Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. H. Char, S. Kroll, T. L. Phillips, and J. M. Quivey, “Late radiation failures after iodine 125 brachytherapy for uveal melanoma compared with charged-particle (proton or helium) therapy,” Ophthalmology 109, 18501854 (2002).
2. A. D. Singh and B. A. Topham, “Incidence of uveal melanoma in the United States: 1973-1997,” Ophthalmology 110, 956961 (2003).
3. M. Fuss, L. N. Loredo, P. A. Blacharski, R. I. Grove, and J. D. Slater, “Proton radiation therapy for medium and large choroidal melanoma: Preservation of the eye and its functionality,” Int. J. Radiat. Oncol., Biol., Phys. 49, 10531059 (2001).
4. E. Gragoudas, W. Li, M. Goitein, A. M. Lane, J. E. Munzenrider, and K. M. Egan, “Evidence-based estimates of outcome in patients irradiated for intraocular melanoma,” Arch. Ophthalmol. 120, 16651671 (2002).
5. E. Gragoudas and A. M. Lane, “Uveal melanoma: Proton beam irradiation,” Ophthalmol. Clin. North Am. 18, 111118 (2005).
6. K. Dieckmann, D. Georg, J. Bogner, M. Zehetmayer, B. Petersch, M. Chorvat, H. Weitmann, and R. Pötter, “Optimizing linac-based stereotactic radiotherapy of uveal melanomas: 7 years’ clinical experience,” Int. J. Radiat. Oncol., Biol., Phys. 66, S47S52 (2006).
7. D. C. Weber, J. Bogner, J. Verwey, D. Georg, K. Dieckmann, L. Escudé, M. Caro, R. Pötter, G. Goitein, A. J. Lomax, and R. Miralbell, “Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study,” Int. J. Radiat. Oncol., Biol., Phys. 63, 373384 (2005).
8. D. M. Robertson, “Changing concepts in the management of choroidal melanoma,” Am. J. Ophthalmol. 136, 161170 (2003).
9. M. Zehetmayer, R. Menapace, K. Kitz, and A. Ertl, “Suction fixation system for stereotactic radiosurgery of intraocular malignancies,” Acta. Neurochir. Suppl. 63, 115118 (1995).
10. A. J. Mueller, S. Talies, U. C. Schaller, G. Horstmann, B. Wowra, and A. Kampik, “Stereotactic radiosurgery of large uveal melanomas with the gamma-knife,” Ophthalmology 107, 13811388 (2000).
11. J. Bogner, B. Petersch, D. Georg, K. Dieckmann, M. Zehetmayer, and R. Pötter, “A noninvasive eye fixation and computer-aided eye monitoring system for linear accelerator-based stereotactic radiotherapy of uveal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 56, 11281136 (2003).
12. B. Petersch, J. Bogner, K. Dieckmann, R. Pötter, and D. Georg, “Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma,” Med. Phys. 31, 35213527 (2004).
13. D. Shin, S. H. Yoo, S. H. Moon, M. Yoon, S. B. Lee, and S. Y. Park, “Eye tracking and gating system for proton therapy of orbital tumors,” Med. Phys. 39, 42654273 (2012).
14. A. Fassi, M. Riboldi, C. F. Forlani, and G. Baroni, “Optical eye tracking system for noninvasive and automatic monitoring of eye position and movements in radiotherapy treatments of ocular tumors,” Appl. Opt. 51, 24412450 (2012).
15. W. D. Newhauser, N. C. Koch, J. D. Fontenot, S. J. Rosenthal, D. S. Gombos, M. M. Fitzek, and R. Mohan, “Dosimetric impact of tantalum markers used in the treatment of uveal melanoma with proton beam therapy,” Phys. Med. Biol. 52, 39793990 (2007).
16. J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract. Refract. Surg. 36, 17181723 (2010).
17. S. A. Schruender, H. Fuchs, S. Spasovski, and A. Dankert, “Intraoperative corneal topography for image registration,” J. Refract. Surg. 18, 624629 (2002).
18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 11781181 (1991).
19. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography - Technology and Applications (Springer, 2008).
20. Y. Wang, C. Oh, M. Oliveira, M. Islam, A. Ortega, and B. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express 20, 1479714813 (2012).
21. I. Grulkowski, J. Liu, B. Potsaid, V. Jayaraman, C. Lu, J. Jiang, A. Cable, J. Duker, and J. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 27332751 (2012).
22. I. Grulkowski, J. Liu, JY. Zhang, B. Potsaid, V. Jayaraman, A. Cable, J. Duker, and J. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 21842190 (2013).
23. W. Wieser, T. Klein, D. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 26472657 (2012).
24. T. Klein, W. Wieser, C. Eigenwillig, B. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 30443062 (2011).
25. M. B. Rüegsegger, M. Bach Cuadra, A. Pica, C. A. Amstutz, T. Rudolph, D. Aebersold, and J. H. Kowal, “Statistical modeling of the eye for multimodal treatment planning for external beam radiation therapy of intraocular tumors,” Int. J. Radiat. Oncol., Biol., Phys. 84, e541e547 (2012).
26. A. Ebneter, B. Wagels, and M. S. Zinkernagel, “Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls,” Eye 23, 606611 (2009).
27. M. J. Hogan and J. A. Alvarado, Histology of the Human Eye: An Atlas and Textbook (WB Saunders, Philadelphia, 1971).
28. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2, 32323247 (2011).
29. R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3D point cloud based object maps for household environments,” Robot. Autonom. Syst. 56, 927941 (2008).
30. P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239256 (1992).
31. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Survey of Optical Instruments Vol. 4 (Wiley-VCH, 2008).
32. M. Kraus, B. Potsaid, M. Mayer, R. Bock, B. Baumann, J. Liu, J. Hornegger, and J. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3, 11821199 (2012).

Data & Media loading...


Article metrics loading...



External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT).

A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench.

Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed.

The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd