1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
    2 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
    3 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
    4 Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany
    5 Department of Physics, Technische Universität München, 85748 Garching, Germany
    6 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
    a) Author to whom correspondence should be addressed. Electronic mail: armin.kolb@med.uni-tuebingen.de
    Med. Phys. 41, 081916 (2014); http://dx.doi.org/10.1118/1.4890609
/content/aapm/journal/medphys/41/8/10.1118/1.4890609
1.
1. M. S. Judenhofer et al., “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14(4), 459465 (2008).
http://dx.doi.org/10.1038/nm1700
2.
2. H.-P. W. Schlemmer et al., “Simultaneous MR/PET imaging of the human brain: Feasibility study,” Radiology 248(3), 10281035 (2008).
http://dx.doi.org/10.1148/radiol.2483071927
3.
3. B. J. Pichler, A. Kolb, T. Nägele, and H.-P. Schlemmer, “PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications,” J. Nucl. Med. 51(3), 333336 (2010).
http://dx.doi.org/10.2967/jnumed.109.061853
4.
4. G. Delso et al., “Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner,” J. Nucl. Med. 52(12), 19141922, (2011).
http://dx.doi.org/10.2967/jnumed.111.092726
5.
5. A. Kolb et al., “Technical performance evaluation of a human brain PET/MRI system,” Eur. Radiol. 22(8), 17761788 (2012).
http://dx.doi.org/10.1007/s00330-012-2415-4
6.
6. N. F. Schwenzer et al., “Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients–current state of image quality,” Eur. J. Radiol. 81(11), 34723478 (2012).
http://dx.doi.org/10.1016/j.ejrad.2011.12.027
7.
7. F. W. Hirsch et al., “PET/MR in children: Initial clinical experience in paediatric oncology using an integrated PET/MR scanner,” Pediatr. Radiol. 43(7), 860875 (2013).
http://dx.doi.org/10.1007/s00247-012-2570-4
8.
8. H. F. Wehrl et al., “Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C choline positron emission tomography,” Cancer Res. 73(5), 14701480 (2013).
http://dx.doi.org/10.1158/0008-5472.CAN-12-2532
9.
9. H. F. Wehrl et al., “Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales,” Nat. Med. 19(9), 11841189 (2013).
http://dx.doi.org/10.1038/nm.3290
10.
10. C. Y. Sander et al., “Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 110(27), 1116911174 (2013).
http://dx.doi.org/10.1073/pnas.1220512110
11.
11. H. F. Wehrl, P. Martirosian, F. Schick, G. Reischl, and B. J. Pichler, “Assessment of rodent brain activity using combined [(15)O]H2O-PET and BOLD-fMRI,” Neuroimage 89, 271279 (2014).
http://dx.doi.org/10.1016/j.neuroimage.2013.11.044
12.
12. B. Pichler et al., “Studies with a prototype high resolution PET scanner based on LSO-APD modules,” IEEE Trans. Nucl. Sci. 45(3), 12981302 (1998).
http://dx.doi.org/10.1109/23.682020
13.
13. A. Saoudi and R. Lecomte, “A novel APD-based detector module for multi-modality PET/SPECT/CT scanners,” IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2, 10891094 (1999).
14.
14. B. J. Pichler, B. K. Swann, J. Rochelle, R. E. Nutt, S. R. Cherry, and S. B. Siegel, “Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET,” Phys. Med. Biol. 49(18), 43054319 (2004).
http://dx.doi.org/10.1088/0031-9155/49/18/008
15.
15. B. J. Pichler et al., “Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med. 47(4), 639647 (2006).
16.
16. C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47(12), 19681976 (2006).
17.
17. M. S. Judenhofer et al., “PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet,” Radiology 244(3), 807814 (2007).
http://dx.doi.org/10.1148/radiol.2443061756
18.
18. P. Buzhan et al., “Silicon photomultiplier and its possible applications,” Nucl. Instrum. Methods Phys. Res. A 504(1–3), 4852 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)00749-6
19.
19. A. N. Otte et al., “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods Phys. Res. A 545(3), 705715 (2005).
http://dx.doi.org/10.1016/j.nima.2005.02.014
20.
20. R. Scheuermann et al., “Scintillation detectors for operation in high magnetic fields: Recent developments based on arrays of avalanche microchannel photodiodes,” Nucl. Instrum. Methods Phys. Res. A 581(1–2), 443446 (2007).
http://dx.doi.org/10.1016/j.nima.2007.08.023
21.
21. A. Kolb, E. Lorenz, M. S. Judenhofer, D. Renker, K. Lankes, and B. J. Pichler, “Evaluation of Geiger-mode APDs for PET block detector designs,” Phys. Med. Biol. 55(7), 18151832, (2010).
http://dx.doi.org/10.1088/0031-9155/55/7/003
22.
22. D. R. Schaart et al., “LaBr(3):Ce and SiPMs for time-of-flight PET: Achieving 100 ps coincidence resolving time,” Phys. Med. Biol. 55(7), N179N189 (2010).
http://dx.doi.org/10.1088/0031-9155/55/7/N02
23.
23. J. Kang et al., “A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging,” J. Instrum. 6(08), P08012 (2011).
http://dx.doi.org/10.1088/1748-0221/6/08/P08012
24.
24. V. Schulz et al., “SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments,” 2011 IEEE Nucl. Sci. Symp. Conf. Rec. 44674469 (2011).
http://dx.doi.org/10.1109/NSSMIC.2011.6152496
25.
25. S. J. Hong, H. G. Kang, G. B. Ko, I. C. Song, J.-T. Rhee, and J. S. Lee, “SiPM-PET with a short optical fiber bundle for simultaneous PET-MR imaging,” Phys. Med. Biol. 57(12), 38693883 (2012).
http://dx.doi.org/10.1088/0031-9155/57/12/3869
26.
26. H. S. Yoon et al., “Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner,” J. Nucl. Med. 53(4), 608614, (2012).
http://dx.doi.org/10.2967/jnumed.111.097501
27.
27. S. Yamamoto and T. Watabe, “Simultaneous imaging using SiPM-based PET and MRI for development of an integrated PET/MRI system,” Phys. Med. 57(2), N1N13, (2012).
http://dx.doi.org/10.1088/0031-9155/57/2/N1
28.
28. W. W. Moses, P. R. G. Virador, S. E. Derenzo, R. H. Huesman, and T. F. Budinger, “Design of a high-resolution, high-sensitivity PET camera for human brains and small animals,” IEEE Trans. Nucl. Sci. 44(4), 14871491 (1997).
http://dx.doi.org/10.1109/23.632691
29.
29. M. E. Casey and R. Nutt, “A multicrystal two dimensional BGO detector system for positron emission tomography,” IEEE Trans. Nucl. Sci. 33(1), 460463 (1986).
http://dx.doi.org/10.1109/TNS.1986.4337143
30.
30. H. W. A. M. de Jong, F. H. P. van Velden, R. W. Kloet, F. L. Buijs, R. Boellaard, and A. A. Lammertsma, “Performance evaluation of the ECAT HRRT: An LSO-LYSO double layer high resolution, high sensitivity scanner,” Phys. Med. Biol. 52(5), 15051526 (2007).
http://dx.doi.org/10.1088/0031-9155/52/5/019
31.
31. Y. Yang et al., “A prototype PET scanner with DOI-encoding detectors,” J. Nucl. Med. 49(7), 11321140 (2008).
http://dx.doi.org/10.2967/jnumed.107.049791
32.
32. C. C. Constantinescu and J. Mukherjee, “Performance evaluation of an Inveon PET preclinical scanner,” Phys. Med. Biol. 54(9), 28852899 (2009).
http://dx.doi.org/10.1088/0031-9155/54/9/020
33.
33. Y. Yang et al., “Tapered LSO arrays for small animal PET,” Phys. Med. Biol. 56(1), 139153 (2011).
http://dx.doi.org/10.1088/0031-9155/56/1/009
34.
34. S. S. James et al., “Experimental characterization and system simulations of depth of interaction PET detectors using 0.5 mm and 0.7 mm LSO arrays,” Phys. Med. Biol. 54(14), 46054619 (2009).
http://dx.doi.org/10.1088/0031-9155/54/14/015
35.
35. M. V. Green, H. G. Ostrow, J. Seidel, and M. G. Pomper, “Experimental evaluation of depth-of-interaction correction in a small-animal positron emission tomography scanner,” Mol. Imaging 9(6), 311318 (2010).
36.
36. Y.-C. Tai et al., “Performance evaluation of the microPET focus: A third-generation microPET scanner dedicated to animal imaging,” J. Nucl. Med. 46(3), 455463 (2005).
37.
37. S. Blinder et al., “Influence of Depth of Interaction on Spatial Resolution and Image Quality for the HRRT,” IEEE Nucl. Sci. Symp. Conf. Rec. 2005 3, 17651769, (2005).
http://dx.doi.org/10.1109/NSSMIC.2005.1596662
38.
38. E. Yoshida et al., “System design of a small OpenPET prototype with 4-layer DOI detectors,” Radiol. Phys. Technol. 5(1), 9297 (2012).
http://dx.doi.org/10.1007/s12194-011-0142-1
39.
39. A. Vandenbroucke, A. M. K. Foudray, P. D. Olcott, and C. S. Levin, “Performance characterization of a new high resolution PET scintillation detector,” Phys. Med. Biol. 55(19), 58955911 (2010).
http://dx.doi.org/10.1088/0031-9155/55/19/018
40.
40. D. P. McElroy, W. Pimpl, B. J. Pichler, M. Rafecas, T. Schuler, and S. I. Ziegler, “Characterization and readout of MADPET-II detector modules: Validation of a unique design concept for high resolution small animal PET,” IEEE Trans. Nucl. Sci. 52(1), 199204 (2005).
http://dx.doi.org/10.1109/TNS.2004.843114
41.
41. M. Schmand et al., “Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT,” IEEE Trans. Nucl. Sci. 45(6), 30003006 (1998).
http://dx.doi.org/10.1109/23.737656
42.
42. K. Wienhard et al., “The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph,” IEEE Trans. Nucl. Sci. 49(1), 104110 (2002).
http://dx.doi.org/10.1109/TNS.2002.998689
43.
43. H. Du, Y. Yang, J. Glodo, Y. Wu, K. Shah, and S. R. Cherry, “Continuous depth-of-interaction encoding using phosphor-coated scintillators,” Phys. Med. Biol. 54(6), 17571771 (2009).
http://dx.doi.org/10.1088/0031-9155/54/6/023
44.
44. J. S. Huber, W. W. Moses, M. S. Andreaco, M. Loope, C. L. Melcher, and R. Nutt, “Geometry and surface treatment dependence of the light collection from LSO crystals,” Nucl. Instrum. Methods Phys. Res. A 437(2–3), 374380 (1999).
http://dx.doi.org/10.1016/S0168-9002(99)00766-4
45.
45. G.-C. Wang, J. S. Huber, W. W. Moses, W.-S. Choong, and J. S. Maltz, “Calibration of a PEM detector with depth of interaction measurement,” IEEE Trans. Nucl. Sci. 51(3), 775781 (2004).
http://dx.doi.org/10.1109/TNS.2004.829785
46.
46. Y. Yang et al., “Depth of interaction calibration for PET detectors with dual-ended readout by PSAPDs,” Phys. Med. Biol. 54(2), 433445 (2009).
http://dx.doi.org/10.1088/0031-9155/54/2/017
47.
47. W. W. Moses and S. E. Derenzo, “Design studies for a PET detector module using a PIN photodiode to measure depth of interaction,” IEEE Trans. Nucl. Sci. 41(4), 14411445 (1994).
http://dx.doi.org/10.1109/23.322929
48.
48. H. Du, Y. Yang, and S. Cherry, “Measurements of wavelength shifting (WLS) fibre readout for a highly multiplexed, depth-encoding PET detector,” Phys. Med. Biol. 52(9), 24992514 (2007).
http://dx.doi.org/10.1088/0031-9155/52/9/011
49.
49. E. P. Delfino, S. Majewski, R. R. Raylman, and A. Stolin, “Towards 1mm PET resolution using DOI modules based on dual-sided SiPM readout,” IEEE Nucl. Sci. Symp. Med. Imaging Conf. 34423449 (2010).
http://dx.doi.org/10.1109/NSSMIC.2010.5874446
50.
50. C. Bircher and Y. Shao, “Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout,” Med. Phys. 39(2), 777787 (2012).
http://dx.doi.org/10.1118/1.3676688
51.
51. Y. Shao, R. Yao, and T. Ma, “A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout,” Med. Phys. 35(12), 58295840 (2008).
http://dx.doi.org/10.1118/1.3021118
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/8/10.1118/1.4890609
Loading
/content/aapm/journal/medphys/41/8/10.1118/1.4890609
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/8/10.1118/1.4890609
2014-07-31
2014-12-20

Abstract

The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields.

The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25m cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the , coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated 18F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator.

All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm.

The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/8/1.4890609.html;jsessionid=943wdwb8cejs.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/8/10.1118/1.4890609&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/8/10.1118/1.4890609
10.1118/1.4890609
SEARCH_EXPAND_ITEM