1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A Raman cell based on hollow core photonic crystal fiber for human breath analysis
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
    2 Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
    3 Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
    a) Author to whom correspondence should be addressed. Electronic mail: hzeng@bccrc.ca; Telephone: +1-604-675-8083; Fax: +1-604-675-8099.
    Med. Phys. 41, 092701 (2014); http://dx.doi.org/10.1118/1.4892381
/content/aapm/journal/medphys/41/9/10.1118/1.4892381
1.
1. M. Phillips, “Breath tests in medicine,” Sci. Am. 267, 7479 (1992).
http://dx.doi.org/10.1038/scientificamerican0792-74
2.
2. L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography,” Proc. Natl. Acad. Sci. U.S.A. 68, 23742376 (1971).
http://dx.doi.org/10.1073/pnas.68.10.2374
3.
3. M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, “Variation in volatile organic compounds in the breath of normal humans,” J. Chromatogr. B 729, 7588 (1999).
http://dx.doi.org/10.1016/S0378-4347(99)00127-9
4.
4. K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427435 (2006).
http://dx.doi.org/10.1007/s00340-006-2301-3
5.
5. C. J. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C,” IEEE Sens. J. 10, 5463 (2010).
http://dx.doi.org/10.1109/JSEN.2009.2035730
6.
6. C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, “Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization,” J. Chromatogr. B 810, 269275 (2004).
http://dx.doi.org/10.1016/j.jchromb.2004.08.013
7.
7. M. Phillips, R. N. Cataneo, C. Saunders, P. Hope, P. Schmitt, and J. Wai, “Volatile biomarkers in the breath of women with breast cancer,” J. Breath Res. 4, 026003 (2010).
http://dx.doi.org/10.1088/1752-7155/4/2/026003
8.
8. M. Phillips, R. N. Cataneo, B. A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C. S. Kwon, O. Tietje, and C. Wong, “Prediction of breast cancer using volatile biomarkers in the breath,” Breast Cancer Res. Treat. 99, 1921 (2006).
http://dx.doi.org/10.1007/s10549-006-9176-1
9.
9. D. Altomare, M. Di Lena, F. Porcelli, L. Trizio, E. Travaglio, M. Tutino, S. Dragonieri, V. Memeo, and G. De Gennaro, “Exhaled volatile organic compounds identify patients with colorectal cancer,” Br. J. Surg. 100, 144150 (2013).
http://dx.doi.org/10.1002/bjs.8942
10.
10. S. Kumar, J. Huang, N. Abbassi-Ghadi, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer,” Anal. Chem. 85, 61216128 (2013).
http://dx.doi.org/10.1021/ac4010309
11.
11. M. Phillips, R. N. Cataneo, A. R. Cummin, A. J. Gagliardi, K. Gleeson, J. Greenberg, R. A. Maxfield, and W. N. Rom, “Detection of lung cancer with volatile markers in the breath,” Chest 123, 21152123 (2003).
http://dx.doi.org/10.1378/chest.123.6.2115
12.
12. D. Poli, M. Goldoni, M. Corradi, O. Acampa, P. Carbognani, E. Internullo, A. Casalini, and A. Mutti, “Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME–GC/MS,” J. Chromatogr. B 878, 26432651 (2010).
http://dx.doi.org/10.1016/j.jchromb.2010.01.022
13.
13. P. J. Mazzone, X.-F. Wang, Y. Xu, T. Mekhail, M. C. Beukemann, J. Na, J. W. Kemling, K. S. Suslick, and M. Sasidhar, “Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer,” J. Thorac. Oncol. 7, 137142 (2012).
http://dx.doi.org/10.1097/JTO.0b013e318233d80f
14.
14. M. Phillips, K. Gleeson, J. M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and W. P. McVay, “Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study,” Lancet 353, 19301933 (1999).
http://dx.doi.org/10.1016/S0140-6736(98)07552-7
15.
15. J. Rieder, P. Lirk, C. Ebenbichler, G. Gruber, P. Prazeller, W. Lindinger, and A. Amann, “Analysis of volatile organic compounds: Possible applications in metabolic disorders and cancer screening,” Wien. Klin. Wochen. 113, 181185 (2001).
16.
16. A. Critchley, T. S. Elliott, G. Harrison, C. A. Mayhew, J. M. Thompson, and T. Worthington, “The proton transfer reaction mass spectrometer and its use in medical science: Applications to drug assays and the monitoring of bacteria,” Int. J. Mass Spectrom. 239, 235241 (2004).
http://dx.doi.org/10.1016/j.ijms.2004.08.008
17.
17. S. Davies, P. Spanel, and D. Smith, “A new ‘online’ method to measure increased exhaled isoprene in end-stage renal failure,” Nephrol. Dial. Transplant. 16, 836839 (2001).
http://dx.doi.org/10.1093/ndt/16.4.836
18.
18. D. Smith, C. Turner, and P. Spanel, “Volatile metabolites in the exhaled breath of healthy volunteers: Their levels and distributions,” J. Breath Res. 1, 014004 (2007).
http://dx.doi.org/10.1088/1752-7155/1/1/014004
19.
19. H. Dahnke, D. Kleine, P. Hering, and M. Murtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971975 (2001).
http://dx.doi.org/10.1007/s003400100609
20.
20. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of C-13/C-12 for carbon dioxide in human breath,” Anal. Chem. 74, 20032007 (2002).
http://dx.doi.org/10.1021/ac025511d
21.
21. C. Roller, K. Namjou, J. Jeffers, W. Potter, P. J. McCann, and J. Grego, “Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser,” Opt. Lett. 27, 107109 (2002).
http://dx.doi.org/10.1364/OL.27.000107
22.
22. M. J. Navas, A. M. Jiménez, and A. G. Asuero, “Human biomarkers in breath by photoacoustic spectroscopy,” Clin. Chim. Acta 413, 11711178 (2012).
http://dx.doi.org/10.1016/j.cca.2012.04.008
23.
23. C. Grote and J. Pawliszyn, “Solid-phase microextraction for the analysis of human breath,” Anal. Chem. 69, 587596 (1997).
http://dx.doi.org/10.1021/ac960749l
24.
24. H. Yu, L. Xu, and P. Wang, “Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath,” J. Chromatogr. B 826, 6974 (2005).
http://dx.doi.org/10.1016/j.jchromb.2005.08.013
25.
25. R. Hyspler, S. Crhova, J. Gasparic, Z. Zadak, M. Cizkova, and V. Balasova, “Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry,” J. Chromatogr. B 739, 183190 (2000).
http://dx.doi.org/10.1016/S0378-4347(99)00423-5
26.
26. W. Miekisch, J. Herbig, and J. K. Schubert, “Data interpretation in breath biomarker research: Pitfalls and directions,” J. Breath Res. 6, 036007 (2012).
http://dx.doi.org/10.1088/1752-7155/6/3/036007
27.
27. M. Basanta, B. Ibrahim, D. Douce, M. Morris, A. Woodcock, and S. Fowler, “Methodology validation, intra-subject reproducibility and stability of exhaled volatile organic compounds,” J. Breath Res. 6, 026002 (2012).
http://dx.doi.org/10.1088/1752-7155/6/2/026002
28.
28. K. K. Chow, M. Short, and H. Zeng, “A comparison of spectroscopic techniques for human breath analysis,” Biomed. Spectrosc. Imaging 1, 339353 (2012).
http://dx.doi.org/10.3233/BSI-120029
29.
29. R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, and S. C. Erzurum, “Detection of lung cancer by sensor array analyses of exhaled breath,” Am. J. Respir. Crit. Care Med. 171, 12861291 (2005).
http://dx.doi.org/10.1164/rccm.200409-1184OC
30.
30. Y. Okita, T. Katagiri, and Y. Matsuura, “A Raman cell based on hollow optical fibers for breath analysis,” Proc. SPIE 7559, 75590817559085 (2010).
http://dx.doi.org/10.1117/12.841414
31.
31. Y. Okita, T. Katagiri, and Y. Matsuura, “Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection,” Proc. SPIE 7894, 78940N178940N6 (2011).
http://dx.doi.org/10.1117/12.874828
32.
32. T. A. Birks, P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, J. C. Knight, and P. S. Russell, “The fundamental limits to the attenuation of hollow-core photonic crystal fibres,” in Proceedings of the 7th International Conference on Transparent Optical Networks (IEEE, Barcelona, Spain, 2005), Vol. 1, pp. 107110.
33.
33. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 47294749 (2006).
http://dx.doi.org/10.1109/JLT.2006.885258
34.
34. R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol. 27, 15901596 (2009).
http://dx.doi.org/10.1109/JLT.2009.2019258
35.
35. X. F. Li, J. Pawlat, J. X. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” Sens. J. IEEE 10, 11561161 (2010).
http://dx.doi.org/10.1109/JSEN.2010.2040386
36.
36. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Taylor & Francis, New York, 2001).
37.
37. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 44244429 (2009).
http://dx.doi.org/10.1364/AO.48.004424
38.
38. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 42554261 (2008).
http://dx.doi.org/10.1364/AO.47.004255
39.
39. R. Chen, P. J. Codella, R. Guida, A. Zribi, A. Vert, R. Potyrailo, and M. Baller, “Photonic bandgap fiber-enabled Raman detection of nitrogen gas,” Proc. SPIE 7322, 73220N173220N7 (2009).
http://dx.doi.org/10.1117/12.817823
40.
40. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 12691277 (2008).
http://dx.doi.org/10.1364/AO.47.001269
41.
41. A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4, 195200 (1960).
http://dx.doi.org/10.1016/0022-2852(60)90081-3
42.
42. L. C. Hoskins, “Pure rotational raman-spectroscopy—Dry-lab experiment,” J. Chem. Educ. 54, 642643 (1977).
http://dx.doi.org/10.1021/ed054p642
43.
43. G. E. Walrafen and J. Stone, “Raman spectral characterization of pure and doped fused silica optical fibers,” Appl. Spectrosc. 29, 337344 (1975).
http://dx.doi.org/10.1366/000370275774455969
44.
44. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross-section of some simple gases,” J. Opt. Soc. Am. 63, 7377 (1973).
http://dx.doi.org/10.1364/JOSA.63.000073
45.
45. P. Brimblecombe, Air Composition and Chemistry (Cambridge University Press, Cambridge, UK, 1996).
46.
46. R. Altkorn, M. D. Malinsky, R. P. Van Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373381 (2001).
http://dx.doi.org/10.1366/0003702011951939
47.
47. N. V. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental comparison of electromagnetically induced transparency in acetylene-filled kagome and triangular lattice hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science, San Jose, CA (IEEE, 2008), pp. 19531954.
48.
48. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 14851496 (2004).
http://dx.doi.org/10.1364/OPEX.12.001485
49.
49. A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz, M. Ligor, T. Ligor, W. Filipiak, H. Denz, M. Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, A. Haidenberger, B. Buszewski, W. Miekisch, J. Schubert, and A. Amann, “Noninvasive detection of lung cancer by analysis of exhaled breath,” BMC Cancer 9(348), 116 (2009).
http://dx.doi.org/10.1186/1471-2407-9-348
50.
50. I. Kushch, B. Arendacka, S. Stolc, P. Mochalski, W. Filipiak, K. Schwarz, L. Schwentner, A. Schmid, A. Dzien, M. Lechleitner, V. Witkovsky, W. Miekisch, J. Schubert, K. Unterkofler, and A. Amann, “Breath isoprene—Aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study,” Clin. Chem. Lab. Med. 46, 10111018 (2008).
http://dx.doi.org/10.1515/CCLM.2008.181
51.
51. M. O. Trulson and R. A. Mathies, “Excited-state structure and dynamics of isoprene from absolute resonance Raman intensities,” J. Phys. Chem. 94, 57415747 (1990).
http://dx.doi.org/10.1021/j100378a026
52.
52. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express 17, 1863018637 (2009).
http://dx.doi.org/10.1364/OE.17.018630
53.
53. W. Miekisch, S. Kischkel, A. Sawacki, T. Liebau, M. Mieth, and J. K. Schubert, “Impact of sampling procedures on the results of breath analysis,” J. Breath Res. 2, 026007 (2008).
http://dx.doi.org/10.1088/1752-7155/2/2/026007
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/9/10.1118/1.4892381
Loading
/content/aapm/journal/medphys/41/9/10.1118/1.4892381
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/41/9/10.1118/1.4892381
2014-08-13
2014-12-26

Abstract

Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis.

Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis.

A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm−1.

The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the visible wavelengths led to an estimated seven times improvement in the detection sensitivity. The authors’ prototype device also demonstrated a 100-fold improvement over a recently reported detection limit of a reflective capillary fiber-based Raman cell for breath analysis. Continued development is underway to increase the detection sensitivity further to reach practical clinical applications.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/41/9/1.4892381.html;jsessionid=3d8rji8wmtm10.x-aip-live-02?itemId=/content/aapm/journal/medphys/41/9/10.1118/1.4892381&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A Raman cell based on hollow core photonic crystal fiber for human breath analysis
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/41/9/10.1118/1.4892381
10.1118/1.4892381
SEARCH_EXPAND_ITEM