Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Zehetmayer, “Stereotactic photon beam irradiation of uveal melanoma,” Dev. Ophthalmol. 49, 5865 (2012).
2.K. Dieckmann, D. Georg, M. Zehetmayer, J. Bogner, M. Georgopoulos, and R. Pötter, “LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience,” Radiother. Oncol. 67(2), 199206 (2003).
3.D. Georg, K. Dieckmann, J. Bogner, M. Zehetmayer, and R. Pötter, “Impact of a micromultileaf collimator on stereotactic radiotherapy of uveal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 55(4), 881891 (2003).
4.R. Dendale, L. Lumbroso-Le Rouic, G. Noel, L. Feuvret, C. Levy, S. Delacroix, A. Meyer, C. Nauraye, A. Mazal, H. Mammar, P. Garcia, F. D’Hermies, E. Frau, C. Plancher, B. Asselain, P. Schlienger, J. Mazeron, and L. Desjardins, “Proton beam radiotherapy for uveal melanoma: Results of Curie Institut-Orsay proton therapy center (ICPO),” Int. J. Radiat. Oncol., Biol., Phys. 65(3), 780787 (2006).
5.M. Fuss, L. N. Loredo, P. A. Blacharski, R. I. Grove, and J. D. Slater, “Proton radiation therapy for medium and large choroidal melanoma: Preservation of the eye and its functionality,” Int. J. Radiat. Oncol., Biol., Phys. 49(4), 10531059 (2001).
6.J. Castro, D. Char, and P. Petti, “15 years experience with helium ion radiotherapy for uveal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 39(5), 989996 (1997).
7.C. Devron, J. Castro, and K. Stewart, “Ten-year follow-up of helium ion therapy for uveal melanoma,” Am. J. Ophtalmol. 125(1), 8189 (1998).
8.S.-T. Chiu-Tsao, M. Astrahan, P. T. Finger, D. S. Followill, A. S. Meigooni, C. S. Melhus, F. Mourtada, M. E. Napolitano, R. Nath, M. J. Rivard, D. W. Rogers, and R. M. Thomson, “Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS,” Med. Phys. 39(10), 61616184 (2012).
9.B. Damato, I. Patel, I. R. Campbell, H. M. Mayles, and R. D. Errington, “Local tumor control after 106Ru brachytherapy of choroidal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 63(2), 385391 (2005).
10.C. G. Soares, S. Vynckier, H. Järvinen, W. G. Cross, P. Sipilä, D. Flühs, B. Schaeken, F. Mourtada, G. Bass, and T. T. Williams, “Dosimetry of beta-ray ophthalmic applicators: Comparison of different measurement methods,” Med. Phys. 28(7), 13731384 (2001).
11.T. W. Kaulich, J. Zurheide, T. Haug, F. Nüsslin, and M. Bamberg, “Clinical quality assurance for 106Ru ophthalmic applicators,” Radiother. Oncol. 76(1), 8692 (2005).
12.A. Wu and F. Krasin, “Film dosimetry analyses on the effect of gold shielding for iodine-125 eye plaque therapy for choroidal melanoma,” Med. Phys. 17(5), 843846 (1990).
13.H. Acar, S.-T. Chiu-Tsao, I. Ozbay, G. Kemikler, and S. Tuncer, “Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with (125)I seeds (model I25.S16),” Med. Phys. 40(1), 011708 (13pp.) (2013).
14.S.-T. Chiu-Tsao, D. Medich, and J. Munro, “The use of new GAFCHROMIC EBT film for 125I seed dosimetry in solid water phantom,” Med. Phys. 35(8), 37873799 (2008).
15.J. Sayeg and R. Gregory, “A new method for characterizing beta-ray ophthalmic applicator sources,” Med. Phys. 18(3), 453461 (1991).
16.J. Hokkanen, J. Heikkonen, and P. Holmberg, “Theoretical calculations of dose distributions for beta-ray eye applicators,” Med. Phys. 24(2), 211213 (1997).
17.G. Taccini, F. Cavagnetto, G. Coscia, S. Garelli, and A. Pilot, “The determination of dose characteristics of ruthenium ophthalmic applicators using radiochromic film,” Med. Phys. 24(12), 20342037 (1997).
18.W. Binder, A. Chiari, and H. Aiginger, “Determination of the dose distribution of an ophthalmic 106Ru irradiator with TLDs and an eye phantom,” Radiat. Prot. Dosim. 34(1/4), 275278 (1990).
19.C. Reft and F. Kuchnir, “Dosimetry of Sr90 ophthalmic applicators,” Med. Phys. 17(4), 641646 (1990).
20.M. Astrahan, G. Luxton, Q. Pu, and Z. Petrovich, “Conformal episcleral plaque therapy,” Int. J. Radiat. Oncol., Biol., Phys. 39(2), 505519 (1997).
21.S. Chiu-Tsao, L. Anderson, K. O’Brien, and R. Sanna, “Dose rate determination for I seeds,” Med. Phys. 17(5), 815825 (1990).
22.S. Chiu-Tsao and L. Anderson, “Dosimetry for 125I seed (model 6711) in eye plaques,” Med. Phys. 20(2), 383389 (1993).
23.A. de la Zerda, S. T. Chiu-Tsao, J. Lin, L. L. Boulay, I. Kanna, J. H. Kim, and H. S. Tsao, “125I eye plaque dose distribution including penumbra characteristics,” Med. Phys. 23(3), 407418 (1996).
24.J. Davelaar, D. Schaling, L. Hennen, and J. Broerse, “Dosimetry of ruthenium-106 eye applicators,” Med. Phys. 19(3), 691694 (1992).
25.I. Lax, “Dosimetry of 106Ru eye applicators with a p-type silicon detector,” Phys. Med. Biol. 963(36), 963972 (1991).
26.D. Flühs, M. Heintz, and F. Indenkämpen, “Direct reading measurement of absorbed dose with plastic scintillators—The general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427434 (1996).
27.M. Eichmann, D. Fluehs, and B. Spaan, “Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators,” Med. Phys. 36(10), 46344643 (2009).
28.S. Kirov, J. Z. Piao, N. K. Mathur, T. R. Miller, S. Devic, S. Trichter, M. Zaider, C. G. Soares, and T. LoSasso, “The three-dimensional scintillation dosimetry method: Test for a 106Ru eye plaque applicator,” Phys. Med. Biol. 50(13), 30633081 (2005).
29.M. F. Chan, Y. Fung, Y. C. Hu, C. S. Chui, H. Amols, M. Zaider, and D. Abramson, “The measurement of three dimensional dose distribution of a ruthenium-106 ophthalmological applicator using magnetic resonance imaging of BANG polymer gels,” J. Appl. Clin. Med. Phys. 2(2), 8589 (2001).
30.ICRU, “Dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources,” J. ICRU 4(2) (2004).
31.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25(11), 20932115 (1998).
32.S.-T. Chiu-Tsao, Y. Ho, R. Shankar, L. Wang, and L. B. Harrison, “Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies,” Med. Phys. 32(11), 33503354 (2005).
33.C. Andrés, A. del Castillo, R. Tortosa, D. Alonso, and R. Barquero, “A comprehensive study of the gafchromic EBT2 radiochromic film. A comparison with EBT,” Med. Phys. 37(12), 62716278 (2010).
34.S. Devic, J. Seuntjens, E. Sham, E. B. Podgorsak, C. R. Schmidtlein, A. S. Kirov, and C. G. Soares, “Precise radiochromic film dosimetry using a flat-bed document scanner,” Med. Phys. 32(7), 22452253 (2005).
35.M. Hermida-López, “Calculation of dose distributions for 12 106Ru/106Rh ophthalmic applicator models with the PENELOPE Monte Carlo code,” Med. Phys. 40(10), 101705 (13pp.) (2013).
36.W. G. Cross, J. Hokkanen, H. Järvinen, F. Mourtada, P. Sipilä, C. G. Soares, and S. Vynckier, “Calculation of beta-ray dose distributions from ophthalmic applicators and comparison with measurements in a model eye,” Med. Phys. 28(7), 13851396 (2001).
37.D. Reiner, M. Blaickner, and F. Rattay, “Discrete beta dose kernel matrices for nuclides applied in targeted radionuclide therapy (TRT) calculated with mcnp5,” Med. Phys. 36(11), 48904896 (2009).
38.A. Lechner, M. Blaickner, S. Gianolini, K. Poljanc, H. Aiginger, and D. Georg, “Targeted radionuclide therapy: Theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail,” Phys. Med. Biol. 53(7), 19611974 (2008).
39.O. Chibani and X. A. Li, “Monte Carlo dose calculations in homogeneous media and at interfaces: A comparison between GEPTS, EGSnrc, mcnp, and measurements,” Med. Phys. 29(5), 835847 (2002).
40.F. Mourtada, C. G. Soares, S. M. Seltzer, P. M. Bergstrom, J. M. Fernandez-Verea, J. Asenjo, and S. H. Lott, “Dosimetry characterization of a 32P source wire used for intravascular brachytherapy with automated stepping,” Med. Phys. 30(5), 959971 (2003).
41.M. Cristy and K. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 1, Methods (Oak Ridge National Laboratory, Oak Ridge, TN, 1987).
42.ICRU, “Tissue substitutes in radiation dosimetry and measurement,” Report 44 (ICRU, Washington, DC, 1989).
43.R. P. Kollaard, W. J. Dries, H. J. van Kleffens, T. H. Aalbers, H. van der Marel, H. P. Marijnissen, M. Piessens, D. R. Schaart, and H. de Vroome, “Quality control of sealed beta sources in brachytherapy,” NCS Rep. 14, 1104 (2004).
44.B. Damato, I. Patel, I. R. Campbell, H. M. Mayles, and R. D. Errington, “Visual acuity after Ruthenium(106) brachytherapy of choroidal melanomas,” Int. J. Radiat. Oncol., Biol., Phys. 63(2), 392400 (2005).
45.A. Gerbaulet, R. Pötter, E. Van Limbergen, J. J. Mazeron, and H. Meertens, “Uveal melanoma,” in The GEC ESTRO Handbook of Brachytherapy (ESTRO, Brussels, 2002), Chap. 30.
46.M. D. Wiesmeyer, J. Cui, K. Zakaryan, J. Alaly, E. E. Klein, S. Mutic, D. A. Low, and J. O. Deasy, “Film dosimetry effects in low-density media due to charge buildup and cherenkov radiation,” Int. J. Radiat. Oncol., Biol., Phys. 66(3), S661S662 (2006).
47.F. Rouberol, P. Roy, L. Kodjikian, J. P. Gerard, B. Jean-Louis, and J. D. Grange, “Survival, anatomic, and functional long-term results in choroidal and ciliary body melanoma after ruthenium brachytherapy (15 years’ experience with beta-rays),” Am. J. Ophthalmol. 137(5), 893900 (2004).
48.C. Groenewald, L. Konstantinidis, and B. Damato, “Effects of radiotherapy on uveal melanomas and adjacent tissues,” Eye (London) 27(2), 163171 (2013).
49.K. M. S. Verschueren, C. L. Creutzberg, N. E. Schalij-Delfos, M. Ketelaars, F. L. L. Klijsen, B. I. Haeseker, S. M. B. Ligtenberg, J. E. E. Keunen, and C. A. M. Marijnen, “Long-term outcomes of eye-conserving treatment with Ruthenium(106) brachytherapy for choroidal melanoma,” Radiother. Oncol. 95(3), 332338 (2010).
50.V. Takiar, K. Voong, D. S. Gombos, F. Mourtada, L. Rechner, A. A. Lawyer, W. H. Morrison, W. H. A. S. Garden, and B. M. Beadle, “A choice of radionuclide: Comparative outcomes and toxicity of ruthenium-106 and iodine-125 in the definitive treatment of uveal melanoma,” Pract. Radiat. Oncol. 5(3), e169e176 (2014).
51.V. Takiar, K. Voong, D. S. Gombos, F. Mourtada, L. Rechner, A. A. Lawyer, W. H. Morrison, A. S. Garden, and B. M. Beadle, “Disease control and toxicity outcomes comparing ruthenium and iodine eye plaque brachytherapy in the treatment of intraocular melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 87(2), S468 (2013).
52.Private communications with Michael Andrássy from BEBIG.

Data & Media loading...


Article metrics loading...



The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of 106Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements.

Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore, dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size.

Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements () to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm.

EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different 106Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd