Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. B. Bomanji, D. C. Costa, and P. J. Ell, “Clinical role of positron emission tomography in oncology,” Lancet Oncol. 2, 157164 (2001).
2. M. Allen-Auerbach and W. A. Weber, “Measuring response with FDG-PET: Methodological aspects,” Oncologist 14, 369377 (2009).
3. H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z. A. Fayad, and L. Shao, “Design and performance evaluation of a whole-body ingenuity TF PET-MRI system,” Phys. Med. Biol. 56, 30913106 (2011).
4. J. Gaa, E. J. Rummeny, and M. D. Seemann, “Whole-body imaging with PET/MRI,” Eur. J. Med. Res. 9, 309312 (2004).
5. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Roecken, R. E. Nutt, H.-J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14, 459465 (2008).
6. A. R. Padhani, G. Liu, D. M. Koh, T. L. Chenevert, H. C. Thoeny, T. Takahara, A. Dzik-Jurasz, B. D. Ross, M. Van Cauteren, D. Collins, D. A. Hammoud, G. J. S. Rustin, B. Taouli, and P. L. Choyke, “Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations,” Neoplasia 11, 102125 (2009).
7. B. Tuerkbey, O. Aras, N. Karabulut, A. T. Turgut, E. Akpinar, S. Alibek, Y. Pang, S. M. Ertuerk, R. H. El Khouli, D. A. Bluemke, and P. L. Choyke, “Diffusion-weighted MRI for detecting and monitoring cancer: A review of current applications in body imaging,” Diagn. Interv. Radiol. 18(1), 4659 (2012).
8. R. Stramare, V. Beltrame, M. Gazzola, M. Gerardi, G. Scattolin, A. Coran, A. Faccinetto, M. Rastrelli, and C. R. Rossi, “Imaging of soft-tissue tumors,” J. Magn. Reson. Imaging 37, 791804 (2013).
9. K. P. Schaefers, “The promise of nuclear medicine technology: Status and future perspective of high-resolution whole-body PET,” Phys. Med. 24(2), 5762 (2008).
10. J. Tsao, “Ultrafast imaging: Principles, pitfalls, solutions, and applications,” J. Magn. Reson. Imaging 32, 252266 (2010).
11. S. A. Nehmeh, Y. E. Erdi, C. C. Ling, K. E. Rosenzweig, O. D. Squire, K. S. L. E. Braban, E. Ford, G. S. Mageras, S. M. Larson, and J. L. Humm, “Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer,” Med. Phys. 29, 366371 (2002).
12. H.-P. Schlemmer, B. J. Pichler, R. Krieg, and W.-D. Heiss, “An integrated MR/PET system: Prospective applications,” Abdom Imaging 34, 668674 (2009).
13. P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin, “Attenuation correction for a combined 3D PET/CT scanner,” Med. Phys. 25, 20462053 (1998).
14. C. Tsoumpas, J. E. Mackewn, P. Halsted, A. P. King, C. Buerger, J. J. Totman, T. Schaeffter, and P. K. Marsden, “Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET,” Ann. Nucl. Med. 24, 745750 (2010).
15. C. Catana, T. Benner, A. van der Kouwe, L. Byars, M. Hamm, D. B. Chonde, C. J. Michel, G. El Fakhri, M. Schmand, and A. G. Sorensen, “MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner,” J. Nucl. Med. 52, 154161 (2011).
16. B. Guerin, S. Cho, S. Y. Chun, X. Zhu, N. M. Alpert, G. E. Fakhri, T. Reese, and C. Catana, “Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging,” Med. Phys. 38, 30253038 (2011).
17. C. Buerger, C. Tsoumpas, A. Aitken, A. P. King, P. Schleye, V. Schulz, P. K. Marsden, and T. Schaeffter, “Investigation of MR-based attenuation correction and motion compensation for hybrid PET/MR,” IEEE Trans. Nucl. Sci. 59(5), 19671976 (2012).
18. N. Dikaios, D. Izquierdo-Garcia, M. J. Graves, V. Mani, Z. A. Fayad, and T. D. Fryer, “MRI-based motion correction of thoracic PET: Initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems,” Eur. Radiol. 22, 439446 (2012).
19. S. Y. Chun, T. G. Reese, J. Ouyang, B. Guerin, C. Catana, X. Zhu, N. M. Alpert, and G. El Fakhri, “MRI-based nonrigid motion correction in simultaneous PET/MRI,” J. Nucl. Med. 53, 12841291 (2012).
20. R. Boubertakh, C. Prieto, P. G. Batchelor, S. Uribe, D. Atkinson, H. Eggers, T. S. Soerensen, M. S. Hansen, R. S. Razavi, and T. Schaeffter, “Whole-heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction,” Magn. Reson. Med. 62, 13311337 (2009).
21. C. Kolbitsch, C. Prieto, J. Smink, and T. Schaeffter, “Highly efficient whole-heart imaging using radial phase encoding–phase ordering with automatic window selection,” Magn. Reson. Med. 66, 10081018 (2011).
22. C. Buerger, T. Schaeffter, and A. P. King, “Hierarchical adaptive local affine registration for fast and robust respiratory motion estimation,” Med. Image Anal. 15(4), 551564 (2011).
23. K. P. Pruessmann, M. Weiger, P. Boernert, and P. Boesiger, “Advances in sensitivity encoding with arbitrary k-space trajectories,” Magn. Reson. Med. 46, 638651 (2001).
24. P. G. Batchelor, D. Atkinson, P. Irarrazaval, D. L. G. Hill, J. Hajnal, and D. Larkman, “Matrix description of general motion correction applied to multishot images,” Magn. Reson. Med. 54, 12731280 (2005).
25. F. Qiao, T. Pan, J. W. Clark Jr., and O. R. Mawlawi, “A motion-incorporated reconstruction method for gated PET studies,” Phys. Med. Biol. 51, 37693783 (2006).
26. I. Polycarpou, C. Tsoumpas, and P. K. Marsden, “Analysis and comparison of two methods for motion correction in PET imaging,” Med. Phys. 39, 64746483 (2012).
27. M. Eiber, A. Martinez-Moeller, M. Souvatzoglou, K. Holzapfel, A. Pickhard, D. Loeffelbein, I. Santi, E. J. Rummeny, S. Ziegler, M. Schwaiger, S. G. Nekolla, and A. J. Beer, “Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions,” Eur. J. Nucl. Med. Mol. Imaging 38, 16911701 (2011).
28. T. Maekelae, P. Clarysse, O. Sipilae, N. Pauna, Q. C. Pham, T. Katila, and I. E. Magnin, “A review of cardiac image registration methods,” IEEE Trans. Med. Imaging 21, 10111021 (2002).
29. C. Tsoumpas, C. Buerger, A. P. King, P. Mollet, V. Keereman, S. Vandenberghe, V. Schulz, P. Schleyer, T. Schaeffter, and P. K. Marsden, “Fast generation of 4D PET-MR data from real dynamic MR acquisition,” Phys. Med. Biol. 56, 65976613 (2011).
30. M. Helle, C. Stehning, M. S. Traughber, N. Schadewaldt, H. Schulz, S. Renisch, and S. Remmele, “Comparison of sequences for mr-based cortical bone imaging and tissue classification in the Pelvis at 3.0T with subsequent generation of electron density maps and digitally reconstructed radiographs,” in Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, UT (International Society for Magnetic Resonance in Medicine, Berkeley, CA, 2013), p. 768.
31. C. D. Ramos, Y. E. Erdi, M. Gonen, E. Riedel, H. W. Yeung, H. A. Macapinlac, R. Chisin, and S. M. Larson, “FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection,” Eur. J. Nucl. Med. 28, 155164 (2001).
32. K. Thielemans, C. Tsoumpas, S. Mustafovic, T. Beisel, P. Aguiar, N. Dikaios, and M. W. Jacobson, “Stir: Software for tomographic image reconstruction release 2,” Phys. Med. Biol. 57, 867883 (2012).
33. C. C. Watson, D. Newport, M. E. Casey, R. A. deKemp, R. S. Beanlands, and M. Schmand, “Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging,” IEEE Trans. Nucl. Sci. 44(1), 9097 (1997).
34. C. Tsoumpas, P. Aguiar, K. Nikita, D. Ros, and K. Thielemans, “Evaluation of the single scatter simulation algorithm implemented in the STIR library,” IEEE Nucl. Sci. Symp. Conf. Rec. 6, 33613365 (2004).
35. L. K. Shankar, J. M. Hoffman, S. Bacharach, M. M. Graham, J. Karp, A. A. Lammertsma, S. Larson, D. A. Mankoff, B. A. Siegel, A. Van denAbbeele, J. Yap, and D. Sullivan, “Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials,” J. Nucl. Med. 47, 10591066 (2006).
36. C. Prieto, S. Uribe, R. Razavi, D. Atkinson, and T. Schaeffter, “3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE,” Magn. Reson. Med. 64, 514526 (2010).
37. J. G. Pipe, “Motion correction with propeller MRI: Application to head motion and free-breathing cardiac imaging,” Magn. Reson. Med. 42, 963969 (1999).<963::AID-MRM17>3.0.CO;2-L
38. P. Bühler, U. Just, E. Will, J. Kotzerke, and J. van den Hoff, “An accurate method for correction of head movement in PET,” IEEE Trans. Med. Imaging 23, 11761185 (2004).
39. C. Buerger, C. Prieto, and T. Schaeffter, “Highly efficient 3D motion-compensated abdomen MRI from undersampled golden-RPE acquisitions,” MAGMA 26(5), 419429 (2013).
40. H. Young, R. Baum, U. Cremerius, K. Herholz, O. Hoekstra, A. A. Lammertsma, J. Pruim, and P. Price, “Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group,” Eur. J. Cancer 35, 17731782 (1999).
41. S. Kannan and H. T. Chugani, “Applications of positron emission tomography in the newborn nursery,” Semin. Perinatol. 34, 3945 (2010).

Data & Media loading...


Article metrics loading...



Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data.

A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters.

Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach.

A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd