Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. S. Judenhofer et al., “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14(4), 459465 (2008).
2. H.-P. W. Schlemmer et al., “Simultaneous MR/PET imaging of the human brain: Feasibility study,” Radiology 248(3), 10281035 (2008).
3. B. J. Pichler, A. Kolb, T. Nägele, and H.-P. Schlemmer, “PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications,” J. Nucl. Med. 51(3), 333336 (2010).
4. G. Delso et al., “Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner,” J. Nucl. Med. 52(12), 19141922, (2011).
5. A. Kolb et al., “Technical performance evaluation of a human brain PET/MRI system,” Eur. Radiol. 22(8), 17761788 (2012).
6. N. F. Schwenzer et al., “Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients–current state of image quality,” Eur. J. Radiol. 81(11), 34723478 (2012).
7. F. W. Hirsch et al., “PET/MR in children: Initial clinical experience in paediatric oncology using an integrated PET/MR scanner,” Pediatr. Radiol. 43(7), 860875 (2013).
8. H. F. Wehrl et al., “Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C choline positron emission tomography,” Cancer Res. 73(5), 14701480 (2013).
9. H. F. Wehrl et al., “Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales,” Nat. Med. 19(9), 11841189 (2013).
10. C. Y. Sander et al., “Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 110(27), 1116911174 (2013).
11. H. F. Wehrl, P. Martirosian, F. Schick, G. Reischl, and B. J. Pichler, “Assessment of rodent brain activity using combined [(15)O]H2O-PET and BOLD-fMRI,” Neuroimage 89, 271279 (2014).
12. B. Pichler et al., “Studies with a prototype high resolution PET scanner based on LSO-APD modules,” IEEE Trans. Nucl. Sci. 45(3), 12981302 (1998).
13. A. Saoudi and R. Lecomte, “A novel APD-based detector module for multi-modality PET/SPECT/CT scanners,” IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2, 10891094 (1999).
14. B. J. Pichler, B. K. Swann, J. Rochelle, R. E. Nutt, S. R. Cherry, and S. B. Siegel, “Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET,” Phys. Med. Biol. 49(18), 43054319 (2004).
15. B. J. Pichler et al., “Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med. 47(4), 639647 (2006).
16. C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47(12), 19681976 (2006).
17. M. S. Judenhofer et al., “PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet,” Radiology 244(3), 807814 (2007).
18. P. Buzhan et al., “Silicon photomultiplier and its possible applications,” Nucl. Instrum. Methods Phys. Res. A 504(1–3), 4852 (2003).
19. A. N. Otte et al., “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods Phys. Res. A 545(3), 705715 (2005).
20. R. Scheuermann et al., “Scintillation detectors for operation in high magnetic fields: Recent developments based on arrays of avalanche microchannel photodiodes,” Nucl. Instrum. Methods Phys. Res. A 581(1–2), 443446 (2007).
21. A. Kolb, E. Lorenz, M. S. Judenhofer, D. Renker, K. Lankes, and B. J. Pichler, “Evaluation of Geiger-mode APDs for PET block detector designs,” Phys. Med. Biol. 55(7), 18151832, (2010).
22. D. R. Schaart et al., “LaBr(3):Ce and SiPMs for time-of-flight PET: Achieving 100 ps coincidence resolving time,” Phys. Med. Biol. 55(7), N179N189 (2010).
23. J. Kang et al., “A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging,” J. Instrum. 6(08), P08012 (2011).
24. V. Schulz et al., “SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments,” 2011 IEEE Nucl. Sci. Symp. Conf. Rec. 44674469 (2011).
25. S. J. Hong, H. G. Kang, G. B. Ko, I. C. Song, J.-T. Rhee, and J. S. Lee, “SiPM-PET with a short optical fiber bundle for simultaneous PET-MR imaging,” Phys. Med. Biol. 57(12), 38693883 (2012).
26. H. S. Yoon et al., “Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner,” J. Nucl. Med. 53(4), 608614, (2012).
27. S. Yamamoto and T. Watabe, “Simultaneous imaging using SiPM-based PET and MRI for development of an integrated PET/MRI system,” Phys. Med. 57(2), N1N13, (2012).
28. W. W. Moses, P. R. G. Virador, S. E. Derenzo, R. H. Huesman, and T. F. Budinger, “Design of a high-resolution, high-sensitivity PET camera for human brains and small animals,” IEEE Trans. Nucl. Sci. 44(4), 14871491 (1997).
29. M. E. Casey and R. Nutt, “A multicrystal two dimensional BGO detector system for positron emission tomography,” IEEE Trans. Nucl. Sci. 33(1), 460463 (1986).
30. H. W. A. M. de Jong, F. H. P. van Velden, R. W. Kloet, F. L. Buijs, R. Boellaard, and A. A. Lammertsma, “Performance evaluation of the ECAT HRRT: An LSO-LYSO double layer high resolution, high sensitivity scanner,” Phys. Med. Biol. 52(5), 15051526 (2007).
31. Y. Yang et al., “A prototype PET scanner with DOI-encoding detectors,” J. Nucl. Med. 49(7), 11321140 (2008).
32. C. C. Constantinescu and J. Mukherjee, “Performance evaluation of an Inveon PET preclinical scanner,” Phys. Med. Biol. 54(9), 28852899 (2009).
33. Y. Yang et al., “Tapered LSO arrays for small animal PET,” Phys. Med. Biol. 56(1), 139153 (2011).
34. S. S. James et al., “Experimental characterization and system simulations of depth of interaction PET detectors using 0.5 mm and 0.7 mm LSO arrays,” Phys. Med. Biol. 54(14), 46054619 (2009).
35. M. V. Green, H. G. Ostrow, J. Seidel, and M. G. Pomper, “Experimental evaluation of depth-of-interaction correction in a small-animal positron emission tomography scanner,” Mol. Imaging 9(6), 311318 (2010).
36. Y.-C. Tai et al., “Performance evaluation of the microPET focus: A third-generation microPET scanner dedicated to animal imaging,” J. Nucl. Med. 46(3), 455463 (2005).
37. S. Blinder et al., “Influence of Depth of Interaction on Spatial Resolution and Image Quality for the HRRT,” IEEE Nucl. Sci. Symp. Conf. Rec. 2005 3, 17651769, (2005).
38. E. Yoshida et al., “System design of a small OpenPET prototype with 4-layer DOI detectors,” Radiol. Phys. Technol. 5(1), 9297 (2012).
39. A. Vandenbroucke, A. M. K. Foudray, P. D. Olcott, and C. S. Levin, “Performance characterization of a new high resolution PET scintillation detector,” Phys. Med. Biol. 55(19), 58955911 (2010).
40. D. P. McElroy, W. Pimpl, B. J. Pichler, M. Rafecas, T. Schuler, and S. I. Ziegler, “Characterization and readout of MADPET-II detector modules: Validation of a unique design concept for high resolution small animal PET,” IEEE Trans. Nucl. Sci. 52(1), 199204 (2005).
41. M. Schmand et al., “Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT,” IEEE Trans. Nucl. Sci. 45(6), 30003006 (1998).
42. K. Wienhard et al., “The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph,” IEEE Trans. Nucl. Sci. 49(1), 104110 (2002).
43. H. Du, Y. Yang, J. Glodo, Y. Wu, K. Shah, and S. R. Cherry, “Continuous depth-of-interaction encoding using phosphor-coated scintillators,” Phys. Med. Biol. 54(6), 17571771 (2009).
44. J. S. Huber, W. W. Moses, M. S. Andreaco, M. Loope, C. L. Melcher, and R. Nutt, “Geometry and surface treatment dependence of the light collection from LSO crystals,” Nucl. Instrum. Methods Phys. Res. A 437(2–3), 374380 (1999).
45. G.-C. Wang, J. S. Huber, W. W. Moses, W.-S. Choong, and J. S. Maltz, “Calibration of a PEM detector with depth of interaction measurement,” IEEE Trans. Nucl. Sci. 51(3), 775781 (2004).
46. Y. Yang et al., “Depth of interaction calibration for PET detectors with dual-ended readout by PSAPDs,” Phys. Med. Biol. 54(2), 433445 (2009).
47. W. W. Moses and S. E. Derenzo, “Design studies for a PET detector module using a PIN photodiode to measure depth of interaction,” IEEE Trans. Nucl. Sci. 41(4), 14411445 (1994).
48. H. Du, Y. Yang, and S. Cherry, “Measurements of wavelength shifting (WLS) fibre readout for a highly multiplexed, depth-encoding PET detector,” Phys. Med. Biol. 52(9), 24992514 (2007).
49. E. P. Delfino, S. Majewski, R. R. Raylman, and A. Stolin, “Towards 1mm PET resolution using DOI modules based on dual-sided SiPM readout,” IEEE Nucl. Sci. Symp. Med. Imaging Conf. 34423449 (2010).
50. C. Bircher and Y. Shao, “Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout,” Med. Phys. 39(2), 777787 (2012).
51. Y. Shao, R. Yao, and T. Ma, “A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout,” Med. Phys. 35(12), 58295840 (2008).

Data & Media loading...


Article metrics loading...



The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields.

The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25m cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the , coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated 18F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator.

All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm.

The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd