Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.ICRU, “Prescribing, recording, and reporting proton-beam therapy (ICRU Report 78),” J. ICRU 7, 1210 (2007).
2.H. Paganetti, A. Niemierko, M. Ancukiewicz, L. E. Gerweck, M. Goitein, J. S. Loeffler, and H. D. Suit, “Relative biological effectiveness (RBE) values for proton beam therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 407421 (2002).
3.H. Paganetti, “Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer,” Phys. Med. Biol. 59, R419R472 (2014).
4.H. Paganetti, “Four-dimensional Monte Carlo simulation of time-dependent geometries,” Phys. Med. Biol. 49, N75N81 (2004).
5.E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).
6.V. Calugaru, C. Nauraye, G. Noel, N. Giocanti, V. Favaudon, and F. Megnin-Chanet, “Radiobiological characterization of two therapeutic proton beams with different initial energy spectra used at the Institut Curie Proton Therapy Center in Orsay,” Int. J. Radiat. Oncol., Biol., Phys. 81, 11361143 (2011).
7.R. A. Britten, V. Nazaryan, L. K. Davis, S. B. Klein, D. Nichiporov, M. S. Mendonca, M. Wolanski, X. Nie, J. George, and C. Keppel, “Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam,” Radiat. Res. 179, 2128 (2013).
8.P. Chaudhary, T. I. Marshall, F. M. Perozziello, L. Manti, F. J. Currell, F. Hanton, S. J. McMahon, J. N. Kavanagh, G. A. P. Cirrone, F. Romano, K. M. Prise, and G. Schettino, “Relative biological effectiveness variation along monoenergetic and modulated Bragg peaks of a 62-MeV therapeutic proton beam: A preclinical assessment,” Int. J. Radiat. Oncol., Biol., Phys. 90, 2735 (2014).
9.F. Guan, L. Bronk, U. Titt, S. H. Lin, D. Mirkovic, M. D. Kerr, X. R. Zhu, J. Dinh, M. Sobieski, C. Stephan, C. R. Peeler, R. Taleei, R. Mohan, and D. R. Grosshans, “Spatial mapping of the biologic effectiveness of scanned particle beams: Towards biologically optimized particle therapy,” Sci. Rep. 5, 110 (2015).
10.M. Wedenberg and I. Toma-Dasu, “Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans,” Med. Phys. 41, 091706 (8pp.) (2014).
11.M. Kramer, “Treatment planning for heavy-ion radiotherapy: Biological optimization of multiple beam ports,” J. Radiat. Res. 42, 3946 (2001).
12.M. Scholz and G. Kraft, “Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size,” Radiat. Prot. Dosim. 52, 2933 (1994).
13.M. Scholz and G. Kraft, “Track structure and the calculation of biological effects of heavy charged particles,” Adv. Space Res. 18, 514 (1996).
14.M. Scholz, A. M. Kellerer, W. Kraft-Weyrather, and G. Kraft, “Computation of cell survival in heavy ion beams for therapy,” Radiat. Environ. Biophys. 36, 5966 (1997).
15.T. Inaniwa, T. Furukawa, Y. Kase, N. Matsufuji, T. Toshito, Y. Matsumoto, Y. Furusawa, and K. Noda, “Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model,” Phys. Med. Biol. 55, 67216737 (2010).
16.M. C. Frese, J. J. Wilkens, P. E. Huber, A. D. Jensen, U. Oelfke, and Z. Taheri-Kadkhoda, “Application of constant vs. variable relative biological effectiveness in treatment planning of intensity-modulated proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 79, 8088 (2011).
17.J. J. Wilkens and U. Oelfke, “A phenomenological model for the relative biological effectiveness in therapeutic proton beams,” Phys. Med. Biol. 49, 28112825 (2004).
18.M. C. Frese, V. K. Yu, R. D. Stewart, and D. J. Carlson, “A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 83, 442450 (2012).
19.V. Semenenko and R. Stewart, “Fast Monte Carlo simulation of DNA damage formed by electrons and light ions,” Phys. Med. Biol. 51, 16931706 (2006).
20.D. J. Carlson, R. D. Stewart, V. A. Semenenko, and G. A. Sandison, “Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing,” Radiat. Res. 169, 447459 (2009).
21.H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie,” Ann. Phys. 397, 325400 (1930).
22.H. Bethe, “Bremsformel für elektronen relativistischer geschwindigkeit,” Z. Phys. 76, 293299 (1932).
23.C. Grassberger and H. Paganetti, “Elevated LET components in clinical proton beams,” Phys. Med. Biol. 56, 66776691 (2011).
24.Y. Chen and S. Ahmad, “Empirical model estimation of relative biological effectiveness for proton beam therapy,” Radiat. Prot. Dosim. 149, 116123 (2012).
25.F. Romano, G. A. Cirrone, G. Cuttone, F. D. Rosa, S. E. Mazzaglia, I. Petrovic, A. R. Fira, and A. Varisano, “A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line,” Phys. Med. Biol. 59, 28632882 (2014).
26.J. J. Wilkens and U. Oelfke, “Analytical linear energy transfer calculations for proton therapy,” Med. Phys. 30, 806815 (2003).
27.G. P. Cirrone, G. Cuttone, S. E. Mazzaglia, F. Romano, D. Sardina, C. Agodi, A. Attili, A. A. Blancato, M. De Napoli, and F. Di Rosa, “Hadrontherapy: A geant4-based tool for proton/ion-therapy studies,” Prog. Nucl. Sci. Technol. 2, 207212 (2011).
28.L. A. Perles, D. Mirkovic, A. Anand, U. Titt, and R. Mohan, “LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction,” Phys. Med. Biol. 58, 84778491 (2013).
29.G. O. Sawakuchi, N. Sahoo, P. B. Gasparian, M. G. Rodriguez, L. Archambault, U. Titt, and E. G. Yukihara, “Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors,” Phys. Med. Biol. 55, 49634976 (2010).
30.I. Kantemiris, P. Karaiskos, P. Papagiannis, and A. Angelopoulos, “Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak,” Med. Phys. 38, 65856591 (2011).
31.D. Giantsoudi, C. Grassberger, D. Craft, A. Niemierko, A. Trofimov, and H. Paganetti, “Linear energy transfer-guided optimization in intensity modulated proton therapy: Feasibility study and clinical potential,” Int. J. Radiat. Oncol., Biol., Phys. 87, 216222 (2013).
32.M. Cortés-Giraldo and A. Carabe, “A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams,” Phys. Med. Biol. 60, 26452669 (2015).
33.D. A. Granville and G. O. Sawakuchi, “Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams,” Phys. Med. Biol. 60, N283N291 (2015).
34.J. J. Wilkens and U. Oelfke, “Fast multifield optimization of the biological effect in ion therapy,” Phys. Med. Biol. 51, 31273140 (2006).
35.M. Kramer and M. Scholz, “Treatment planning for heavy-ion radiotherapy: Calculation and optimization of biologically effective dose,” Phys. Med. Biol. 45, 33193330 (2000).
36.S. Agostinelli et al., “ geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250303 (2003).
37.J. Allison et al., “ geant4 developments and applications,” IEEE Trans. Nucl. Sci. 53, 270278 (2006).
38.ICRU, “Fundamental quantities and units for ionizing radiation (ICRU Report 85),” J. ICRU 11, 131 (2011).
39.F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, New York, NY, 1986).
40.M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, estar, pstar, andastar: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3), National Institute of Standards and Technology, Gaithersburg, MD, 2005, available at [July 23, 2014].
41.H. H. Rossi and M. Zaider, Microdosimetry and Its Applications (Springer, New York, NY, 1996).
42. geant4 Collaboration, geant4 User’s Guide for Application Developers (2014), see
43.M. T. Gillin, N. Sahoo, M. Bues, G. Ciangaru, G. Sawakuchi, F. Poenisch, B. Arjomandy, C. Martin, U. Titt, K. Suzuki, A. R. Smith, and X. R. Zhu, “Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston,” Med. Phys. 37, 154163 (2010).
44.L. S. Waters, G. W. McKinney, J. W. Durkee, M. L. Fensin, J. S. Hendricks, M. R. James, R. C. Johns, and D. B. Pelowitz, Presented at the Hadronic Shower Simulation Workshop, 2007.
45.G. O. Sawakuchi, D. Mirkovic, L. A. Perles, N. Sahoo, X. R. Zhu, G. Ciangaru, K. Suzuki, M. T. Gillin, R. Mohan, and U. Titt, “An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle,” Med. Phys. 37, 49604970 (2010).
46.A. Heikkinen, N. Stepanov, and J. P. Wellisch, “Bertini intra-nuclear cascade implementation in geant4,” preprint arXiv:nucl-th/0306008 (2003).
47.J. Yarba, Presented at the Journal of Physics: Conference Series, 2012.
48.R. Brun and F. Rademakers, “ root—An object oriented data analysis framework,” Nucl. Instrum. Methods Phys. Res., Sect. A 389, 8186 (1997).
49.L. Polster, J. Schuemann, I. Rinaldi, L. Burigo, A. L. McNamara, R. D. Stewart, A. Attili, D. J. Carlson, T. Sato, and J. R. Méndez, “Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints,” Phys. Med. Biol. 60, 50535070 (2015).
50.V. Semenenko and R. Stewart, “A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation,” Radiat. Res. 161, 451457 (2004).
51.V. Semenenko, R. D. Stewart, and E. J. Ackerman, “Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. I. Model properties and predicted trends,” Radiat. Res. 164, 180193 (2005).
52.V. Semenenko and R. Stewart, “Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data,” Radiat. Res. 164, 194201 (2005).
53.J. Kempe, I. Gudowska, and A. Brahme, “Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams,” Med. Phys. 34, 183192 (2007).
54.S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. Tran, B. Mascialino, C. Champion, V. Ivanchenko, and M. Bernal, “Comparison of geant4 very low energy cross section models with experimental data in water,” Med. Phys. 37, 46924708 (2010).
55.S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, P. Guèye, A. Mantero, B. Mascialino, and P. Moretto, “The geant4-DNA project,” Int. J. Model., Simul., Sci. Comput. 1, 157178 (2010).
56.M. Karamitros, S. Incerti, and C. Champion, “376 the geant4-DNA project,” Radiother. Oncol. 102, S191S192 (2012).

Data & Media loading...


Article metrics loading...



The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from 4 simulations to correlate with biological effectiveness of therapeutic protons.

The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LET and dose-averaged LET, LET) using 4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LET and LET of protons with six different step limits ranging from 1 to 500 m in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose.

Simulation results showed that the step limit effect was small for LET but significant for LET. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in 4 can result in incorrect LET calculation results in the dose plateau region for small step limits. The erroneous LET results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in 4. The incorrect LET values lead to substantial differences in the calculated RBE.

When the 4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 m, the authors recommend the use of LET in the dose plateau region and LET around the Bragg peak. For a large step limit, i.e., 500 m, LET is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LET and LET becomes positive.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd