Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Siegel, D. Naishadham, Z. Zou, and A. Jemal, “Cancer statistics, 2014,” CA: Cancer J. Clin. 64, 929 (2014).
2. B. J. Davis, E. M. Horwitz, W. R. Lee, J. M. Crook, R. G. Stock, G. S. Merrick, W. M. Butler, P. D. Grimm, N. N. Stone, L. Potters, A. L. Zietman, and M. J. Zelefsky, “American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy,” Brachytherapy 11, 619 (2012).
3. S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: Report of the American Brachytherapy Society,” Int. J. Radiat. Oncol., Biol., Phys. 51, 14221430 (2001).
4. B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant TRUS images,” Med. Phys. 30, 898900 (2003).
5. A. Polo, C. Salembier, J. Venselaar, and P. Hoskin, “Review of intraoperative imaging and planning techniques in permanent seed prostate brachytherapy,” Radiother. Oncol. 94, 1223 (2010).
6. H. Westendorp, C. J. Hoekstra, A. van't Riet, A. W. Minken, and J. J. Immerzeel, “Intraoperative adaptive brachytherapy of iodine-125 prostate implants guided by C-arm cone-beam computed tomography-based dosimetry,” Brachytherapy 6, 231237 (2007).
7. A. V. D’Amico, R. Cormack, S. Kumar, and C. M. Tempany, “Real-time magnetic resonance imaging-guided brachytherapy in the treatment of selected patients with clinically localized prostate cancer,” J. Endourol. 14, 367370 (2000).
8. F. G. Mitri, P. Trompette, and J. Chapelon, “Improving the use of vibro-acoustography for brachytherapy metal seed imaging: A feasibility study,” IEEE Trans. Med. Imaging 23, 16 (2004).
9. F. G. Mitri, B. J. Davis, M. W. Urban, A. Alizad, J. F. Greenleaf, G. H. Lischer, T. M. Wilson, and M. Fatemi, “Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate—Preliminary results and technical feasibility,” Ultrasonics 49, 389394 (2009).
10. J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2, 22432254 (2011).
11. T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt. 16, 080502 (2011).
12. N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 066005 (2012).
13. L. Gong, P. S. Cho, B. H. Han, K. E. Wallner, S. G. Sutlief, S. D. Pathak, D. R. Haynor, and Y. Kim, “Ultrasonography and fluoroscopic fusion for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 54, 13221330 (2002).
14. D. A. Todor, M. Zaider, G. N. Cohen, M. F. Worman, and M. J. Zelefsky, “Intraoperative dynamic dosimetry for prostate implants,” Phys. Med. Biol. 48, 11531171 (2003).
15. D. French, J. Morris, M. Keyes, O. Goksel, and S. Salcudean, “Computing intraoperative dosimetry for prostate brachytherapy using TRUS and fluoroscopy,” Acad. Radiol. 12, 12621272 (2005).
16. D. R. Reed, K. E. Wallner, S. Narayanan, S. G. Sutlief, E. C. Ford, and P. S. Cho, “Intraoperative fluoroscopic dose assessment in prostate brachytherapy patients,” Int. J. Radiat. Oncol., Biol., Phys. 63, 301307 (2005).
17. Y. Su, B. Davis, M. Herman, and R. Robb, “TRUS-fluoroscopy fusion for intraoperative prostate brachytherapy dosimetry,” Stud. Health Technol. Inf. 119, 532537 (2006).
18. A. Jain, A. Deguet, I. Iordachita, G. Chintalapani, S. Vikal, J. Blevins, Y. Le, E. Armour, C. Burdette, D. Song, and G. Fichtinger, “Intra-operative 3D guidance and edema detection in prostate brachytherapy using a non-isocentric C-arm,” Med. Image Anal. 16, 731743 (2012).
19. A. K. Jain, T. Mustafa, Y. Zhou, C. Burdette, G. S. Chirikjian, and G. Fichtinger, “FTRAC—A robust fluoroscope tracking fiducial,” Med. Phys. 32, 31853198 (2005).
20. S. Vikal, A. K. Jain, A. Deguet, D. Song, and G. Fichtinger, “TU-EE-A3-03: Automated segmentation of radiographic fiducials for C-Arm tracking,” Med. Phys. 33, 2208 (2006).
21. N. Kuo, A. Deguet, D. Y. Song, E. C. Burdette, J. L. Prince, and J. Lee, “Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy,” Med. Eng. Phys. 34, 6477 (2012).
22. S. Vikal, A. K. Jain, A. Deguet, D. Song, and G. Fichtinger, “WE-C-330A-03: Seed segmentation in C-Arm fluoroscopy for brachytherapy implant reconstruction,” Med. Phys. 33, 2229 (2006).
23. A. K. Jain, Y. Zhou, T. Mustufa, E. C. Burdette, G. S. Chirikjian, and G. Fichtinger, “Matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL),” Med. Phys. 32, 34753492 (2005).
24. A. K. Jain, “Computation of 3D implant coordinates for prostate brachytherapy,” Doctoral dissertation, Johns Hopkins University, 2007.
25. R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, England, 2013).
26. J. Lee, C. Labat, A. K. Jain, D. Y. Song, E. C. Burdette, G. Fichtinger, and J. L. Prince, “REDMAPS: Reduced-dimensionality matching for prostate brachytherapy seed reconstruction,” IEEE Trans. Med. Imaging 30, 3851 (2011).
27. J. Lee, N. Kuo, A. Deguet, E. Dehghan, D. Y. Song, E. C. Burdette, and J. L. Prince, “Intraoperative 3D reconstruction of prostate brachytherapy implants with automatic pose correction,” Phys. Med. Biol. 56, 50115027 (2011).
28. E. Dehghan, J. Lee, P. Fallavollita, N. Kuo, A. Deguet, Y. Le, E. C. Burdette, D. Y. Song, J. L. Prince, and G. Fichtinger, “Ultrasound-fluoroscopy registration for prostate brachytherapy dosimetry,” Med. Image Anal. 16, 13471358 (2012).
29. N. Hansen, “The CMA evolution strategy: A comparing review,” in Towards a New Evolutionary Computation, edited by J. A. Lozano, P. Larranaga, I. Inaka, and E. Bengoetxea (Springer, Berlin, Germany, 2006), pp. 75102.
30. Y. Su, B. J. Davis, K. M. Furutani, M. G. Herman, and R. A. Robb, “Dosimetry accuracy as a function of seed localization uncertainty in permanent prostate brachytherapy: Increased seed number correlates with less variability in prostate dosimetry,” Phys. Med. Biol. 52, 31053119 (2007).
31. P. Fallavollita, Z. Karim Aghaloo, E. C. Burdette, D. Y. Song, P. Abolmaesumi, and G. Fichtinger, “Registration between ultrasound and fluoroscopy or CT in prostate brachytherapy,” Med. Phys. 37, 27492760 (2010).

Data & Media loading...


Article metrics loading...



Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation.

The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration.

The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% for and , respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min.

The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd