Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.CDC Data and Statistics, 2015.
2.K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40, 100901(19pp.) (2013).
3.D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, “Light-induced superconductivity in a Stripe-ordered cuprate,” Science 331, 189191 (2011).
4.R. Mankowsky, A. Subedi, M. Forst, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, and A. Cavalleri, “Nonlinear lattice dynamics as a basis for enhanced superconductivity in Y Ba2Cu3O6.5,” Nature 516, 7173 (2014).
5.G. Wang, J. Zhang, H. Gao, V. Weir, H. Y. Yu, W. X. Cong, X. C. Xu, H. O. Shen, J. Bennett, M. Furth, Y. Wang, and M. Vannier, “Towards omni-tomography-grand fusion of multiple modalities for simultaneous interior tomography,” Plos One 7, e39700 (2012).
6.C. Z. Cooley, J. P. Stockmann, B. D. Armstrong, M. Sarracanie, M. H. Lev, M. S. Rosen, and L. L. Wald, “Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils,” Magn. Reson. Med. 73, 872883 (2015).
7.D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine, J. L. Duerk, and M. A. Griswold, “Magnetic resonance fingerprinting,” Nature 495, 187192 (2013).
8.G. Wang and H. Y. Yu, “The meaning of interior tomography,” Phys. Med. Biol. 58, R161R186 (2013).
9.S. R. Cherry, “Multimodality Imaging: Beyond PET/CT and SPECT/CT,” Semin. Nucl. Med. 39, 348353 (2009).
10.T. Pfluger, C. la Fougere, J. Stauss, R. Santos, C. Vollmar, and K. Hahn, “Combined scanners (PET/CT, SPECT/CT) versus multimodality imaging with separated systems,” Der Radiologe 44, 11051112 (2004).
11.D. Papathanassiou and J.-C. Liehn, “The growing development of multimodality imaging in oncology,” Crit. Rev. Oncol./Hematol. 68, 6065 (2008).
12.J.-C. Brisset, B. A. Hoff, T. L. Chenevert, J. A. Jacobson, J. L. Boes, S. Galbán, A. Rehemtulla, T. D. Johnson, K. J. Pienta, and C. J. Galbán, “Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer,” PLoS One 10, e0123877 (2015).
13.L. Heijmen, E. E. ter Voert, W. J. Oyen, C. J. Punt, D. J. van Spronsen, A. Heerschap, L.-F. de Geus-Oei, and H. W. van Laarhoven, “Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer,” PLoS One 10, e0120823 (2015).
14.J. C. Plana, M. Galderisi, A. Barac, M. S. Ewer, B. Ky, M. Scherrer-Crosbie, J. Ganame, I. A. Sebag, D. A. Agler, and L. P. Badano, “Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging,” J. Am. Soc. Echocardiogr. 27, 911939 (2014).
15.C. M. Kramer, Multimodality Imaging in Cardiovascular Medicine (Demos Medical Publishing, New York, NY, 2010).
16.C. Rischpler, S. G. Nekolla, K. P. Kunze, and M. Schwaiger, Seminars in Nuclear Medicine (2015).
17.P. Vitali, C. Di Ferri, A. Vaudano, S. Meletti, and F. Villani, “Integration of multimodal neuroimaging methods: A rationale for clinical applications of simultaneous EEG-fMRI,” Funct. Neurol. 112 (2015) [Epub ahead of print].
18.T. D. Nguyen, P. Raniga, D. G. Barnes, and G. F. Egan, “Design, implementation and operation of a multimodality research imaging informatics repository,” Health Inf. Sci. Syst. 3, (10pp.) (2015).
19.J. Yang, H. Yang, L. Cao, and S. Li, “MR and targeted molecular MRI of vulnerable plaques,” Interventional Neurol. 1, 124131 (2013).
20.M. P. Opolski, C. Kepka, and W. Ruzyllo, “Computed tomography for detection of vulnerable coronary plaque - A Cassandra’s dream?,” Postepy Kardiol Interwencyjnej 10, 147152 (2014).
21.J. A. Schaar, F. Mastik, E. Regar, C. A. den Uil, F. J. Gijsen, J. J. Wentzel, P. W. Serruys, and A. F. van der Stehen, “Current diagnostic modalities for vulnerable plaque detection,” Curr. Pharm. Des. 13, 9951001 (2007).
22.Z. H. Sun, H. Rashmizal, and L. Xu, “Molecular imaging of plaques in coronary arteries with PET and SPECT,” J. Geriatr. Cardiol. 11, 259273 (2014).
23.C. Yuan, T. S. Hatsukami, and K. D. Obrien, “High-resolution magnetic resonance imaging of normal and atherosclerotic human coronary arteries ex vivo: Discrimination of plaque tissue components,” J. Invest. Med. 49, 491499 (2001).
24.O. F. Donati, H. Alkadhi, H. Scheffel, C. Kuehnel, A. Hennemuth, C. Wyss, N. Azemaj, A. Plass, S. Kozerke, V. Falk, S. Leschka, and P. Stolzmann, “3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: Accuracy and added clinical value,” Invest. Radiol. 46, 331340 (2011).
25.J. C. Miller, M. H. Lev, L. H. Schwamm, J. H. Thrall, and S. I. Lee, “Functional CT and MR imaging for evaluation of acute stroke,” J. Am. Coll. Radiol. 5, 6770 (2008).
26.A. Li, Y. Zheng, J. Yu, Z. Wang, Y. Yang, W. Wu, D. Guo, and H. Ran, “Superparamagnetic perfluorooctylbromide nanoparticles as a multimodal contrast agent for US, MR, and CT imaging,” Acta Radiol. 54, 278283 (2013).
27.J. O’Connor, P. Tofts, K. Miles, L. Parkes, G. Thompson, and A. Jackson, “Dynamic contrast-enhanced imaging techniques: CT and MRI,” Br. J. Radiol. 84, S112S120 (2014).
28.J. Kallehauge, T. Nielsen, S. Haack, D. A. Peters, S. Mohamed, L. Fokdal, J. C. Lindegaard, D. C. Hansen, F. Rasmussen, and K. Tanderup, “Voxelwise comparison of perfusion parameters estimated using dynamic contrast enhanced (DCE) computed tomography and DCE-magnetic resonance imaging in locally advanced cervical cancer,” Acta Oncol. 52, 13601368 (2013).
29.C. Cuenod and D. Balvay, “Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI,” Diagn. Interventional Imaging 94, 11871204 (2013).
30.C. S. Ng, J. C. Waterton, V. Kundra, D. Brammer, M. Ravoori, L. Han, W. Wei, S. Klumpp, V. E. Johnson, and E. F. Jackson, “Reproducibility and comparison of DCE-MRI and DCE-CT perfusion parameters in a rat tumor model,” Technol. Cancer Res. Treat. 11, 279288 (2012).
31.M. A. Jacobs, R. Ouwerkerk, A. C. Wolff, E. Gabrielson, H. Warzecha, S. Jeter, D. A. Bluemke, R. Wahl, and V. Stearns, “Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer,” Breast Cancer Res. Treat. 128, 119126 (2011).
32.M. A. Jacobs, A. C. Wolff, K. Macura, V. Stearns, R. Ouwerkerk, R. El Khouli, D. A. Bluemke, and R. Wahl, “Multiparametric and multimodality functional radiological imaging for breast cancer diagnosis and early treatment response assessment,” J. Natl. Cancer Inst. Monogr. 2015, 4046.
33.J. S. Suri, C. Yuan, and D. L. Wilson, Plaque Imaging: Pixel to Molecular Level (IOS, Amsterdam, Netherlands, 2005).
34.G. Wang, Y. B. Ye, and H. Y. Yu, “Approximate and exact cone-beam reconstruction with standard and non-standard spiral scanning,” Phys. Med. Biol. 52, R1R13 (2007).
35.F. Natterer, The Mathematics of Computerized Tomography (B.G. Teubner, Stuttgart, 1986).
36.Y. Ye, H. Yu, Y. Wei, and G. Wang, “A general local reconstruction approach based on a truncated hilbert transform,” Int. J. Biomed. Imaging 2007, 63634.
37.H. Kudo, M. Courdurier, F. Noo, and M. Defrise, “Tiny a priori knowledge solves the interior problem in computed tomography,” Phys. Med. Biol. 53, 22072231 (2008).
38.H. Yu, J. Yang, M. Jiang, and G. Wang, “Supplemental analysis on compressed sensing based interior tomography,” Phys. Med. Biol. 54, N425N432 (2009).
39.W. Han, H. Yu, and G. Wang, “A general total variation minimization theorem for compressed sensing based interior tomography,” Int. J. Biomed. Imaging 2009, 125871.
40.H. Yu and G. Wang, “Compressed sensing based interior tomography,” Phys. Med. Biol. 54, 27912805 (2009).
41.J. Yang, H. Yu, M. Jiang, and G. Wang, “High order total variation minimization for interior tomography,” Inverse Probl. 26, 035013 (2010).
42.E. Katsevich, A. Katsevich, and G. Wang, “Stability of the interior problem with polynomial attenuation in the region of interest,” Inverse Probl. 28, 065022 (2012).
43.G. Wang and H. Y. Yu, “Can interior tomography outperform lambda tomography?,” Proc. Natl. Acad. Sci. U. S. A. 107, E92E93 (2010).
44.H. Yu, G. Wang, J. Hsieh, D. W. Entrikin, S. Ellis, B. Liu, and J. J. Carr, “Compressive sensing-based interior tomography: Preliminary clinical application,” J. Comput. Assisted Tomogr. 35, 762764 (2011).
45.J. Yang, H. Yu, M. Jiang, and G. Wang, “High-order total variation minimization for interior SPECT,” Inverse Probl. 28, 015001 (2012).
46.H. Yu, J. Yang, M. Jiang, and G. Wang, “Interior SPECT- exact and stable ROI reconstruction from uniformly attenuated local projections,” Commun. Numer. Methods Eng. 25, 693710 (2009).
47.J. Yang, W. Cong, M. Jiang, and G. Wang, “Theoretical study on high order interior tomography,” J. X-Ray Sci. Technol. 20, 423436 (2012).
48.W. Cong, J. Yang, and G. Wang, “Differential phase-contrast interior tomography,” Phys. Med. Biol. 57, 29052914 (2012).
49.R. Paquin, P. Pelupessy, and G. Bodenhausen, “Cross-encoded magnetic resonance imaging in inhomogeneous fields,” J. Magn. Reson. 201, 199204 (2009).
50.V. E. Arpinar and B. M. Eyuboglu, “Magnetic resonance imaging in inhomogeneous magnetic fields with noisy signal,” in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium (Springer, Berlin Heidelberg, 2009), Vol. 22, pp. 410413.
51.C. L. Epstein, “Magnetic resonance imaging in inhomogeneous fields,” Inverse Probl. 20, 753780 (2004).
52.R. Fahrig, A. Ganguly, P. Lillaney, J. Bracken, J. A. Rowlands, Z. Wen, H. Z. Yu, V. Rieke, J. M. Santos, K. B. Pauly, D. Y. Sze, J. K. Frisoli, B. L. Daniel, and N. J. Pelc, “Design, performance, and applications of a hybrid x-ray/MR system for interventional guidance,” Proc. IEEE 96, 468480 (2008).
53.R. Fahrig, K. Butts, J. A. Rowlands, R. Saunders, J. Stanton, G. M. Stevens, B. L. Daniel, Z. Wen, D. L. Ergun, and N. J. Pelc, “A truly hybrid interventional MR/x-ray system: Feasibility demonstration,” J. Magn. Reson. Imaging 13, 294300 (2001).¡294::AID-JMRI1042¿3.0.CO;2-X
54.R. Fahrig, Z. Wen, A. Ganguly, G. DeCrescenzo, J. A. Rowlands, G. M. Stevens, R. F. Saunders, and N. J. Pelc, “Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: A truly hybrid x-ray/MR imaging system,” Med. Phys. 32, 17751784 (2005).
55.M. Shin, P. Lillaney, W. Hinshaw, and R. Fahrig, “Design optimization of MR-compatible rotating anode x-ray tubes for stable operation,” Med. Phys. 40, 111913 (13pp.) (2013).
56.Z. Wen, R. Fahrig, S. Conolly, and N. J. Pelc, “Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners,” Med. Phys. 34, 20482058 (2007).
57.Z. Wen, R. Fahrig, S. T. Williams, and N. J. Pelc, “Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/MR system,” Med. Phys. 35, 38953902 (2008).
58.A. Jena, S. Taneja, and A. Jha, “Simultaneous PET/MRI: Impact on cancer management-A comprehensive review of cases,” Indian J. Radiol. Imaging 24, 107116 (2014).
59.M. Hofmann, B. Pichler, B. Scholkopf, and T. Beyer, “Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl. 1), S93S104 (2009).
60.D. Faul, Fully Integrated MRI and PET Imaging, 2013.
61.S. Vandenberghe and P. K. Marsden, “PET-MRI: A review of challenges and solutions in the development of integrated multimodality imaging,” Phys. Med. Biol. 60, R115R154 (2015).
62.B. W. Raaymakers, J. J. Lagendijk, J. Overweg, J. G. Kok, A. J. Raaijmakers, E. M. Kerkhof, R. W. van der Put, I. Meijsing, S. P. Crijns, F. Benedosso, M. van Vulpen, C.H. de Graaff, J. Allen, and K. J. Brown, “Integrating a 1.5 T MRI scanner with a 6 MV accelerator: Proof of concept,” Phys. Med. Biol. 54, N229N237 (2009).
63.S. Crijns and B. Raaymakers, “From static to dynamic 1.5 T MRI-Linac prototype: Impact of gantry position related magnetic field variation on image fidelity,” Phys. Med. Biol. 59, 32413247 (2014).
64.B. M. Oborn, S. Kolling, P. E. Metcalfe, S. Crozier, D. W. Litzenberg, and P. J. Keall, “Electron contamination modeling and reduction in a 1 T open bore inline MRI-Linac system,” Med. Phys. 41, 051708(15pp.) (2014).
65.F. Tang, H. S. Lopez, F. Freschi, E. Smith, Y. Li, M. Fuentes, F. Liu, M. Repetto, and S. Crozier, “Skin and proximity effects in the conductors of split gradient coils for a hybrid Linac-MRI scanner,” J. Magn. Reson. 242, 8694 (2014).
66.L. Liu, A. Trakic, H. Sanchez-Lopez, F. Liu, and S. Crozier, “An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system,” Phys. Med. Biol. 59, 233245 (2014).
67.A. Trakic, L. Limei, H. Sanchez lopez, L. Zilberti, L. Feng, and S. Crozier, “Numerical safety study of currents induced in the patient during rotations in the static field produced by a hybrid MRI-LINAC system,” IEEE Trans. Biomed. Eng. 61, 784793 (2014).
68.G. Wang, F. Liu, F. L. Liu, G. H. Cao, H. Gao, and M. W. Vannier, “Top-level design of the first CT-MRI scanner,” in Proceedings of The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (2013), pp. 150153.
69.Z. Q. Chen, M. Chang, L. Li, Y. S. Xiao, and G. Wang, “A reweighted total variation minimization method for few view CT reconstruction in the instant CT,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (Nss/Mic), Anaheim, CA (IEEE, 2012), pp. 2362–2365.
70.Z. Q. Chen, X. Jin, L. Li, and G. Wang, “A limited-angle CT reconstruction method based on anisotropic TV minimization,” Phys. Med. Biol. 58, 21192141 (2013).
71.Y. Lv, J. Zhao, and G. Wang, “Edge-guided dual-modality image reconstruction,” IEEE Access 2, 13591363 (2014).
72.P. Edic and G. Wang, U.S. patent 14/574671 (18/14 December 2014).
73.M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R. Arridge, “Joint reconstruction of PET-MRI by exploiting structural similarity,” Inverse Probl. 31, 015001 (2015).
74.J. Sjolund, D. Forsberg, M. Andersson, and H. Knutsson, “Generating patient specific pseudo-CT of the head from MR using atlas-based regression,” Phys. Med. Biol. 60, 825839 (2015).
75.S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science 290, 23232326 (2000).
76.M. J. Ackerman, “The visible human project: A resource for anatomical visualization,” Stud. Health Technol. Inf. 52(Pt 2), 10301032 (1998).
77.Z. ArabBaferani, M. Mokhtari-Dizaji, and F. Roshanali, “Non invasive estimation of left ventricular normalized torsion angle in healthy persons by echo tracking algorithm: Short axis view,” Int. Cardivasc. Res. J. 2012, 127133 (2011).
78.M. Getzin, L. Gjesteby, Y. J. Chuang, S. McCallum, W. X. Cong, C. Wang, Z. W. Pan, G. H. Dai, and G. Wang, “A pilot study on coupling CT and MRI through use of semiconductor nanoparticles” (2014).
79.M. T. Truijman, R. M. Kwee, R. H. van Hoof, E. Hermeling, R. J. van Oostenbrugge, W. H. Mess, W. H. Backes, M. J. Daemen, J. Bucerius, J. E. Wildberger, and M. E. Kooi, “Combined 18F-FDG PET-CT and DCE-MRI to assess inflammation and microvascularization in atherosclerotic plaques,” Stroke 44, 35683570 (2013).
80.I. A. Crawford, “Avoiding intellectual stagnation: The starship as an expander of minds,” J. Br. Interplanet. Soc. 67, 253257 (2014).

Data & Media loading...


Article metrics loading...



Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd