Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Zheng, J. Fontenot, P. Taddei, D. Mirkovic, and W. Newhauser, “Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit,” Phys. Med. Biol. 53, 187201 (2008).
2. X. G. Xu, B. Bednarz, and H. Paganetti, “A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction,” Phys. Med. Biol. 53, R193R241 (2008).
3. R. M. Howell, M. S. Ferenci, N. E. Hertel, G. D. Fullerton, T. Fox, and L. W. Davis, “Measurements of secondary neutron dose from 15 MV and 18 MV IMRT,” Radiat. Prot. Dosim. 115, 508512 (2005).
4. K. R. Kase, X. S. Mao, W. R. Nelson, J. C. Liu, J. H. Kleck, and M. Elsalim, “Neutron fluence and energy spectra around the Varian Clinac 2100C/2300C medical accelerator,” Health Phys. 74, 3847 (1998).
5. S. F. Kry, R. M. Howell, U. Titt, M. Salehpour, R. Mohan, and O. N. Vassiliev, “Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter-free Clinac,” Med. Phys. 35, 19061911 (2008).
6. A. Banuelos-Frias, C. G. Borja-Hernandez, K. A. Guzman-Garcia, C. Valero-Luna, V. M. Hernandez-Davila, and H. R. Vega-Carrillo, “Neutron spectra and h*(10) of photoneutrons inside the vault room of an 18 MV linac,” Rev. Mex. Fis. 58, 192194 (2012).
7. J. Benites, H. R. Vega-Carrillo, V. M. Hernandez-Davila, T. Rivera, A. Carrillo, and R. Mondragon, “Neutron spectra and h*(10) in a 15 MV linac,” AIP Conf. Proc. 1310, 4447 (2010).
8. H. R. Vega-Carrillo, W. H. Chu, C. J. Tung, and J. H. Lan, “Neutron spectra in a 15 MV linac,” AIP Conf. Proc. 1310, 158161 (2010).
9. W. Newhauser, J. Fontenot, Y. S. Zheng, J. Polf, U. Titt, N. Koch, X. Zhang, and R. Mohan, “Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm,” Phys. Med. Biol. 52, 45694584 (2007).
10. H. Paganetti, H. Jiang, S. Y. Lee, and H. M. Kooy, “Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility,” Med. Phys. 31, 21072118 (2004).
11. U. Schneider, S. Agosteo, E. Pedroni, and J. Besserer, “Secondary neutron dose during proton therapy using spot scanning,” Int. J. Radiat. Oncol., Biol., Phys. 53, 244251 (2002).
12. Y. Zheng, W. Newhauser, J. Fontenot, P. Taddei, and R. Mohan, “Monte Carlo study of neutron dose equivalent during passive scattering proton therapy,” Phys. Med. Biol. 52, 44814496 (2007).
13. H. Paganetti, Late Effects from Scattered and Secondary Radiation in Proton Therapy Physics (Taylor & Francis, Boca Raton, 2012), pp. 593626.
14. D. Shin, M. Yoon, J. Kwak, J. Shin, S. B. Lee, S. Y. Park, S. Park, D. Y. Kim, and K. H. Cho, “Secondary neutron doses for several beam configurations for proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 74, 260265 (2009).
15. Y. S. Zheng, Y. X. Liu, O. Zeidan, A. N. Schreuder, and S. Keole, “Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams,” Med. Phys. 39, 34843492 (2012).
16. D. Hecksel, V. Anferov, M. Fitzek, and K. Shahnazi, “Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy,” Med. Phys. 37, 29102917 (2010).
17. S. Yonai, N. Matsufuji, T. Kanai, Y. Matsui, K. Matsushita, H. Yamashita, M. Numano, T. Sakae, T. Terunuma, T. Nishio, R. Kohno, and T. Akagi, “Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies,” Med. Phys. 35, 47824792 (2008).
18. X. Wang, N. Sahoo, R. X. Zhu, J. R. Zullo, and M. T. Gillin, “Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system,” Int. J. Radiat. Oncol., Biol., Phys. 76, 15631570 (2010).
19. B. Mukherjee, J. Lambert, R. Hentschel, and J. Farr, “Explicit estimation of out-of-field neutron and gamma dose equivalents during proton therapy using thermoluminescence-dosimeters,” Radiat. Meas. 46, 19521955 (2011).
20. X. Yan, U. Titt, A. M. Koehler, and W. D. Newhauser, “Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field,” Nucl. Instrum. Methods Phys. Res. A 476, 429434 (2002).
21. D. J. Thomas and A. V. Alevra, “Bonner sphere spectrometers—A critical review,” Nucl. Instrum. Methods Phys. Res. A 476, 1220 (2002).
22. R. L. Bramblett, R. I. Ewing, and T. W. Bonner, “A new type of neutron spectrometer,” Nucl. Instrum. Methods 9, 112 (1960).
23. R. M. Howell, S. F. Kry, E. Burgett, N. E. Hertel, and D. S. Followill, “Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators,” Med. Phys. 36, 40274038 (2009).
24. G. Coutrakon, J. Cortese, A. Ghebremedhin, J. Hubbard, J. Johanning, P. Koss, G. Maudsley, C. R. Slater, C. Zuccarelli, and J. Robertson, “Microdosimetry spectra of the loma linda proton beam and relative biological effectiveness comparisons,” Med. Phys. 24, 14991506 (1997).
25. A. Perez-Andujar, P. M. DeLuca, A. E. Thornton, M. Fitzek, D. Hecksel, and J. Farr, “Microdosimetric measurements for neutron-absorbed dose determination during proton therapy,” Radiat. Prot. Dosim. 151, 365373 (2012).
26. S. Yonai, Y. Kase, N. Matsufuji, T. Kanai, T. Nishio, M. Namba, and W. Yamashita, “Measurement of absorbed dose, quality factor, and dose equivalent in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies,” Med. Phys. 37, 40464055 (2010).
27. C. Birattari, P. Cappellaro, A. Mitaroff, and M. Silari, “Development of an extended range Bonner sphere spectrometer,” Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Lisbon, Portugal, 23–26 October 2000, Vol. 33, No. 15, pp. 11571162.
28. E. A. Burgett, A Broad Spectrum Neutron Spectrometer Utilizing a High Energy Bonner Sphere Extension (Georgia Institute of Technology, Atlanta, GA, 2008).
29. E. Hohmann, M. Luszik-Bhadra, H. Schuhmacher, B. Wiegel, and G. Fehrenbacher, “Bonner sphere system with active detector for measurements in pulsed neutron fields,” Nucl. Technol. 172, 273277 (2010).
30. R. M. Howell, E. A. Burgett, N. E. Hertel, S. F. Kry, Z. Wang, and M. Salehpour, “Measurement of high-energy neutron spectra with a Bonner sphere extension system,” Nucl. Technol. 168, 333339 (2009).
31. B. Wiegel and A. V. Alevra, “Nemus - the PTB neutron multisphere spectrometer: Bonner spheres and more,” Nucl. Instrum. Methods Phys. Res. A 476, 3641 (2002).
32. A. Cheminet, G. Hubert, V. Lacoste, D. Maurin, and L. Derome, “Cosmic ray solar modulation and Forbush decrease analyses based on atmospheric neutron spectrometry at mountain altitude and geant4 simulations of extensive air showers,” J. Geophys. Res., [Space Phys.] 118, 74887496, doi:10.1002/2013JA019166 (2013).
33. A. Cheminet, V. Lacoste, G. Hubert, D. Boscher, D. Boyer, and J. Poupeney, “Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with hermeis,” IEEE Trans. Nucl. Sci. 59, 17221730 (2012).
34. M. S. Gordon, R. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang, J. M. Clem, and P. Bailey, “Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground,” IEEE Trans. Nucl. Sci. 51, 34273434 (2004).
35. E. Hohmann, G. Fehrenbacher, S. Khurana, T. Radon, M. Reginatto, D. Schardt, H. Schuhmacher, and B. Wiegel, “The simulated workplace field with a high-energy neutron component produced by irradiating a fe-target with 200 MeV/u c-12-ions,” Radiat. Meas. 45, 11051108 (2010).
36. S. Agosteo, C. Birattari, E. Dimovasili, A. F. Para, M. Silari, L. Ulrici, and H. Vincke, “Neutron production from 40 gev/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 degrees,” Nucl. Instrum. Methods Phys. Res. B 229, 2434 (2005).
37. S. Agosteo, C. Birattari, A. F. Para, L. Gini, A. Mitaroff, M. Silari, and L. Ulrici, “Neutron production from 158 gev/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 degrees,” Nucl. Instrum. Methods Phys. Res. B 194, 399408 (2002).
38. K. Amgarou, R. Bedogni, C. Domingo, A. Esposito, A. Gentile, G. Carinci, and S. Russo, “Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers,” Nucl. Instrum. Methods Phys. Res. A 654, 399405 (2011).
39. R. Bedogni and A. Esposito, “Measurements of neutron spectrum in the high-energy DA Phi NE accelerator complex with an extended range Bonner sphere spectrometer,” Nucl. Technol. 168, 615619 (2009).
40. A. Esposito, R. Bedogni, C. Domingo, M. J. Garcia, and K. Amgarou, “Measurements of leakage neutron spectra from a high-energy accumulation ring using extended range Bonner sphere spectrometers,” Radiat. Meas. 45, 15221525 (2010).
41. R. M. Howell, E. A. Burgett, B. Wiegel, and N. E. Hertel, “Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry,” Radiat. Meas. 45, 12331237 (2010).
42. A. Smith, M. Gillin, M. Bues, X. R. Zhu, K. Suzuki, R. Mohan, S. Woo, A. Lee, R. Komaki, J. Cox, K. Hiramoto, H. Akiyama, T. Ishida, T. Sasaki, and K. Matsuda, “The M. D. Anderson proton therapy system,” Med. Phys. 36, 40684083 (2009).
43. International Atomic Energy Agency, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water (International Atomic Energy Agency, Vienna, 2000).
44. M. Reginatto, “The “few-channel” unfolding programs in the UMG package: Mxd_fc33, grv_fc33 and iqu_fc33,” UMG package, Version 3.3, March 1, 2004.
45. M. Reginatto and P. Goldhagen, “Maxed, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data,” Health Phys. 77, 579583 (1999).
46. M. Reginatto, P. Goldhagen, and S. Neumann, “Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed,” Nucl. Instrum. Methods Phys. Res. A 476, 242246 (2002).
47. E. A. Burgett, M. Reginatto, B. Wiegel, R. M. Howell, H. Schuhmacher, and N. E. Hertel, “UMGjava: A software package for unfolding and further analysis of data from particle spectrometers,” Trans. Am. Nucl. Soc. 103, 627628 (2010).
48. D. B. Pelowitz, Mcnpx 2.6.0 manual, la-cp-07-1473, Loa Alamos National Laboratory, 2008.
49. S. C. Frankle, Summary documentation for the endl92 continuous-energy neutron data library (release 1), lanl unclassified release, 1996.
50. S. G. Mashnik, K. K. Gudima, M. I. Baznat, A. J. Sierk, R. E. Prael, and N. V. Mokhov, Report No. LA-UR-06-1764, 2006.
51. ICRP, “International Commission on Radiation Protection and Measurements Publication 74: Conversion coefficients for use in radiological protection,” Ann. ICRP 26, 1205 (1996).
52. International Commission in Radiation Units and Measurements, “Conversion coefficients for use in radiological protection against external radiation,” ICRU Report No. 57 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1998).
53. J. Fontenot, P. Taddei, Y. Zheng, D. Mirkovic, T. Jordan, and W. Newhauser, “Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer,” Phys. Med. Biol. 53, 16771688 (2008).
54. W. D. Newhauser, U. Titt, D. Dexheimer, X. Yan, and S. Nill, “Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center,” Nucl. Instrum. Methods Phys. Res. A 476, 8084 (2002).
55. R. H. Olsher, H. H. Hsu, A. Beverding, J. H. Kleck, W. H. Casson, D. G. Vasilik, and R. T. Devine, “WENDI: An improved neutron REM meter,” Health Phys. 79, 170181 (2000).
56. R. M. Howell, M. S. Ferenci, N. E. Hertel, and G. D. Fullerton, “Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery,” Med. Phys. 32, 786793 (2005).

Data & Media loading...


Article metrics loading...



Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum.

The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients.

The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV.

The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd