Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J.-M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 49, 22232227 (2002).
2.L. Archambault, J. Arsenault, L. Gingras, A. Beddar, R. Roy, and L. Beaulieu, “Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators,” Med. Phys. 32, 22712278 (2005).
3.L. Beaulieu, M. Goulet, L. Archambault, and S. Beddar, “Current status of scintillation dosimetry for megavoltage beams,” J. Phys.: Conf. Ser. 444, 012013 (2013).
4.D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators—The general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23, 427434 (1996).
5.J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 55055516 (2006).
6.F. Therriault-Proulx, S. Beddar, and L. Beaulieu, “On the use of a single-fiber multipoint plastic scintillation detector for 192ir high-dose-rate brachytherapy,” Med. Phys. 40, 062101(10pp.) (2013).
7.D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36, 17111716 (2009).
8.J. F. Winslow, C. J. Tien, and D. E. Hintenlang, “Organ dose and inherent uncertainty in helical CT dosimetry due to quasiperiodic dose distributions,” Med. Phys. 38, 31773185 (2011).
9.F. Lessard, F. Therriault-Proulx, A. Beddar, M. Plamondon, P. Després, L. Archambault, and L. Beaulieu, “Validating plastic scintillation detectors for photon dosimetry in the radiological energy range,” Med. Phys. 39, 53085316 (2012).
10.W. Yoo, J. Seo, S. Shin, K.-T. Han, D. Jeon, K. Jang, H. Sim, B. Lee, and J.-Y. Park, “Measurements of entrance surface dose using a fiber-optic dosimeter in diagnostic radiology,” Opt. Rev. 20, 173177 (2013).
11.W. J. Yoo, S. H. Shin, D. Jeon, K.-T. Han, S. Hong, S. G. Kim, S. Cho, and B. Lee, “Development of a fiber-optic dosimeter based on modified direct measurement for real-time dosimetry during radiation diagnosis,” Meas. Sci. Technol. 24, 094022 (2013).
12.D. Létourneau, J. Pouliot, and R. Roy, “Miniature scintillating detector for small field radiation therapy,” Med. Phys. 26, 25552561 (1999).
13.L. Archambault, A. Beddar, L. Gingras, F. Lacroix, R. Roy, and L. Beaulieu, “Water-equivalent dosimeter array for small-field external beam radiotherapy,” Med. Phys. 34, 15831592 (2007).
14.J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, and N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55, 11151126 (2010).
15.A. R. Beierholm, C. E. Andersen, L. R. Lindvold, F. Kjær-Kristoffersen, and J. Medin, “A comparison of BCF-12 organic scintillators and Al2 O3:C crystals for real-time medical dosimetry,” Radiat. Meas. 43, 898903 (2008), proceedings of the 15th Solid State Dosimetry (SSD15).
16.L. Archambault, T. M. Briere, F. Pönisch, L. Beaulieu, D. A. Kuban, A. Lee, and S. Beddar, “Toward a real-time in vivo dosimetry system using plastic scintillation detectors,” Int. J. Radiat. Oncol., Biol., Phys. 78, 280287 (2010).
17.F. Lacroix, L. Archambault, L. Gingras, M. Guillot, A. Beddar, and L. Beaulieu, “Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications,” Med. Phys. 35, 36823690 (2008).
18.M. Guillot, L. Beaulieu, L. Archambault, S. Beddar, and L. Gingras, “A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy,” Med. Phys. 38, 67636774 (2011).
19.A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 18831900 (1992).
20.A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 19011913 (1992).
21.J. F. Williamson, J. F. Dempsey, A. S. Kirov, J. I. Monroe, W. R. Binns, and H. Hedtjärn, “Plastic scintillator response to low-energy photons,” Phys. Med. Biol. 44, 857871 (1999).
22.S. Buranurak, C. Andersen, A. Beierholm, and L. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307311 (2013), proceedings of the 8th International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR 2012).
23.L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58, 29552967 (2013).
24.A. Beddar, T. Mackie, and F. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925935 (1992).
25.S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945958 (1993).
26.A. S. Beddar, N. Suchowerska, and S. H. Law, “Plastic scintillation dosimetry for radiation therapy: Minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49, 783790 (2004).
27.A. Frelin, J. Fontbonne, G. Ban, J. Lin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Čerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 30003006 (2005).
28.L. Archambault, A. Beddar, L. Gingras, R. Roy, and L. Beaulieu, “Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry,” Med. Phys. 33, 128135 (2006).
29.M. Guillot, L. Gingras, L. Archambault, S. Beddar, and L. Beaulieu, “Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations,” Med. Phys. 38, 21402150 (2011).
30.P. Z. Y. Liu, N. Suchowerska, P. Abolfathi, and D. R. McKenzie, “Real-time scintillation array dosimetry for radiotherapy: The advantages of photomultiplier detectors,” Med. Phys. 39, 16881695 (2012).
31.L.-P. Gagnon, S. Beddar, and L. Beaulieu, “Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system,” Radiat. Meas. 73, 6068 (2015).
32.F. Lacroix, A. Beddar, M. Guillot, L. Beaulieu, and L. Gingras, “A design methodology using signal-to-noise ratio for plastic scintillation detectors design and performance optimization,” Med. Phys. 36, 52145220 (2009).
33.R. Nowotny, “Radioluminescence of some optical fibres,” Phys. Med. Biol. 52, N67N73 (2007).
34.F. Lacroix, L. Beaulieu, L. Archambault, and A. Beddar, “Simulation of the precision limits of plastic scintillation detectors using optimal component selection,” Med. Phys. 37, 412418 (2010).
35.P. Carrasco, N. Jornet, O. Jordi, M. Lizondo, A. Latorre-Musoll, T. Eudaldo, A. Ruiz, and M. Ribas, “Characterization of the Exradin W1 scintillator for use in radiotherapy,” Med. Phys. 42, 297304 (2015).
36.A. Beierholm, C. Behrens, and C. Andersen, “Dosimetric characterization of the Exradin {W1} plastic scintillator detector through comparison with an in-house developed scintillator system,” Radiat. Meas. 69, 5056 (2014).
37.J. Boivin, N. Tomic, B. Fadlallah, F. DeBlois, and S. Devic, “Reference dosimetry during diagnostic CT examination using XR-QA radiochromic film model,” Med. Phys. 38, 51195129 (2011).
38.D. L. Miller, S. Balter, P. E. Cole, H. T. Lu, A. Berenstein, R. Albert, B. A. Schueler, J. D. Georgia, P. T. Noonan, E. J. Russell, T. W. Malisch, R. L. Vogelzang, M. Geisinger, J. F. Cardella, J. S. George, G. L. Miller III, and J. Anderson, “Radiation doses in interventional radiology procedures: The RAD-IR study. Part II: Skin dose,” J. Vasc. Interventional Radiol. 14, 977990 (2003).
39.A. R. Beierholm, R. O. Ottosson, L. R. Lindvold, C. F. Behrens, and C. E. Andersen, “Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators,” Phys. Med. Biol. 56, 30333045 (2011).
40.M. Goulet, L. Archambault, L. Beaulieu, and L. Gingras, “3D tomodosimetry using long scintillating fibers: A feasibility study,” Med. Phys. 40, 101703 (10pp.) (2013).

Data & Media loading...


Article metrics loading...



The authors’ objective was to systematically assess the performance of seven photodetectors used in plastic scintillation dosimetry. The authors also propose some guidelines for selecting an appropriate detector for a specific application.

The plastic scintillation detector (PSD) consisted of a 1-mm diameter, 10-mm long plastic scintillation fiber (BCF-60), which was optically coupled to a clear 10-m long optical fiber of the same diameter. A light-tight plastic sheath covered both fibers and the scintillator end was sealed. The clear fiber end was connected to one of the following photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens), a monochromatic camera with an optical lens, a PIN photodiode, an avalanche photodiode (APD), or a photomultiplier tube (PMT). A commercially available W1 PSD was also included in the study, but it relied on its own fiber and scintillator. Each PSD was exposed to both low-energy beams (120, 180, and 220 kVp) from an orthovoltage unit and high-energy beams (6 and 23 MV) from a linear accelerator. Various dose rates were tested to identify the operating range and accuracy of each photodetector.

For all photodetectors, the relative uncertainty was less than 5% for dose rates higher than 3 mGy/s. The cameras allowed multiple probes to be used simultaneously, but they are less sensitive to low-light signals. The PIN, APD, and PMT had higher sensitivity, making them more suitable for low dose rate and out-of-field dose monitoring. The relative uncertainty of the PMT was less than 1% at the lowest dose rate achieved (0.10 mGy/s), suggesting that it was optimal for use in live dosimetry.

For dose rates higher than 3 mGy/s, the PIN diode is the most effective photodetector in terms of performance/cost ratio. For lower dose rates, such as those seen in interventional radiology or high-gradient radiotherapy, PMTs are the optimal choice.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd