXPAND_ITEM