Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Phillips, “Breath tests in medicine,” Sci. Am. 267, 7479 (1992).
2. L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography,” Proc. Natl. Acad. Sci. U.S.A. 68, 23742376 (1971).
3. M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, “Variation in volatile organic compounds in the breath of normal humans,” J. Chromatogr. B 729, 7588 (1999).
4. K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427435 (2006).
5. C. J. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C,” IEEE Sens. J. 10, 5463 (2010).
6. C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, “Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization,” J. Chromatogr. B 810, 269275 (2004).
7. M. Phillips, R. N. Cataneo, C. Saunders, P. Hope, P. Schmitt, and J. Wai, “Volatile biomarkers in the breath of women with breast cancer,” J. Breath Res. 4, 026003 (2010).
8. M. Phillips, R. N. Cataneo, B. A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C. S. Kwon, O. Tietje, and C. Wong, “Prediction of breast cancer using volatile biomarkers in the breath,” Breast Cancer Res. Treat. 99, 1921 (2006).
9. D. Altomare, M. Di Lena, F. Porcelli, L. Trizio, E. Travaglio, M. Tutino, S. Dragonieri, V. Memeo, and G. De Gennaro, “Exhaled volatile organic compounds identify patients with colorectal cancer,” Br. J. Surg. 100, 144150 (2013).
10. S. Kumar, J. Huang, N. Abbassi-Ghadi, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer,” Anal. Chem. 85, 61216128 (2013).
11. M. Phillips, R. N. Cataneo, A. R. Cummin, A. J. Gagliardi, K. Gleeson, J. Greenberg, R. A. Maxfield, and W. N. Rom, “Detection of lung cancer with volatile markers in the breath,” Chest 123, 21152123 (2003).
12. D. Poli, M. Goldoni, M. Corradi, O. Acampa, P. Carbognani, E. Internullo, A. Casalini, and A. Mutti, “Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME–GC/MS,” J. Chromatogr. B 878, 26432651 (2010).
13. P. J. Mazzone, X.-F. Wang, Y. Xu, T. Mekhail, M. C. Beukemann, J. Na, J. W. Kemling, K. S. Suslick, and M. Sasidhar, “Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer,” J. Thorac. Oncol. 7, 137142 (2012).
14. M. Phillips, K. Gleeson, J. M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and W. P. McVay, “Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study,” Lancet 353, 19301933 (1999).
15. J. Rieder, P. Lirk, C. Ebenbichler, G. Gruber, P. Prazeller, W. Lindinger, and A. Amann, “Analysis of volatile organic compounds: Possible applications in metabolic disorders and cancer screening,” Wien. Klin. Wochen. 113, 181185 (2001).
16. A. Critchley, T. S. Elliott, G. Harrison, C. A. Mayhew, J. M. Thompson, and T. Worthington, “The proton transfer reaction mass spectrometer and its use in medical science: Applications to drug assays and the monitoring of bacteria,” Int. J. Mass Spectrom. 239, 235241 (2004).
17. S. Davies, P. Spanel, and D. Smith, “A new ‘online’ method to measure increased exhaled isoprene in end-stage renal failure,” Nephrol. Dial. Transplant. 16, 836839 (2001).
18. D. Smith, C. Turner, and P. Spanel, “Volatile metabolites in the exhaled breath of healthy volunteers: Their levels and distributions,” J. Breath Res. 1, 014004 (2007).
19. H. Dahnke, D. Kleine, P. Hering, and M. Murtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971975 (2001).
20. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of C-13/C-12 for carbon dioxide in human breath,” Anal. Chem. 74, 20032007 (2002).
21. C. Roller, K. Namjou, J. Jeffers, W. Potter, P. J. McCann, and J. Grego, “Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser,” Opt. Lett. 27, 107109 (2002).
22. M. J. Navas, A. M. Jiménez, and A. G. Asuero, “Human biomarkers in breath by photoacoustic spectroscopy,” Clin. Chim. Acta 413, 11711178 (2012).
23. C. Grote and J. Pawliszyn, “Solid-phase microextraction for the analysis of human breath,” Anal. Chem. 69, 587596 (1997).
24. H. Yu, L. Xu, and P. Wang, “Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath,” J. Chromatogr. B 826, 6974 (2005).
25. R. Hyspler, S. Crhova, J. Gasparic, Z. Zadak, M. Cizkova, and V. Balasova, “Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry,” J. Chromatogr. B 739, 183190 (2000).
26. W. Miekisch, J. Herbig, and J. K. Schubert, “Data interpretation in breath biomarker research: Pitfalls and directions,” J. Breath Res. 6, 036007 (2012).
27. M. Basanta, B. Ibrahim, D. Douce, M. Morris, A. Woodcock, and S. Fowler, “Methodology validation, intra-subject reproducibility and stability of exhaled volatile organic compounds,” J. Breath Res. 6, 026002 (2012).
28. K. K. Chow, M. Short, and H. Zeng, “A comparison of spectroscopic techniques for human breath analysis,” Biomed. Spectrosc. Imaging 1, 339353 (2012).
29. R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, and S. C. Erzurum, “Detection of lung cancer by sensor array analyses of exhaled breath,” Am. J. Respir. Crit. Care Med. 171, 12861291 (2005).
30. Y. Okita, T. Katagiri, and Y. Matsuura, “A Raman cell based on hollow optical fibers for breath analysis,” Proc. SPIE 7559, 75590817559085 (2010).
31. Y. Okita, T. Katagiri, and Y. Matsuura, “Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection,” Proc. SPIE 7894, 78940N178940N6 (2011).
32. T. A. Birks, P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, J. C. Knight, and P. S. Russell, “The fundamental limits to the attenuation of hollow-core photonic crystal fibres,” in Proceedings of the 7th International Conference on Transparent Optical Networks (IEEE, Barcelona, Spain, 2005), Vol. 1, pp. 107110.
33. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 47294749 (2006).
34. R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol. 27, 15901596 (2009).
35. X. F. Li, J. Pawlat, J. X. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” Sens. J. IEEE 10, 11561161 (2010).
36. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Taylor & Francis, New York, 2001).
37. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 44244429 (2009).
38. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 42554261 (2008).
39. R. Chen, P. J. Codella, R. Guida, A. Zribi, A. Vert, R. Potyrailo, and M. Baller, “Photonic bandgap fiber-enabled Raman detection of nitrogen gas,” Proc. SPIE 7322, 73220N173220N7 (2009).
40. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 12691277 (2008).
41. A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4, 195200 (1960).
42. L. C. Hoskins, “Pure rotational raman-spectroscopy—Dry-lab experiment,” J. Chem. Educ. 54, 642643 (1977).
43. G. E. Walrafen and J. Stone, “Raman spectral characterization of pure and doped fused silica optical fibers,” Appl. Spectrosc. 29, 337344 (1975).
44. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross-section of some simple gases,” J. Opt. Soc. Am. 63, 7377 (1973).
45. P. Brimblecombe, Air Composition and Chemistry (Cambridge University Press, Cambridge, UK, 1996).
46. R. Altkorn, M. D. Malinsky, R. P. Van Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373381 (2001).
47. N. V. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental comparison of electromagnetically induced transparency in acetylene-filled kagome and triangular lattice hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science, San Jose, CA (IEEE, 2008), pp. 19531954.
48. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 14851496 (2004).
49. A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz, M. Ligor, T. Ligor, W. Filipiak, H. Denz, M. Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, A. Haidenberger, B. Buszewski, W. Miekisch, J. Schubert, and A. Amann, “Noninvasive detection of lung cancer by analysis of exhaled breath,” BMC Cancer 9(348), 116 (2009).
50. I. Kushch, B. Arendacka, S. Stolc, P. Mochalski, W. Filipiak, K. Schwarz, L. Schwentner, A. Schmid, A. Dzien, M. Lechleitner, V. Witkovsky, W. Miekisch, J. Schubert, K. Unterkofler, and A. Amann, “Breath isoprene—Aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study,” Clin. Chem. Lab. Med. 46, 10111018 (2008).
51. M. O. Trulson and R. A. Mathies, “Excited-state structure and dynamics of isoprene from absolute resonance Raman intensities,” J. Phys. Chem. 94, 57415747 (1990).
52. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express 17, 1863018637 (2009).
53. W. Miekisch, S. Kischkel, A. Sawacki, T. Liebau, M. Mieth, and J. K. Schubert, “Impact of sampling procedures on the results of breath analysis,” J. Breath Res. 2, 026007 (2008).

Data & Media loading...


Article metrics loading...



Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis.

Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis.

A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm−1.

The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the visible wavelengths led to an estimated seven times improvement in the detection sensitivity. The authors’ prototype device also demonstrated a 100-fold improvement over a recently reported detection limit of a reflective capillary fiber-based Raman cell for breath analysis. Continued development is underway to increase the detection sensitivity further to reach practical clinical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd