Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. Llopart, M. Campbell, D. S. Segundo, E. Pernigotti, and R. Dinapoli, “Medipix2, a 64k pixel read out chip with 55 μm square elements working in single photon counting mode,” in 2001 IEEE Nuclear Science Symposium Conference Record (IEEE, 2001).
2.B. Mikulec, “Development of segmented semiconductor arrays for quantum imaging,” Nucl. Instrum. Meth. A 510, 123 (2003).
3.M. Locker, P. Fisher, S. Krimmel, H. Kruger, M. Lindner, K. Nakazawa, T. Takahashi, and N. Wermes, “Single photon counting x-ray imaging with Si and CdTe single chip pixel detectors and multichip pixel modules,” IEEE Trans. Nucl. Sci. 51, 17171723 (2004).
4.R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, and L. Tlustos, “The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance,” IEEE Trans. Nucl. Sci. 54, 18241829 (2007).
5.C. Carpentieri, M. G. Bisogni, A. D. Guerra, P. Delogu, M. E. Fantacci, J. Fogli, A. Marchi, V. Marzulli, V. Rosso, A. Stefanini, and A. Tofani, “A pixel detector-based single photon-counting system as fast spectrometer for diagnostic x-ray beams.,” Radiat. Prot. Dosim. 129(1–3), 119122 (2008).
6.J. S. Iwanczyk, E. Nygard, O. Meirav, J. Arenson, W. C. Barber, N. E. Hartsough, N. Malakhov, and J. C. Wessel, “Photon counting energy dispersive detector arrays for x-ray imaging,” IEEE. Trans. Nucl. Sci. 56(3), 535542 (2009).
7.K. Taguchi and J. S. Iwanczyk, “Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (14pp.) (2013).
8.S. Feuerlein, E. Roessl, R. Proksa, G. Martens, O. Klass, M. Jeltsch, V. Rasche, H.-J. Brambs, M. H. K. Hoffmann, and J.-P. Schlomka, “Multienergy photon-counting K-edge imaging: Potential for improved luminal depiction in vascular imaging,” Radiology 249, 10101016 (2008).
9.X. Liu, L. Yu, A. N. Primak, and C. H. McCollough, “Quantitative imaging of element composition and mass fraction using dual-energy CT: Three-material decomposition,” Med. Phys. 36, 16021609 (2009).
10.P. M. Shikhaliev, “Projection x-ray imaging with photon energy weighting: Experimental evaluation with a prototype detector,” Phys. Med. Biol. 54, 49714992 (2009).
11.E. Fredenberg, M. Hemmendorff, B. Cederstrom, M. Aslund, and M. Danielsson, “Contrast-enhanced spectral mammography with a photon-counting detector,” Med. Phys. 37, 20172029 (2010).
12.M. A. Hurrell, A. P. H. Butler, N. J. Cook, P. H. Butler, J. P. Ronaldson, and R. Zainon, “Spectral hounsfield units: A new radiological concept,” Eur. Radiol. 10081013 (2011).
13.J. Tanguay, H. K. Kim, and I. A. Cunningham, “A theoretical comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction methods,” Med. Phys. 39, 132142 (2012).
14.P. Baturin, Y. Alivov, and S. Molloi, “Spectral ct imaging of vulnerable plaque with two independent biomarkers,” Phys. Med. Biol. 57, 41174138 (2012).
15.M. J. Tapiovaara and R. F. Wagner, “SNR and DQE analysis of broad spectrum x-ray imaging,” Phys. Med. Biol. 30, 519529 (1985).
16.M. Lundqvist, B. Cederstrom, V. Chmill, M. Danielsson, and B. Hasegawa, “Evaluation of a photon counting x-ray imaging system,” in 2000 IEEE Nuclear Science Symposium Conference Record (IEEE, 2000), Vol. 1, pp. 3–6.
17.L. Abbene, G. Gerardi, F. Principato, S. Del Sordo, R. Ienzi, and G. Raso, “High-rate x-ray spectroscopy in mammography with a CdTe detector:A digital pulse processing approach,” Med. Phys. 37(12), 61476156 (2010).
18.F. F. Schmitzberger, E. M. Fallenberg, R. Lawaczeck, M. Hemmendorff, E. Moa, M. Danielsson, U. Bick, S. Diekmann, A. Pollinger, F. J. Engelken, and F. Diekmann, “Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging,” Radiology 259, 558564 (2011).
19.L. Abbene, G. Gerardi, F. Principato, S. Del Sordo, and G. Raso, “Direct measurement of mammographic x-ray spectra with a digital CdTe detection system,” Sensors (Basel) 12(6), 83908404 (2012).
20.E. Fredenberg, D. R. Dance, P. Willsher, E. Moa, M. von Tiedemann, K. C. Young, and M. G. Wallis, “Measurement of breast-tissue x-ray attenuation by spectral mammography: First results on cyst fluid,” Phys. Med. Biol. 58, 86098620 (2013).
21.P. M. Shikhaliev, “Energy-resolved computed tomography: First experimental results,” Phys. Med. Biol. 53, 55955613 (2008).
22.P. M. Shikhaliev and S. G. Fritz, “Photon counting spectral CT versus conventional CT: Comparative evaluation for breast imaging application,” Phys. Med. Biol. 56, 19051930 (2011).
23.H. Ding, M. J. Klopfer, J. L. Ducote, F. Masaki, and S. Molloi, “Breast tissue characterization with photon-counting spectral ct imaging: A postmortem breast study,” Radiology, 272(3), 731738 (2014).
24.S. Weigel, S. Berkemeyer, R. Girnus, A. Sommer, H. Lenzen, and W. Heindel, “Digital mammography screening with photon-counting technique: Can a high diagnostic performance be realized at low mean glandular dose?,” Radiology 271, 345355 (2014).
25.M. Yveborg, M. Danielsson, and H. Bornefalk, “Performance evaluation of a sub-millimetre spectrally resolved ct system on high- and low-frequency imaging tasks: A simulation,” Phys. Med. Biol. 57, 23732391 (2012).
26.A. M. Alessio and L. R. MacDonald, “Quantitative material characterization from multi-energy photon counting CT,” Med. Phys. 40, 031108 (8pp.) (2013).
27.H. Bornefalk, C. Xu, C. Svensson, and M. Danielsson, “Design considerations to overcome cross talk in a photon counting silicon strip detector for computed tomography,” Nucl. Instrum. Meth. A 621, 371378 (2010).
28.X. Wang, D. Meier, S. Mikkelsen, G. E. Maehlum, D. J. Wagenaar, B. M. W. Tsui, B. E. Patt, and E. C. Frey, “MicroCT with energy-resolved photon-counting detectors,” Phys. Med. Biol. 56, 27912816 (2011).
29.A. Korn, M. Firsching, G. Anton, M. Hoheisel, and T. Michel, “Investigation of charge carrier transport and charge sharing in x-ray semiconductor pixel detectors such as Medipix2,” Nucl. Instrum. Meth. A 576, 239242 (2007).
30.P. M. Shikhaliev, S. G. Fritz, and J. W. Chapman, “Photon counting multienergy x-ray imaging: Effect of the characteristic x rays on detector performance,” Med. Phys. 36, 51075119 (2009).
31.R. J. Acciavatti and D. A. Maidment, “A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors,” Med. Phys. 37, 64806495 (2010).
32.M. Rabbani, R. Shaw, and R. V. Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895901 (1987).
33.I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417427 (1994).
34.J. H. Siewerdsen, L. E. Antonuk, Y. el Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 7189 (1997).
35.I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. A 16, 621632 (1999).
36.I. A. Cunningham, Handbook of Medical Imaging (SPIE, Bellingham, WA, 2000), Chap. 2, pp. 79160.
37.S. Richard, J. H. Siewerdsen, D. A. Jaffray, D. J. Moseley, and B. Bakhtiar, “Generalized DQE analysis of radiographic and dual-energy imaging using flat-panel detectors,” Med. Phys. 32, 13971413 (2005).
38.G. Hajdok, J. Yao, J. J. Battista, and I. A. Cunningham, “Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors,” Med. Phys. 33, 36013620 (2006).
39.R. Akbarpour, S. N. Friedman, J. H. Siewerdsen, J. D. Neary, and I. A. Cunningham, “Signal and noise transfer in spatiotemporal quantum-based imaging systems,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, B151B164 (2007).
40.G. Hajdok, J. J. Battista, and I. A. Cunningham, “Fundamental x-ray interaction limits in diagnostic imaging detectors: Frequency-dependent Swank noise,” Med. Phys. 35, 31943204 (2008).
41.S. Yun, J. Tanguay, H. K. Kim, and I. A. Cunningham, “Cascaded-systems analysis and the detective quantum efficiency of single-Z x-ray detectors include photoelectric, coherent and incoherent interactions,” Med. Phys. 40, 041916 (16pp.) (2013).
42.J. Tanguay, S. Yun, H. K. Kim, and I. A. Cunningham, “Cascaded systems analyses of photon-counting x-ray detectors,” Proc. SPIE 8668, 0S10S14 (2013).
43.J. Tanguay, S. Yun, H. K. Kim, and I. A. Cunningham, “The detective quantum efficiency of photon-counting x-ray detectors using cascaded systems analyses,” Med. Phys. 40, 041913 (15pp.) (2013).
44.R. K. Swank, “Absorption and noise in x-ray phosphors,” J. Appl. Phys. 44, 41994203 (1973).
45.R. K. Swank, “Measurement of absorption and noise in an x-ray image intensifier,” J. Appl. Phys. 45, 36733678 (1974).
46.J. Tanguay, H. K. Kim, and I. A. Cunningham, “The role of x-ray swank factor in energy-resolving photon-counting imaging,” Med. Phys. 37, 62056211 (2010).
47.S. Yun, H. K. Kim, H. Youn, J. Tanguay, and I. A. Cunningham, “Analytic model of energy-absorption response functions in compound x-ray detector materials,” IEEE Trans. Med. Imaging 32, 18191828 (2013).
48.K. Taguchi, E. C. Frey, X. Wang, J. S. Iwanczyk, and W. C. Barber, “An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors,” Med. Phys. 37, 39573969 (2010).
49.A. S. Wang, D. Harrison, V. Lobastov, and J. E. Tkaczyk, “Pulse pileup statistics for energy discriminating photon counting x-ray detectors,” Med. Phys. 38, 42654275 (2011).
50.E. Roessl, H. Daerra, K. J. Engel, A. Thran, C. Schirra, and R. Proksa, “Combined effects of pulse pile-up and energy response in energy-resolved, photon-counting computed tomography,” in IEEE Nuclear Science Symposium Conference Record (IEEE, 2011), pp. 2309–2313.
51.R. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill Science, New York, NY, 1999).
52.S. N. Friedman and I. A. Cunningham, “A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems,” Med. Phys. 37(11), 60616069 (2010).
53.J. Yao and I. A. Cunningham, “Parallel cascades: New ways to describe noise transfer in medical imaging systems,” Med. Phys. 28, 20202038 (2001).
54.M. Sattarivand and I. A. Cunningham, “Computational engine for development of complex cascaded models of signal and noise in x-ray imaging systems,” IEEE Trans. Med. Imaging 24(2), 211222 (2005).
55.A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3 ed. (McGraw-Hill, Inc., New York, NY, 1991).
56.R. V. Metter and M. Rabbani, “An application of multivariate moment-generating functions to the analysis of signal and noise propagation in radiographic screen-film systems,” Med. Phys. 17(1), 6571 (1990).
57.W. Shockley, “Currents to conductors induced by a moving point charge,” J. Appl. Phys. 9(10), 635636 (1938).
58.S. Ramo, “Currents induced by electron motion,” Proc. IRE 27(9), 584585 (1939).
59.K. Hecht, “Zum mechanismus des lichtelektrischen primarstromes in isolierenden kristallen,” Z. Phys. 77, 235245 (1932).
60.G. Knoll, Radiation Detection and Measurement (Wiley, New York, NY, 2000).
61.S. O. Kasap, “X-ray sensitivity of photoconductors: Applications to stabilized a-Se,” J. Phys. D: Appl. Phys. 33, 28532865 (2000).
62.J. Tanguay, H. K. Kim, and I. A. Cunningham, “Extension of cascaded systems analysis to single-photon-counting x-ray detectors,” Proc. SPIE 8313(10), 113 (2012).
63.G. Hajdok, J. J. Battista, and I. A. Cunningham, “Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution,” Med. Phys. 35, 31803193 (2008).
64.F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley-Interscience, New York, NY, 1986).
65.T. R. Melzer, N. J. Cook, A. P. Butler, R. Watts, N. Anderson, R. Tipples, and P. H. Butler, “Spectroscopic biomedical imaging with the Medipix2 detector,” Australas. Phys. Eng. Sci. Med. 31, 300306 (2008).
66.R. van Gastel, I. Sikharulidze, S. Schramm, J. P. Abrahams, B. Poelsema, R. M. Tromp, and S. J. van der Molen, “Medipix 2 detector applied to low energy electron microscopy,” Ultramicroscopy 110, 3335 (2009).
67.J. A. Rowlands and J. Yorkston, Handbook of Medical Imaging (SPIE, Bellingham, WA, 2000), Chap. 4, pp. 223329.
68.C. Xu, M. Danielsson, and H. Bornefalk, “Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography,” IEEE Trans. Nucl. Sci. 58, 614625 (2011).

Data & Media loading...


Article metrics loading...



Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning.

The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study.

Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE.

The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd