Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/12/10.1118/1.4935141
1.
1.Are You Dense Inc Are You Dense? Exposing the best-kept secret. Retrieved April 21, 2015, from http://www.areyoudense.org/.
2.
2.M. Mandelson, N. Oestreicher, P. Porter, D. White, C. Finder, S. Taplin, and E. White, “Breast density as a predictor of mammographic detection: Comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 10811087 (2000).
http://dx.doi.org/10.1093/jnci/92.13.1081
3.
3.N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic density and the risk and detection of breast cancer,” N. Engl. J. Med. 356(3), 227236 (2007).
http://dx.doi.org/10.1056/NEJMoa062790
4.
4.V. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis,” Cancer Epidemiol., Biomarkers Prev. 15, 11591169 (2006).
http://dx.doi.org/10.1158/1055-9965.EPI-06-0034
5.
5.K. A. Bertrand, R. M. Tamimi, C. G. Scott, M. R. Jensen, V. Pankratz, D. Visscher, A. Norman, F. Couch, J. Shepherd, B. Fan, Y. Y. Chen, L. Ma, A. H. Beck, S. R. Cummings, K. Kerlikowske, and C. M. Vachon, “Mammographic density and risk of breast cancer by age and tumor characteristics,” Breast Cancer Res. 15(6), R104 (2013).
http://dx.doi.org/10.1186/bcr3570
6.
6.K. A. Bertrand, C. G. Scott, R. M. Tamimi, M. R. Jensen, V. S. Pankratz, A. D. Norman, D. W. Visscher, F. J. Couch, J. Shepherd, Y. Y. Chen, B. Fan, F. F. Wu, L. Ma, A. H. Beck, S. R. Cummings, K. Kerlikowske, and C. M. Vachon, “Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics,” Cancer Epidemiol., Biomarkers Prev. 24, 798809 (2015).
http://dx.doi.org/10.1158/1055-9965.epi-14-1136
7.
7.N. F. Boyd, E. Huszti, O. Melnichouk, L. J. Martin, G. Hislop, A. Chiarelli, M. J. Yaffe, and S. Minkin, “Mammographic features associated with interval breast cancers in screening programs,” Breast Cancer Res. 16(4), 417 (2014).
http://dx.doi.org/10.1186/s13058-014-0417-7
8.
8.L. Yaghjyan, G. Colditz, L. Collins, S. Schnitt, B. Rosner, C. Vachon, and R. Tamimi, “Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics,” J. Natl. Cancer Inst. 103, 11791189 (2011).
http://dx.doi.org/10.1093/jnci/djr225
9.
9.M. R. Bani, M. P. Lux, K. Heusinger, E. Wenkel, A. Magener, R. Schulz-Wendtland, M. W. Beckmann, and P. A. Fasching, “Factors correlating with reexcision after breast-conserving therapy,” Eur. J. Surg. Oncol. 35(1), 3237 (2009).
http://dx.doi.org/10.1016/j.ejso.2008.04.008
10.
10.M. Dieterich, H. Dieterich, H. Moch, and C. Rosso, “Re-excision rates and local recurrence in breast cancer patients undergoing breast conserving therapy,” Geburtshilfe Frauenheilkd. 72(11), 10181023 (2012).
http://dx.doi.org/10.1055/s-0032-1327980
11.
11.J. Li, K. Humphreys, L. Eriksson, G. Edgren, K. Czene, and P. Hall, “Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer,” J. Clin. Oncol. 31(18), 22492256 (2013).
http://dx.doi.org/10.1200/JCO.2012.44.5015
12.
12.K. L. Ko, I. S. Shin, J. Y. You, S. Y. Jung, J. Ro, and E. S. Lee, “Adjuvant tamoxifen-induced mammographic breast density reduction as a predictor for recurrence in estrogen receptor-positive premenopausal breast cancer patients,” Breast Cancer Res. Treat. 142(3), 559567 (2013).
http://dx.doi.org/10.1007/s10549-013-2726-4
13.
13.J. Cuzick, J. Warwick, E. Pinney, S. Duffy, S. Cawthorn, A. Howell, J. Forbes, and R. Warren, “Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: A nested case-control study,” J. Natl. Cancer Inst. 103, 744752 (2011).
http://dx.doi.org/10.1093/jnci/djr079
14.
14.J. Cuzick, J. Warwick, E. Pinney, R. M. Warren, and S. W. Duffy, “Tamoxifen and breast density in women at increased risk of breast cancer,” J. Natl. Cancer Inst. 96(8), 621628 (2004).
http://dx.doi.org/10.1093/jnci/djh106
15.
15.C. K. Chow, D. Venzon, E. C. Jones, A. Premkumar, J. O’Shaughnessy, and J. Zujewski, “Effect of tamoxifen on mammographic density,” Cancer Epidemiol., Biomarkers Prev. 9(9), 917921 (2000).
16.
16.G. Gennaro, I. Sechopoulos, L. Gallo, V. Rossetti, and R. Highnam, “Impact of objective volumetric breast density estimates on mean glandular dose calculations in digital mammography,” in European Congress of Radiology. Retrieved April 22, 2015, from http://dx.doi.org/10.1594/ecr2015/C-1576.
17.
17.D. R. Dance, C. L. Skinner, K. C. Young, J. R. Beckett, and C. J. Kotre, “Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol,” Phys. Med. Biol. 45(11), 32253240 (2000).
http://dx.doi.org/10.1088/0031-9155/45/11/308
18.
18.J. M. Boone, “Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data,” Med. Phys. 29(5), 869875 (2002).
http://dx.doi.org/10.1118/1.1472499
19.
19.D. R. Dance, K. C. Young, and R. E. van Engen, “Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols,” Phys. Med. Biol. 54(14), 43614372 (2009).
http://dx.doi.org/10.1088/0031-9155/54/14/002
20.
20.D. R. Dance, K. C. Young, and R. E. van Engen, “Estimation of mean glandular dose for breast tomosynthesis: Factors for use with the UK, European and IAEA breast dosimetry protocols,” Phys. Med. Biol. 56(2), 453471 (2011).
http://dx.doi.org/10.1088/0031-9155/56/2/011
21.
21.D. R. Dance and K. C. Young, “Estimation of mean glandular dose for contrast enhanced digital mammography: Factors for use with the UK, European and IAEA breast dosimetry protocols,” Phys. Med. Biol. 59(9), 21272137 (2014).
http://dx.doi.org/10.1088/0031-9155/59/9/2127
22.
22.W. T. Sobol and X. Wu, “Parametrization of mammography normalized average glandular dose tables,” Med. Phys. 24(4), 547554 (1997).
http://dx.doi.org/10.1118/1.597937
23.
23.S. V. Destounis, R. Morgan, and A. Arieno, “Screening for dense breasts: Digital breast tomosynthesis,” AJR, Am. J. Roentgenol. 204(2), 261264 (2015).
http://dx.doi.org/10.2214/AJR.14.13554
24.
24.M. Alakhras, R. Bourne, M. Rickard, K. H. Ng, M. Pietrzyk, and P. C. Brennan, “Digital tomosynthesis: A new future for breast imaging?,” Clin. Radiol. 68(5), e225e236 (2013).
http://dx.doi.org/10.1016/j.crad.2013.01.007
25.
25.J. S. Greenberg, M. C. Javitt, J. Katzen, S. Michael, and A. E. Holland, “Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice,” AJR, Am. J. Roentgenol. 203(3), 687693 (2014).
http://dx.doi.org/10.2214/AJR.14.12642
26.
26.S. L. Rose, A. L. Tidwell, M. F. Ice, A. S. Nordmann, R. Sexton, Jr., and R. Song, “A reader study comparing prospective tomosynthesis interpretations with retrospective readings of the corresponding FFDM examinations,” Acad. Radiol. 21(9), 12041210 (2014).
http://dx.doi.org/10.1016/j.acra.2014.04.008
27.
27.D. Bernardi, F. Caumo, P. Macaskill, S. Ciatto, M. Pellegrini, S. Brunelli, P. Tuttobene, P. Bricolo, C. Fanto, M. Valentini, S. Montemezzi, and N. Houssami, “Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial,” Eur. J. Cancer 50(7), 12321238 (2014).
http://dx.doi.org/10.1016/j.ejca.2014.02.004
28.
28.S. L. Rose, A. L. Tidwell, L. J. Bujnoch, A. C. Kushwaha, A. S. Nordmann, and R. Sexton, Jr., “Implementation of breast tomosynthesis in a routine screening practice: An observational study,” AJR, Am. J. Roentgenol. 200(6), 14011408 (2013).
http://dx.doi.org/10.2214/AJR.12.9672
29.
29.S. Ciatto, N. Houssami, D. Bernardi, F. Caumo, M. Pellegrini, S. Brunelli, P. Tuttobene, P. Bricolo, C. Fanto, M. Valentini, S. Montemezzi, and P. Macaskill, “Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): A prospective comparison study,” Lancet Oncol. 14(7), 583589 (2013).
http://dx.doi.org/10.1016/S1470-2045(13)70134-7
30.
30.M. M. Alakhras, P. C. Brennan, M. Rickard, R. Bourne, and C. Mello-Thoms, “Effect of radiologists’ experience on breast cancer detection and localization using digital breast tomosynthesis,” Eur. Radiol. 25(2), 402409 (2015).
http://dx.doi.org/10.1007/s00330-014-3409-1
31.
31.P. Skaane, A. I. Bandos, R. Gullien, E. B. Eben, U. Ekseth, U. Haakenaasen, M. Izadi, I. N. Jebsen, G. Jahr, M. Krager, L. T. Niklason, S. Hofvind, and D. Gur, “Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program,” Radiology 267(1), 4756 (2013).
http://dx.doi.org/10.1148/radiol.12121373
32.
32.B. M. Haas, V. Kalra, J. Geisel, M. Raghu, M. Durand, and L. E. Philpotts, “Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening,” Radiology 269(3), 694700 (2013).
http://dx.doi.org/10.1148/radiol.13130307
33.
33.F. J. Gilbert, L. Tucker, M. G. Gillan, P. Willsher, J. Cooke, K. A. Duncan, M. J. Michell, H. M. Dobson, Y. Y. Lim, H. Purushothaman, C. Strudley, S. M. Astley, O. Morrish, K. C. Young, and S. W. Duffy, “The TOMMY trial: A comparison of TOMosynthesis with digital MammographY in the UK NHS breast screening programme—A multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone,” Health Technol. Assess. 19(4), 1136 (2015).
http://dx.doi.org/10.3310/hta19040
34.
34.R. J. Hooley, K. L. Greenberg, R. M. Stackhouse, J. L. Geisel, R. S. Butler, and L. E. Philpotts, “Screening US in patients with mammographically dense breasts: Initial experience with connecticut public act 09-41,” Radiology 265(1), 5969 (2012).
http://dx.doi.org/10.1148/radiol.12120621
35.
35.R. J. Hooley, J. L. Geisel, M. Raghu, M. A. Durand, C. P. Gross, S. H. Busch, and L. E. Philpotts, “Performance of whole breast ultrasound in women with dense breasts following 3D tomosynthesis mammography,” in Scientific Assembly and Annual Meeting of Radiological Society of North America, 2013. Retrieved April 22, 2015, from http://rsna2013.rsna.org/program/details/?emID=13017257.
36.
36.T. Olgar, T. Kahn, and D. Gosch, “Average glandular dose in digital mammography and breast tomosynthesis,” Rofo 184(10), 911918 (2012).
http://dx.doi.org/10.1055/s-0032-1312877
37.
37.A. Tingberg, D. Fornvik, S. Mattsson, T. Svahn, P. Timberg, and S. Zackrisson, “Breast cancer screening with tomosynthesis—Initial experiences,” Radiat. Prot. Dosim. 147(1-2), 180183 (2011).
http://dx.doi.org/10.1093/rpd/ncr296
38.
38.R. J. Hooley, L. M. Scoutt, and L. E. Philpotts, “Breast ultrasonography: State of the art,” Radiology 268(3), 642659 (2013).
http://dx.doi.org/10.1148/radiol.13121606
39.
39.T. M. Kolb, J. Lichy, and J. H. Newhouse, “Occult cancer in women with dense breasts: Detection with screening US—Diagnostic yield and tumor characteristics,” Radiology 207(1), 191199 (1998).
http://dx.doi.org/10.1148/radiology.207.1.9530316
40.
40.R. G. Barr, K. Nakashima, D. Amy, D. Cosgrove, A. Farrokh, F. Schafer, J. C. Bamber, L. Castera, B. I. Choi, Y. H. Chou, C. F. Dietrich, H. Ding, G. Ferraioli, C. Filice, M. Friedrich-Rust, T. J. Hall, K. R. Nightingale, M. L. Palmeri, T. Shiina, S. Suzuki, I. Sporea, S. Wilson, and M. Kudo, “WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2. Breast,” Ultrasound Med. Biol. 41, 11481160 (2015).
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.008
41.
41.S. S. Kaplan, “Automated whole breast ultrasound,” Radiol. Clin. North Am. 52(3), 539546 (2014).
http://dx.doi.org/10.1016/j.rcl.2014.01.002
42.
42.L. C. Leong, A. Gogna, R. Pant, F. C. Ng, and L. S. Sim, “Supplementary breast ultrasound screening in Asian women with negative but dense mammograms—A pilot study,” Ann. Acad. Med. Singapore 41(10), 432439 (2012).
43.
43.K. M. Kelly and G. A. Richwald, “Automated whole-breast ultrasound: Advancing the performance of breast cancer screening,” Semin. Ultrasound CT MR 32(4), 273280 (2011).
http://dx.doi.org/10.1053/j.sult.2011.02.004
44.
44.C. Lo, Y. W. Shen, C. S. Huang, and R. F. Chang, “Computer-aided multiview tumor detection for automated whole breast ultrasound,” Ultrason. Imaging 36(1), 317 (2014).
http://dx.doi.org/10.1177/0161734613507240
45.
45.K. Drukker, C. A. Sennett, and M. L. Giger, “Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts,” Med. Phys. 41(1), 012901 (9pp.) (2014).
http://dx.doi.org/10.1118/1.4837196
46.
46.S. H. Kim, B. J. Kang, B. G. Choi, J. J. Choi, J. H. Lee, B. J. Song, B. J. Choe, S. Park, and H. Kim, “Radiologists’ performance for detecting lesions and the interobserver variability of automated whole breast ultrasound,” Korean J. Radiol. 14(2), 154163 (2013).
http://dx.doi.org/10.3348/kjr.2013.14.2.154
47.
47.C. M. Lo, R. T. Chen, Y. C. Chang, Y. W. Yang, M. J. Hung, C. S. Huang, and R. F. Chang, “Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed,” IEEE Trans. Med. Imaging 33(7), 15031511 (2014).
http://dx.doi.org/10.1109/TMI.2014.2315206
48.
48.K. M. Kelly, J. Dean, W. S. Comulada, and S. J. Lee, “Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,” Eur. Radiol. 20(3), 734742 (2010).
http://dx.doi.org/10.1007/s00330-009-1588-y
49.
49.V. Giuliano and C. Giuliano, “Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts,” Clin. Imaging 37(3), 480486 (2013).
http://dx.doi.org/10.1016/j.clinimag.2012.09.018
50.
50.E. Y. Chae, H. H. Kim, J. H. Cha, H. J. Shin, and H. Kim, “Evaluation of screening whole-breast sonography as a supplemental tool in conjunction with mammography in women with dense breasts,” J. Ultrasound Med. 32(9), 15731578 (2013).
http://dx.doi.org/10.7863/ultra.32.9.1573
51.
51.B. J. Hillman, S. E. Harms, G. Stevens, R. G. Stough, A. B. Hollingsworth, K. F. Kozlowski, and L. J. Moss, “Diagnostic performance of a dedicated 1.5-T breast MR imaging system,” Radiology 265(1), 5158 (2012).
http://dx.doi.org/10.1148/radiol.12110600
52.
52.C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology 244(2), 356378 (2007).
http://dx.doi.org/10.1148/radiol.2442051620
53.
53.C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244(3), 672691 (2007).
http://dx.doi.org/10.1148/radiol.2443051661
54.
54.F. Sardanelli, C. Boetes, B. Borisch, T. Decker, M. Federico, F. J. Gilbert, T. Helbich, S. H. Heywang-Kobrunner, W. A. Kaiser, M. J. Kerin, R. E. Mansel, L. Marotti, L. Martincich, L. Mauriac, H. Meijers-Heijboer, R. Orecchia, P. Panizza, A. Ponti, A. D. Purushotham, P. Regitnig, M. R. Del Turco, F. Thibault, and R. Wilson, “Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group,” Eur. J. Cancer 46(8), 12961316 (2010).
http://dx.doi.org/10.1016/j.ejca.2010.02.015
55.
55.E. Warner, “The role of magnetic resonance imaging in screening women at high risk of breast cancer,” Top. Magn. Reson. Imaging 19(3), 163169 (2008).
http://dx.doi.org/10.1097/RMR.0b013e31818bc994
56.
56.S. Ehsani, R. M. Strigel, E. Pettke, L. Wilke, A. J. Tevaarwerk, W. B. DeMartini, and K. B. Wisinski, “Screening magnetic resonance imaging recommendations and outcomes in patients at high risk for breast cancer,” Breast J. 21(3), 246253 (2015).
http://dx.doi.org/10.1111/tbj.12396
57.
57.C. Kuhl, S. Weigel, S. Schrading, B. Arand, H. Bieling, R. Konig, B. Tombach, C. Leutner, A. Rieber-Brambs, D. Nordhoff, W. Heindel, M. Reiser, and H. H. Schild, “Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: The EVA trial,” J. Clin. Oncol. 28(9), 14501457 (2010).
http://dx.doi.org/10.1200/JCO.2009.23.0839
58.
58.D. J. Thompson, M. O. Leach, G. Kwan-Lim, S. A. Gayther, S. J. Ramus, I. Warsi, F. Lennard, M. Khazen, E. Bryant, S. Reed, C. R. Boggis, D. G. Evans, R. A. Eeles, D. F. Easton, and R. M. Warren, “Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: The UK MARIBS study,” Breast Cancer Res. 11(6), R80 (2009).
http://dx.doi.org/10.1186/bcr2447
59.
59.W. A. Berg, J. D. Blume, A. M. Adams, R. A. Jong, R. G. Barr, D. E. Lehrer, E. D. Pisano, W. P. Evans 3rd, M. C. Mahoney, L. Hovanessian Larsen, G. J. Gabrielli, and E. B. Mendelson, “Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666,” Radiology 254(1), 7987 (2010).
http://dx.doi.org/10.1148/radiol.2541090953
60.
60.L. W. Bassett, S. G. Dhaliwal, J. Eradat, O. Khan, D. F. Farria, R. J. Brenner, and J. W. Sayre, “National trends and practices in breast MRI,” AJR, Am. J. Roentgenol. 191(2), 332339 (2008).
http://dx.doi.org/10.2214/AJR.07.3207
61.
61.S. H. Heywang-Kobrunner, P. Viehweg, A. Heinig, and C. Kuchler, “Contrast-enhanced MRI of the breast: Accuracy, value, controversies, solutions,” Eur. J. Radiol. 24(2), 94108 (1997).
http://dx.doi.org/10.1016/s0720-048x(96)01142-4
62.
62.J. Zakhireh, R. Gomez, and L. Esserman, “Converting evidence to practice: A guide for the clinical application of MRI for the screening and management of breast cancer,” Eur. J. Cancer 44(18), 27422752 (2008).
http://dx.doi.org/10.1016/j.ejca.2008.09.008
63.
63.S. Weinstein and M. Rosen, “Breast MR imaging: Current indications and advanced imaging techniques,” Radiol. Clin. North Am. 48(5), 10131042 (2010).
http://dx.doi.org/10.1016/j.rcl.2010.06.011
64.
64.J. B. Sutcliffe 3rd and P. M. Otto, “Controversies in breast MRI,” Curr. Probl. Diagn. Radiol. 42(4), 149163 (2013).
http://dx.doi.org/10.1067/j.cpradiol.2013.03.001
65.
65.I. Griebsch, J. Brown, C. Boggis, A. Dixon, M. Dixon, D. Easton, R. Eeles, D. G. Evans, F. J. Gilbert, J. Hawnaur, P. Kessar, S. R. Lakhani, S. M. Moss, A. Nerurkar, A. R. Padhani, L. J. Pointon, J. Potterton, D. Thompson, L. W. Turnbull, L. G. Walker, R. Warren, and M. O. Leach, “Cost-effectiveness of screening with contrast enhanced magnetic resonance imaging vs x-ray mammography of women at a high familial risk of breast cancer,” Br. J. Cancer 95(7), 801810 (2006).
http://dx.doi.org/10.1038/sj.bjc.6603356
66.
66.S. K. Plevritis, A. W. Kurian, B. M. Sigal, B. L. Daniel, D. M. Ikeda, F. E. Stockdale, and A. M. Garber, “Cost-effectiveness of screening BRCA1/2 mutation carriers with breast magnetic resonance imaging,” JAMA, J. Am. Med. Assoc. 295(20), 23742384 (2006).
http://dx.doi.org/10.1001/jama.295.20.2374
67.
67.J. M. Lee, P. M. McMahon, C. Y. Kong, D. B. Kopans, P. D. Ryan, E. M. Ozanne, E. F. Halpern, and G. S. Gazelle, “Cost-effectiveness of breast MR imaging and screen-film mammography for screening BRCA1 gene mutation carriers,” Radiology 254(3), 793800 (2010).
http://dx.doi.org/10.1148/radiol.09091086
68.
68.C. Taneja, J. Edelsberg, D. Weycker, A. Guo, G. Oster, and J. Weinreb, “Cost effectiveness of breast cancer screening with contrast-enhanced MRI in high-risk women,” J. Am. Coll. Radiol. 6(3), 171179 (2009).
http://dx.doi.org/10.1016/j.jacr.2008.10.003
69.
69.S. Feig, “Cost-effectiveness of mammography, MRI, and ultrasonography for breast cancer screening,” Radiol. Clin. North Am. 48(5), 879891 (2010).
http://dx.doi.org/10.1016/j.rcl.2010.06.002
70.
70.D. J. Rhodes, C. B. Hruska, A. L. Conners, C. L. Tortorelli, R. W. Maxwell, K. N. Jones, A. Y. Toledano, and M. K. O’Connor, “Journal club: Molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts,” AJR, Am. J. Roentgenol. 204(2), 241251 (2015).
http://dx.doi.org/10.2214/AJR.14.13357
71.
71.D. J. Rhodes, C. B. Hruska, S. W. Phillips, D. H. Whaley, and M. K. O’Connor, “Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts,” Radiology 258(1), 106118 (2011).
http://dx.doi.org/10.1148/radiol.10100625
72.
72.C. B. Hruska, A. L. Weinmann, and M. K. O’Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms,” Med. Phys. 39(6), 34663475 (2012).
http://dx.doi.org/10.1118/1.4718665
73.
73.C. B. Hruska, A. L. Weinmann, C. M. Tello Skjerseth, E. M. Wagenaar, A. L. Conners, C. L. Tortorelli, R. W. Maxwell, D. J. Rhodes, and M. K. O’Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part II. Evaluation in patients,” Med. Phys. 39(6), 34763483 (2012).
http://dx.doi.org/10.1118/1.4719959
74.
74.M. O’Connor, D. Rhodes, and C. Hruska, “Molecular breast imaging,” Expert Rev. Anticancer Ther. 9(8), 10731080 (2009).
http://dx.doi.org/10.1586/era.09.75
75.
75.C. B. Hruska, D. J. Rhodes, A. L. Conners, K. N. Jones, R. E. Carter, R. K. Lingineni, and C. M. Vachon, “Background parenchymal uptake during molecular breast imaging and associated clinical factors,” AJR, Am. J. Roentgenol. 204(3), W363W370 (2015).
http://dx.doi.org/10.2214/AJR.14.12979
76.
76.A. Holbrook and M. S. Newel, “Alternative screening for women with dense breasts: Breast-specific gamma imaging (molecular breast imaging),” AJR, Am. J. Roentgenol. 204(2), 252256 (2015).
http://dx.doi.org/10.2214/AJR.14.13525
77.
77.J. M. Ho, N. Jafferjee, G. M. Covarrubias, M. Ghesani, and B. Handler, “Dense breasts: A review of reporting legislation and available supplemental screening options,” AJR, Am. J. Roentgenol. 203(2), 449456 (2014).
http://dx.doi.org/10.2214/AJR.13.11969
78.
78.M. K. O’Connor, “Molecular breast imaging: An emerging modality for breast cancer screening,” Breast Cancer Manage. 4(1), 3340 (2015).
http://dx.doi.org/10.2217/bmt.14.49
79.
79.M. K. O’Connor, H. Li, D. J. Rhodes, C. B. Hruska, C. B. Clancy, and R. J. Vetter, “Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast,” Med. Phys. 37(12), 61876198 (2010).
http://dx.doi.org/10.1118/1.3512759
80.
80.B. F. Ostrov, Letters About Dense Breasts Can Lead To More Questions Than Answers. Retrieved September 12, 2015, from http://www.npr.org/sections/health-shots/2015/04/16/399946509/letters-about-dense-breasts-can-lead-to-more-questions-than-answers.
81.
81.P. J. Slanetz, P. E. Freer, and R. L. Birdwell, “Breast-density legislation–practical considerations,” N. Engl. J. Med. 372(7), 593595 (2015).
http://dx.doi.org/10.1056/NEJMp1413728
82.
82.E. N. Marcus, L. M. Sanders, M. Pereyra, Y. Del Toro, A. P. Romilly, M. Yepes, M. W. Hooper, and B. A. Jones, “Mammography result notification letters: Are they easy to read and understand?,” J. Women’s Health 20(4), 545551 (2011).
http://dx.doi.org/10.1089/jwh.2010.2330
83.
83.V. Brower, “Breast density legislation fueling controversy,” J. Natl. Cancer Inst. 105(8), 510511 (2013).
http://dx.doi.org/10.1093/jnci/djt086
84.
84.K. M. Ray, E. R. Price, and B. N. Joe, “Breast density legislation: Mandatory disclosure to patients, alternative screening, billing, reimbursement,” AJR, Am. J. Roentgenol. 204(2), 257260 (2015).
http://dx.doi.org/10.2214/AJR.14.13558
85.
85.R. Keefer, Shedding Light on Breast Density: Radiologists Discuss the Implications of Breast Density Legislation, 2012. Retrieved September 12, 2015, from http://www.acr.org/News-Publications/News/News-Articles/2012/ACR-Bulletin/201210-Shedding-Light-on-Breast-Density.
86.
86.P. C. Johns and M. J. Yaffe, “Theoretical optimization of dual-energy x-ray imaging with application to mammography,” Med. Phys. 12(3), 289296 (1985).
http://dx.doi.org/10.1118/1.595766
87.
87.P. Johns and M. Yaffe, “X-ray characterisation of normal and neoplastic breast tissues,” Phys. Med. Biol. 32, 675695 (1987).
http://dx.doi.org/10.1088/0031-9155/32/6/002
88.
88.S. van Engeland, P. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer, “Volumetric breast density estimation from full-field digital mammograms,” IEEE Trans. Med. Imaging 25, 273282 (2006).
http://dx.doi.org/10.1109/TMI.2005.862741
89.
89.R. Highnam and M. Brady, Mammographic Image Analysis (Kluwer Academic, Dordrecht, The Netherlands, 1999).
90.
90.J. W. Byng, J. G. Mainprize, and M. J. Yaffe, “X-ray characterization of breast phantom materials,” Phys. Med. Biol. 43(5), 13671377 (1998).
http://dx.doi.org/10.1088/0031-9155/43/5/026
91.
91.G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology 130(2), 485491 (1979).
http://dx.doi.org/10.1148/130.2.485
92.
92.R. A. Geise and A. Palchevsky, “Composition of mammographic phantom materials,” Radiology 198(2), 347350 (1996).
http://dx.doi.org/10.1148/radiology.198.2.8596830
93.
93.M. Yaffe, “Mammographic density. Measurement of mammographic density,” Breast Cancer Res. 10(3), 209 (2008).
http://dx.doi.org/10.1186/bcr2102
94.
94.R. Highnam, “Model-based enhancement of mammographic images,” Ph.D. thesis, Oxford University, 1992.
95.
95.J. Li, L. Szekely, L. Eriksson, B. Heddson, A. Sundbom, K. Czene, P. Hall, and K. Humphreys, “High-throughput mammographic-density measurement: A tool for risk prediction of breast cancer,” Breast Cancer Res. 14(4), R114 (2012).
http://dx.doi.org/10.1186/bcr3238
96.
96.O. Alonzo-Proulx, G. E. Mawdsley, J. T. Patrie, M. J. Yaffe, and J. A. Harvey, “Reliability of automated breast density measurements,” Radiology 275(2), 366376 (2015).
http://dx.doi.org/10.1148/radiol.15141686
97.
97.J. Wang, A. Azziz, B. Fan, S. Malkov, C. Klifa, D. Newitt, S. Yitta, N. Hylton, K. Kerlikowske, and J. A. Shepherd, “Agreement of mammographic measures of volumetric breast density to MRI,” PLoS One 8(12), e81653 (2013).
http://dx.doi.org/10.1371/journal.pone.0081653
98.
98.A. Gubern-Merida, M. Kallenberg, B. Platel, R. M. Mann, R. Marti, and N. Karssemeijer, “Volumetric breast density estimation from full-field digital mammograms: A validation study,” PLoS One 9(1), e85952 (2014).
http://dx.doi.org/10.1371/journal.pone.0085952
99.
99.A. M. Couwenberg, H. M. Verkooijen, J. Li, R. M. Pijnappel, K. R. Charaghvandi, M. Hartman, and C. H. van Gils, “Assessment of a fully automated, high-throughput mammographic density measurement tool for use with processed digital mammograms,” Cancer Causes Control 25(8), 10371043 (2014).
http://dx.doi.org/10.1007/s10552-014-0404-4
100.
100.S. J. Graham, M. J. Bronskill, J. W. Byng, M. J. Yaffe, and N. F. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and x-ray mammography,” Br. J. Cancer 73(2), 162168 (1996).
http://dx.doi.org/10.1038/bjc.1996.30
101.
101.N. Boyd, J. Byng, R. Jong, E. Fishell, L. Little, A. Miller, G. Lockwood, D. Tritchler, and M. Yaffe, “Quantitative classification of mammographic densities and breast cancer risk: Results from the Canadian national breast screening study,” J. Natl. Cancer Inst. 87, 670675 (1995).
http://dx.doi.org/10.1093/jnci/87.9.670
102.
102.J. Wolfe, “Breast patterns as an index of risk for developing breast cancer,” AJR, Am. J. Roentgenol. 126, 11301139 (1976).
http://dx.doi.org/10.2214/ajr.126.6.1130
103.
103.J. N. Wolfe, “Risk for breast cancer development determined by mammographic parenchymal pattern,” Cancer 37(5), 24862492 (1976).
http://dx.doi.org/10.1002/1097-0142(197605)37:5<2486::AID-CNCR2820370542>3.0.CO;2-8
104.
104.C. H. van Gils, J. D. Otten, A. L. Verbeek, and J. H. Hendriks, “Mammographic breast density and risk of breast cancer: Masking bias or causality?,” Eur. J. Epidemiol. 14(4), 315320 (1998).
http://dx.doi.org/10.1023/A:1007423824675
105.
105.C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9(6), 217 (2007).
http://dx.doi.org/10.1186/bcr1829
106.
106.C. M. Vachon, K. R. Brandt, K. Ghosh, C. G. Scott, S. D. Maloney, M. J. Carston, V. S. Pankratz, and T. A. Sellers, “Mammographic breast density as a general marker of breast cancer risk,” Cancer Epidemiol., Biomarkers Prev. 16(1), 4349 (2007).
http://dx.doi.org/10.1158/1055-9965.EPI-06-0738
107.
107.A. Eng, Z. Gallant, J. Shepherd, V. McCormack, J. Li, M. Dowsett, S. Vinnicombe, S. Allen, and I. dos-Santos-Silva, “Digital mammographic density and breast cancer risk: A case-control study of six alternative density assessment methods,” Breast Cancer Res. 16(5), 439 (2014).
http://dx.doi.org/10.1186/s13058-014-0439-1
108.
108.G. Ursin and S. Qureshi, “Mammographic density—A useful biomarker for breast cancer risk in epidemiologic studies,” Nor. Epidemiol. 19(1), 5968 (2009).
109.
109.N. Boyd, L. Martin, M. Yaffe, and S. Minkin, “Mammographic density and breast cancer risk: Current understanding and future prospects,” Breast Cancer Res. 13(6), 223 (2011).
http://dx.doi.org/10.1186/bcr2942
110.
110.I. T. Gram, Y. Bremnes, G. Ursin, G. Maskarinec, N. Bjurstam, and E. Lund, “Percentage density, Wolfe’s and Tabár’s mammographic patterns: Agreement and association with risk factors for breast cancer,” Breast Cancer Res. 7, R854R861 (2005).
http://dx.doi.org/10.1186/bcr1308
111.
111.N. Boyd, L. Martin, S. Chavez, A. Gunasekara, A. Salleh, O. Melnichouk, M. Yaffe, C. Friedenreich, S. Minkin, and M. Bronskill, “Breast-tissue composition and other risk factors for breast cancer in young women: A cross-sectional study,” Lancet Oncol. 10, 569580 (2009).
http://dx.doi.org/10.1016/S1470-2045(09)70078-6
112.
112.A. M. O’Connell, A. Karellas, and S. Vedantham, “The potential role of dedicated 3D breast CT as a diagnostic tool: Review and early clinical examples,” Breast J. 20(6), 592605 (2014).
http://dx.doi.org/10.1111/tbj.12327
113.
113.J. M. Boone, A. L. Kwan, K. Yang, G. W. Burkett, K. K. Lindfors, and T. R. Nelson, “Computed tomography for imaging the breast,” J. Mammary Gland Biol. Neoplasia 11(2), 103111 (2006).
http://dx.doi.org/10.1007/s10911-006-9017-1
114.
114.K. K. Lindfors, J. M. Boone, M. S. Newell, and C. J. D’Orsi, “Dedicated breast computed tomography: The optimal cross-sectional imaging solution?,” Radiol. Clin. North Am. 48(5), 10431054 (2010).
http://dx.doi.org/10.1016/j.rcl.2010.06.001
115.
115.L. J. Lu, T. K. Nishino, R. F. Johnson, F. Nayeem, D. G. Brunder, H. Ju, M. H. Leonard, J. J. Grady, and T. Khamapirad, “Comparison of breast tissue measurements using magnetic resonance imaging, digital mammography and a mathematical algorithm,” Phys. Med. Biol. 57(21), 69036927 (2012).
http://dx.doi.org/10.1088/0031-9155/57/21/6903
116.
116.D. B. Kopans, “Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk,” Radiology 246(2), 348353 (2008).
http://dx.doi.org/10.1148/radiol.2461070309
117.
117.A. Saftlas and M. Szklo, “Mammographic parenchymal patterns and breast cancer risk,” Epidemiol. Rev. 9, 146174 (1987).
118.
118.L. E. Myers, R. McLelland, C. X. Stricker, S. A. Feig, J. E. Martin, M. Moskowitz, and M. E. Nielsen, Jr., “Reproducibility of mammographic classifications,” AJR, Am. J. Roentgenol. 141(3), 445450 (1983).
http://dx.doi.org/10.2214/ajr.141.3.445
119.
119.P. Toniolo, A. R. Bleich, C. Beinart, and K. L. Koenig, “Reproducibility of Wolfe’s classification of mammographic parenchymal patterns,” Prev. Med. 21(1), 17 (1992).
http://dx.doi.org/10.1016/0091-7435(92)90001-X
120.
120.P. Goodwin and N. Boyd, “Mammographic parenchymal patterns and breast cancer risk: A critical appraisal of the evidence,” Am. J. Epidemiol. 127, 10971108 (1988).
121.
121.B. Threatt, J. M. Norbeck, N. S. Ullman, R. Kummer, and P. Roselle, “Association between mammographic parenchymal pattern classification and incidence of breast cancer,” Cancer 45(10), 25502556 (1980).
http://dx.doi.org/10.1002/1097-0142(19800515)45:10<2550::AID-CNCR2820451013>3.0.CO;2-M
122.
122.I. Witt, H. S. Hansen, and S. Brunner, “The risk of developing breast cancer in relation to mammography findings,” Eur. J. Radiol. 4(1), 6567 (1984).
123.
123.I. T. Gram, E. Funkhouser, and L. Tabár, “The Tabár classification of mammographic parenchymal patterns,” Eur. J. Radiol. 24(2), 131136 (1997).
http://dx.doi.org/10.1016/S0720-048X(96)01138-2
124.
124.I. Muhimmah, A. Oliver, E. E. Denton, J. Pont, E. Pérez, and R. Zwiggelaar, “Comparison between Wolfe, Boyd, BI-RADS and Tabár based mammographic risk assessment,” in Digital Mammography, edited by S. Astley, M. Brady, C. Rose, and R. Zwiggelaar (Springer, Berlin, Heidelberg, 2006), Vol. 4046, pp. 407415.
125.
125.M. Moskowitz, P. Gartside, and C. McLaughlin, “Mammographic patterns as markers for high-risk benign breast disease and incident cancers,” Radiology 134(2), 293295 (1980).
http://dx.doi.org/10.1148/radiology.134.2.7352202
126.
126.L. Tabár and P. B. Dean, “Mammographic parenchymal patterns. Risk indicator for breast cancer?,” JAMA, J. Am. Med. Assoc. 247(2), 185189 (1982).
http://dx.doi.org/10.1001/jama.1982.03320270023016
127.
127.A. M. Oza and N. F. Boyd, “Mammographic parenchymal patterns: A marker of breast cancer risk,” Epidemiol. Rev. 15(1), 196208 (1993).
128.
128.J. A. Harvey and V. E. Bovbjerg, “Quantitative assessment of mammographic breast density: Relationship with breast cancer risk,” Radiology 230(1), 2941 (2004).
http://dx.doi.org/10.1148/radiol.2301020870
129.
129.E. Warner, G. Lockwood, M. Math, D. Tritchler, and N. Boyd, “The risk of breast cancer associated with mammographic parenchymal patterns: A meta-analysis of the published literature to examine the effect of method of classification,” Cancer Detect. Prev. 16, 6772 (1992).
130.
130.N. Jamal, K. H. Ng, L. M. Looi, D. McLean, A. Zulfiqar, S. P. Tan, W. F. Liew, A. Shantini, and S. Ranganathan, “Quantitative assessment of breast density from digitized mammograms into Tabar’s patterns,” Phys. Med. Biol. 51(22), 58435857 (2006).
http://dx.doi.org/10.1088/0031-9155/51/22/008
131.
131.N. F. Boyd, B. O’Sullivan, J. E. Campbell, E. Fishell, I. Simor, G. Cooke, and T. Germanson, “Mammographic signs as risk factors for breast cancer,” Br. J. Cancer 45(2), 185193 (1982).
http://dx.doi.org/10.1038/bjc.1982.32
132.
132.H. Lee-Han, G. Cooke, and N. F. Boyd, “Quantitative evaluation of mammographic densities: A comparison of methods of assessment,” Eur. J. Cancer Prev. 4(4), 285292 (1995).
http://dx.doi.org/10.1097/00008469-199508000-00003
133.
133.N. F. Boyd, E. Fishell, R. Jong, J. C. MacDonald, R. K. Sparrow, I. S. Simor, V. Kriukov, G. Lockwood, and D. Tritchler, “Mammographic densities as a criterion for entry to a clinical trial of breast cancer prevention,” Br. J. Cancer 72(2), 476479 (1995).
http://dx.doi.org/10.1038/bjc.1995.358
134.
134.N. Boyd, G. Lockwood, J. Byng, D. Tritchler, and M. Yaffe, “Mammographic densities and breast cancer risk,” Cancer Epidemiol., Biomarkers Prev. 7, 11331144 (1998).
135.
135.J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe, “The quantitative analysis of mammographic densities,” Phys. Med. Biol. 39(10), 16291638 (1994).
http://dx.doi.org/10.1088/0031-9155/39/10/008
136.
136.J. W. Byng, M. J. Yaffe, R. A. Jong, R. S. Shumak, G. A. Lockwood, D. L. Tritchler, and N. F. Boyd, “Analysis of mammographic density and breast cancer risk from digitized mammograms,” Radiographics 18(6), 15871598 (1998).
http://dx.doi.org/10.1148/radiographics.18.6.9821201
137.
137.M. J. Yaffe, N. F. Boyd, J. W. Byng, R. A. Jong, E. Fishell, G. A. Lockwood, L. E. Little, and D. L. Tritchler, “Breast cancer risk and measured mammographic density,” Eur. J. Cancer Prev. 7(Suppl. 1), S47S55 (1998).
http://dx.doi.org/10.1097/00008469-199802001-00010
138.
138.C. Byrne, C. Schairer, J. Wolfe, N. Parekh, M. Salane, L. A. Brinton, R. Hoover, and R. Haile, “Mammographic features and breast cancer risk: Effects with time, age, and menopause status,” J. Natl. Cancer Inst. 87(21), 16221629 (1995).
http://dx.doi.org/10.1093/jnci/87.21.1622
139.
139.J. Brisson, C. Diorio, and B. Masse, “Wolfe’s parenchymal pattern and percentage of the breast with mammographic densities: Redundant or complementary classifications?,” Cancer Epidemiol., Biomarkers Prev. 12(8), 728732 (2003).
140.
140.G. Ursin, H. Ma, A. H. Wu, L. Bernstein, M. Salane, Y. R. Parisky, M. Astrahan, C. C. Siozon, and M. C. Pike, “Mammographic density and breast cancer in three ethnic groups,” Cancer Epidemiol., Biomarkers Prev. 12(4), 332338 (2003).
141.
141.N. Boyd, L. Martin, M. Bronskill, M. Yaffe, N. Duric, and S. Minkin, “Breast tissue composition and susceptibility to breast cancer,” J. Natl. Cancer Inst. 102, 12241237 (2010).
http://dx.doi.org/10.1093/jnci/djq239
142.
142.J. Heine, M. Carston, C. Scott, K. Brandt, F. Wu, V. Pankratz, T. Sellers, and C. Vachon, “An automated approach for estimation of breast density,” Cancer Epidemiol., Biomarkers Prev. 17, 30903097 (2008).
http://dx.doi.org/10.1158/1055-9965.EPI-08-0170
143.
143.S. Prevrhal, J. A. Shepherd, R. Smith-Bindman, S. R. Cummings, and K. Kerlikowske, “Accuracy of mammographic breast density analysis: Results of formal operator training,” Cancer Epidemiol., Biomarkers Prev. 11(11), 13891393 (2002).
144.
144.U. Sovio, J. Li, Z. Aitken, K. Humphreys, K. Czene, S. Moss, P. Hall, V. McCormack, and I. dos-Santos-Silva, “Comparison of fully and semi-automated area-based methods for measuring mammographic density and predicting breast cancer risk,” Br. J. Cancer 110(7), 19081916 (2014).
http://dx.doi.org/10.1038/bjc.2014.82
145.
145.C. Zhou, H. Chan, N. Petrick, M. Helvie, M. Goodsitt, B. Sahiner, and L. Hadjiiski, “Computerized image analysis: Estimation of breast density on mammograms,” Med. Phys. 28(6), 10561069 (2001).
http://dx.doi.org/10.1118/1.1376640
146.
146.R. Sivaramakrishna, N. Obuchowski, W. Chilcote, and K. Powell, “Automatic segmentation of mammographic density,” Acad. Radiol. 8, 250256 (2001).
http://dx.doi.org/10.1016/S1076-6332(03)80534-2
147.
147.N. Karssemeijer, “Automated classification of parenchymal patterns in mammograms,” Phys. Med. Biol. 43, 365378 (1998).
http://dx.doi.org/10.1088/0031-9155/43/2/011
148.
148.Y. Chang, X. Wang, L. Hardesty, T. Chang, W. Poller, W. Good, and D. Gur, “Computerized assessment of tissue composition on digitized mammograms,” Acad. Radiol. 9, 899905 (2002).
http://dx.doi.org/10.1016/S1076-6332(03)80459-2
149.
149.C. Glide-Hurst, N. Duric, and P. Littrup, “A new method for quantitative analysis of mammographic density,” Med. Phys. 34, 44914498 (2007).
http://dx.doi.org/10.1118/1.2789407
150.
150.C. Nickson, Y. Arzhaeva, Z. Aitken, T. Elgindy, M. Buckley, M. Li, D. English, and A. Kavanagh, “AutoDensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes,” Breast Cancer Res. 15(5), R80 (2013).
http://dx.doi.org/10.1186/bcr3474
151.
151.G. Ursin, M. A. Astrahan, M. Salane, Y. R. Parisky, J. G. Pearce, J. R. Daniels, M. C. Pike, and D. V. Spicer, “The detection of changes in mammographic densities,” Cancer Epidemiol., Biomarkers Prev. 7(1), 4347 (1998).
152.
152.J. J. Heine and R. P. Velthuizen, “A statistical methodology for mammographic density detection,” Med. Phys. 27(12), 26442651 (2000).
http://dx.doi.org/10.1118/1.1323981
153.
153.A. Tagliafico, G. Tagliafico, S. Tosto, F. Chiesa, C. Martinoli, L. E. Derchi, and M. Calabrese, “Mammographic density estimation: Comparison among BI-RADS categories, a semi-automated software and a fully automated one,” Breast 18(1), 3540 (2009).
http://dx.doi.org/10.1016/j.breast.2008.09.005
154.
154.VuCOMP, Inc., VuCOMP—Breast density. Retrieved April 25, 2015, from http://www.vucomp.com/products/breast-density.
155.
155.E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D’Orsi, R. A. Jong, M. Rebner, A. N. Tosteson, and C. A. Gatsonis, “Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST,” Radiology 246(2), 376383 (2008).
http://dx.doi.org/10.1148/radiol.2461070200
156.
156.E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, and M. Rebner, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med. 353(17), 17731783 (2005).
http://dx.doi.org/10.1056/NEJMoa052911
157.
157.R. E. Hendrick, E. D. Pisano, A. Averbukh, C. Moran, E. A. Berns, M. J. Yaffe, B. Herman, S. Acharyya, and C. Gatsonis, “Comparison of acquisition parameters and breast dose in digital mammography and screen-film mammography in the American College of Radiology Imaging Network digital mammographic imaging screening trial,” AJR, Am. J. Roentgenol. 194(2), 362369 (2010).
http://dx.doi.org/10.2214/AJR.08.2114
158.
158.M. Jeffreys, J. Harvey, and R. Highnam, “Comparing a new volumetric breast density method (volpara™) to cumulus,” in Digital Mammography, edited by J. Martí, A. Oliver, J. Freixenet, and R. Martí (Springer, Berlin, Heidelberg, 2010), Vol. 6136, pp. 408413.
159.
159.C. M. Vachon, E. E. Fowler, G. Tiffenberg, C. G. Scott, V. S. Pankratz, T. A. Sellers, and J. J. Heine, “Comparison of percent density from raw and processed full-field digital mammography data,” Breast Cancer Res. 15(1), R1 (2013).
http://dx.doi.org/10.1186/bcr3372
160.
160.B. M. Keller, D. L. Nathan, Y. Wang, Y. Zheng, J. C. Gee, E. F. Conant, and D. Kontos, “Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation,” Med. Phys. 39(8), 49034917 (2012).
http://dx.doi.org/10.1118/1.4736530
161.
161.E. E. Fowler, C. M. Vachon, C. G. Scott, T. A. Sellers, and J. J. Heine, “Automated percentage of breast density measurements for full-field digital mammography applications,” Acad. Radiol. 21(8), 958970 (2014).
http://dx.doi.org/10.1016/j.acra.2014.04.006
162.
162.B. M. Keller, D. L. Nathan, S. C. Gavenonis, J. Chen, E. F. Conant, and D. Kontos, “Reader variability in breast density estimation from full-field digital mammograms: The effect of image postprocessing on relative and absolute measures,” Acad. Radiol. 20(5), 560568 (2013).
http://dx.doi.org/10.1016/j.acra.2013.01.003
163.
163.D. Li, S. Gavenonis, E. Conant, and D. Kontos, “Comparison of breast percent density estimation from raw versus processed digital mammograms,” Proc. SPIE 7963, 79631X (2011).
http://dx.doi.org/10.1117/12.878886
164.
164.B. Schroeder, R. Highnam, A. Cave, J. Walker, N. Karssemeijer, M. Yaffe, R. Jong, and O. Alonze-Proulx, “At what age should breast screening begin?,” in Scientific Assembly and Annual Meeting of Radiological Society of North America, 2011. Retrieved April 10, 2015, from http://archive.rsna.org/2011/11004540.html.
165.
165.K. Nie, M. Y. Su, M. K. Chau, S. Chan, H. Nguyen, T. Tseng, Y. Huang, C. E. McLaren, O. Nalcioglu, and J. H. Chen, “Age- and race-dependence of the fibroglandular breast density analyzed on 3D MRI,” Med. Phys. 37(6), 27702776 (2010).
http://dx.doi.org/10.1118/1.3426317
166.
166.K. Hartman, R. Highnam, R. Warren, and V. Jackson, “Volumetric assessment of breast tissue composition from FFDM images,” in Digital Mammography, edited by E. Krupinski (Springer, Berlin, Heidelberg, 2008), Vol. 5116, pp. 3339.
167.
167.R. Highnam, S. Brady, M. Yaffe, N. Karssemeijer, and J. Harvey, “Robust breast composition measurement—volpara,” in Digital Mammography, edited by J. Martí, A. Oliver, J. Freixenet, and R. Martí (Springer, Berlin, Heidelberg, 2010), Vol. 6136, pp. 342349.
168.
168.J. S. Brand, K. Czene, J. A. Shepherd, K. Leifland, B. Heddson, A. Sundbom, M. Eriksson, J. Li, K. Humphreys, and P. Hall, “Automated measurement of volumetric mammographic density: A tool for widespread breast cancer risk assessment,” Cancer Epidemiol., Biomarkers Prev. 23(9), 17641772 (2014).
http://dx.doi.org/10.1158/1055-9965.EPI-13-1219
169.
169.A. Tagliafico, G. Tagliafico, D. Astengo, S. Airaldi, M. Calabrese, and N. Houssami, “Comparative estimation of percentage breast tissue density for digital mammography, digital breast tomosynthesis, and magnetic resonance imaging,” Breast Cancer Res. Treat. 138(1), 311317 (2013).
http://dx.doi.org/10.1007/s10549-013-2419-z
170.
170.M. Kallenberg and N. Karssemeijer, “Temporal stability of fully automatic volumetric breast density estimation in a large screening population,” in European Congress of Radiology, 2013. Retrieved April 22, 2015, from http://dx.doi.org/10.1594/ecr2013/C-1953.
171.
171.K. Wang, A. Chan, and R. Highnam, “Robustness of automated volumetric breast density estimation for assessing temporal changes in breast density,” in European Congress of Radiology. Retrieved April 22, 2015, from http://dx.doi.org/10.1594/ecr2015/C-0737.
172.
172.ACR, Breast Imaging Reporting and Data System® (BI-RADS®), 3rd ed. (American College of Radiology, Reston, VA, 1998).
173.
173.O. W. Morrish, L. Tucker, R. Black, P. Willsher, S. W. Duffy, and F. J. Gilbert, “Mammographic breast density: Comparison of methods for quantitative evaluation,” Radiology 275, 356365 (2015).
http://dx.doi.org/10.1148/radiol.14141508
174.
174.ACR, Breast Imaging Reporting and Data System® (BI-RADS®), 4th ed. (American College of Radiology, Reston, VA, 2003).
175.
175.ACR, Breast Imaging Reporting and Data System® (BI-RADS®) Atlas, 5th ed. (American College of Radiology, Reston, VA, 2014).
176.
176.K. E. Martin, M. A. Helvie, C. Zhou, M. A. Roubidoux, J. E. Bailey, C. Paramagul, C. E. Blane, K. A. Klein, S. S. Sonnad, and H. P. Chan, “Mammographic density measured with quantitative computer-aided method: Comparison with radiologists’ estimates and BI-RADS categories,” Radiology 240(3), 656665 (2006).
http://dx.doi.org/10.1148/radiol.2402041947
177.
177.B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, “Accuracy of assigned BI-RADS breast density category definitions,” Acad. Radiol. 13(9), 11431149 (2006).
http://dx.doi.org/10.1016/j.acra.2006.06.005
178.
178.C. Colin, V. Prince, and P. J. Valette, “Can mammographic assessments lead to consider density as a risk factor for breast cancer?,” Eur. J. Radiol. 82(3), 404411 (2013).
http://dx.doi.org/10.1016/j.ejrad.2010.01.001
179.
179.S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: Intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269275 (2005).
http://dx.doi.org/10.1016/j.breast.2004.12.004
180.
180.P. M. Vacek and B. M. Geller, “A prospective study of breast cancer risk using routine mammographic breast density measurements,” Cancer Epidemiol., Biomarkers Prev. 13(5), 715722 (2004).
181.
181.E. Ziv, J. Tice, R. Smith-Bindman, J. Shepherd, S. Cummings, and K. Kerlikowske, “Mammographic density and estrogen receptor status of breast cancer,” Cancer Epidemiol., Biomarkers Prev. 13(12), 20902095 (2004).
182.
182.K. Kerlikowske, A. Cook, D. Buist, S. Cummings, C. Vachon, P. Vacek, and D. Miglioretti, “Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use,” J. Clin. Oncol. 28, 38303837 (2010).
http://dx.doi.org/10.1200/JCO.2009.26.4770
183.
183.E. D. Pisano, S. Acharyya, E. B. Cole, H. S. Marques, M. J. Yaffe, M. Blevins, E. F. Conant, R. E. Hendrick, J. K. Baum, L. L. Fajardo, R. A. Jong, M. A. Koomen, C. M. Kuzmiak, Y. Lee, D. Pavic, S. C. Yoon, W. Padungchaichote, and C. Gatsonis, “Cancer cases from ACRIN digital mammographic imaging screening trial: Radiologist analysis with use of a logistic regression model,” Radiology 252(2), 348357 (2009).
http://dx.doi.org/10.1148/radiol.2522081457
184.
184.A. D. Masmoudi, N. G. Ben Ayed, D. S. Masmoudi, and R. Abid, “LBPV descriptors-based automatic ACR/BIRADS classification approach,” EURASIP J. Image Video Process. 2013(1), 19.
http://dx.doi.org/10.1186/1687-5281-2013-19
185.
185.B. Percha, H. Nassif, J. Lipson, E. Burnside, and D. Rubin, “Automatic classification of mammography reports by BI-RADS breast tissue composition class,” J. Am. Med. Inf. Assoc. 19(5), 913916 (2012).
http://dx.doi.org/10.1136/amiajnl-2011-000607
186.
186.K. Marias, M. G. Linguraru, M. A. Gonzalez Ballester, S. Petroudi, M. Tsiknakis, and S. M. Brady, “Automatic labelling and BI-RADS characterisation of mammogram densities,” in Proceedings of IEEE Engineering in Medicine and Biology Society (IEEE, Piscataway, NJ, 2005), Vol. 6, pp. 63946398.
187.
187.A. Oliver, J. Freixenet, R. Marti, J. Pont, E. Perez, E. R. Denton, and R. Zwiggelaar, “A novel breast tissue density classification methodology,” IEEE Trans. Inf. Technol. Biomed. 12(1), 5565 (2008).
http://dx.doi.org/10.1109/TITB.2007.903514
188.
188.A. Bosch, X. Muoz, A. Oliver, and J. Marti, “Modeling and classifying breast tissue density in mammograms,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, edited by A. Fitzgibbon, C. J. Taylor, and Y. LeCun (IEEE Computer Society, New York, NY, 2006), Vol. 2, pp. 15521558.
189.
189.B. L. Sprague, N. K. Stout, C. Schechter, N. T. van Ravesteyn, M. Cevik, O. Alagoz, C. I. Lee, J. J. van den Broek, D. L. Miglioretti, J. S. Mandelblatt, H. J. de Koning, K. Kerlikowske, C. D. Lehman, and A. N. Tosteson, “Benefits, harms, and cost-effectiveness of supplemental ultrasonography screening for women with dense breasts,” Ann. Intern. Med. 162(3), 157166 (2015).
http://dx.doi.org/10.7326/M14-0692
190.
190.M. Emaus, W. Veldhuis, M. Bakker, E. Monninkhof, N. Karssemeijer, M. v. d. Bosch, P. Peeters, W. Mali, and C. v. Gils, “Abstract B10: Design of the DENSE trial: MRI as an additional screening modality to detect breast cancer in women aged 50-75 years with extremely dense breasts,” Cancer Prev. Res. 5(Suppl. 11), B10 (2012).
http://dx.doi.org/10.1158/1940-6207.PREV-12-B10
191.
191.C. Tromans, J. Diffey, and S. Brady, “Investigating the replacement of the physical anti-scatter grid with digital image processing,” in Digital Mammography, edited by J. Martí, A. Oliver, J. Freixenet, and R. Martí (Springer, Berlin, Heidelberg, 2010), Vol. 6136, pp. 205212.
192.
192.C. E. Tromans, M. R. Cocker, and S. M. Brady, “A model of primary and scattered photon fluence for mammographic x-ray image quantification,” Phys. Med. Biol. 57(20), 65416570 (2012).
http://dx.doi.org/10.1088/0031-9155/57/20/6541
193.
193.A. Fieselmann, D. Fischer, G. Hilal, F. Dennerlein, T. Mertelmeier, and D. Uhlenbrock, “Full-field digital mammography with grid-less acquisition and software-based scatter correction: Investigation of dose saving and image quality,” Proc. SPIE 8668, 86685Y (2013).
http://dx.doi.org/10.1117/12.2007490
194.
194.C. Tromans and S. Brady, “The standard attenuation rate for quantitative mammography,” in Digital Mammography, edited by J. Martí, A. Oliver, J. Freixenet, and R. Martí (Springer, Berlin, Heidelberg, 2010), Vol. 6136, pp. 561568.
195.
195.L. Blot and R. Zwiggelaar, “A volumetric approach to glandularity estimation in mammography: A feasibility study,” Phys. Med. Biol. 50(4), 695708 (2005).
http://dx.doi.org/10.1088/0031-9155/50/4/009
196.
196.M. Jeffreys, R. Warren, R. Highnam, and G. D. Smith, “Initial experiences of using an automated volumetric measure of breast density: The standard mammogram form,” Br. J. Radiol. 79(941), 378382 (2006).
http://dx.doi.org/10.1259/bjr/24769358
197.
197.M. Jeffreys, R. Warren, R. Highnam, and G. Davey Smith, “Breast cancer risk factors and a novel measure of volumetric breast density: Cross-sectional study,” Br. J. Cancer 98(1), 210216 (2008).
http://dx.doi.org/10.1038/sj.bjc.6604122
198.
198.J. Diffey, A. Hufton, and S. Astley, “A new step-wedge for the volumetric measurement of mammographic density,” in Digital Mammography, edited by S. Astley, M. Brady, C. Rose, and R. Zwiggelaar (Springer, Berlin, Heidelberg, 2006), Vol. 4046, pp. 19.
199.
199.J. A. Shepherd, L. Herve, J. Landau, B. Fan, K. Kerlikowske, and S. R. Cummings, “Novel use of single x-ray absorptiometry for measuring breast density,” Technol. Cancer Res. Treat. 4(2), 173182 (2005).
http://dx.doi.org/10.1177/153303460500400206
200.
200.J. A. Shepherd, K. Kerlikowske, L. Ma, F. Duewer, B. Fan, J. Wang, S. Malkov, E. Vittinghoff, and S. R. Cummings, “Volume of mammographic density and risk of breast cancer,” Cancer Epidemiol., Biomarkers Prev. 20(7), 14731482 (2011).
http://dx.doi.org/10.1158/1055-9965.EPI-10-1150
201.
201.J. Kaufhold, J. Thomas, J. Eberhard, C. Galbo, and D. Trotter, “A calibration approach to glandular tissue composition estimation in digital mammography,” Med. Phys. 29, 18671880 (2002).
http://dx.doi.org/10.1118/1.1493215
202.
202.S. Lau, K. H. Ng, and Y. F. A. Aziz, “Are volumetric breast density measurements robust enough for routine clinical use?,” in European Congress of Radiology, 2013. Retrieved April 22, 2015, from http://dx.doi.org/10.1594/ecr2013/C-1787.
203.
203.M. Lokate, R. K. Stellato, W. B. Veldhuis, P. H. Peeters, and C. H. van Gils, “Age-related changes in mammographic density and breast cancer risk,” Am. J. Epidemiol. 178(1), 101109 (2013).
http://dx.doi.org/10.1093/aje/kws446
204.
204.M. E. Work, L. L. Reimers, A. S. Quante, K. D. Crew, A. Whiffen, and M. B. Terry, “Changes in mammographic density over time in breast cancer cases and women at high risk for breast cancer,” Int. J. Cancer 135(7), 17401744 (2014).
http://dx.doi.org/10.1002/ijc.28825
205.
205.K. Kerlikowske, L. Ichikawa, D. L. Miglioretti, D. S. Buist, P. M. Vacek, R. Smith-Bindman, B. Yankaskas, P. A. Carney, and R. Ballard-Barbash, “Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk,” J. Natl. Cancer Inst. 99(5), 386395 (2007).
http://dx.doi.org/10.1093/jnci/djk066
206.
206.C. M. Vachon, V. S. Pankratz, C. G. Scott, S. D. Maloney, K. Ghosh, K. R. Brandt, T. Milanese, M. J. Carston, and T. A. Sellers, “Longitudinal trends in mammographic percent density and breast cancer risk,” Cancer Epidemiol., Biomarkers Prev. 16(5), 921928 (2007).
http://dx.doi.org/10.1158/1055-9965.EPI-06-1047
207.
207.J. Ding, R. Warren, A. Girling, D. Thompson, and D. Easton, “Mammographic density, estrogen receptor status and other breast cancer tumor characteristics,” Breast J. 16, 279289 (2010).
http://dx.doi.org/10.1111/j.1524-4741.2010.00907.x
208.
208.J. L. Ducote and S. Molloi, “Quantification of breast density with dual energy mammography: An experimental feasibility study,” Med. Phys. 37(2), 793801 (2010).
http://dx.doi.org/10.1118/1.3284975
209.
209.A. R. Lam, H. Ding, and S. Molloi, “Quantification of breast density using dual-energy mammography with liquid phantom calibration,” Phys. Med. Biol. 59(14), 39854000 (2014).
http://dx.doi.org/10.1088/0031-9155/59/14/3985
210.
210.S. Molloi, J. L. Ducote, H. Ding, and S. A. Feig, “Postmortem validation of breast density using dual-energy mammography,” Med. Phys. 41(8), 081917 (10pp.) (2014).
http://dx.doi.org/10.1118/1.4890295
211.
211.J. H. Smith, S. M. Astley, J. Graham, and A. P. Hufton, “The calibration of grey levels in mammograms,” in Digital Mammography, edited by K. Doi, M. Giger, R. Nishikawa, and R. Schmidt (Elsevier Science, New York, NY, 1996), pp. 195200.
212.
212.M. Brady, D. Gavaghan, A. Simpson, M. M. Parada, and R. Highnam, “eDiamond: A grid-enabled federated database of annotated mammograms,” in Grid Computing: Making the Global Infrastructure a Reality, edited by F. Berman, G. Fox, and A. G. Hey (John Wiley & Sons, Ltd., Chichester, 2003), pp. 923943.
213.
213.J. A. Shepherd, K. M. Kerlikowske, R. Smith-Bindman, H. K. Genant, and S. R. Cummings, “Measurement of breast density with dual x-ray absorptiometry: Feasibility,” Radiology 223(2), 554557 (2002).
http://dx.doi.org/10.1148/radiol.2232010482
214.
214.O. Pawluczyk, B. Augustine, M. Yaffe, D. Rico, J. Yang, G. Mawdsley, and N. Boyd, “A volumetric method for estimation of breast density on digitized screen-film mammograms,” Med. Phys. 30, 352364 (2003).
http://dx.doi.org/10.1118/1.1539038
215.
215.H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: A feasibility study,” Phys. Med. Biol. 57(15), 47194738 (2012).
http://dx.doi.org/10.1088/0031-9155/57/15/4719
216.
216.M. J. Broeders, M. Ten Voorde, W. J. Veldkamp, R. E. van Engen, C. van Landsveld-Verhoeven, M. N. t. Jong-Gunneman, J. de Win, K. D. Greve, E. Paap, and G. J. den Heeten, “Comparison of a flexible versus a rigid breast compression paddle: Pain experience, projected breast area, radiation dose and technical image quality,” Eur. Radiol. 25(3), 821829 (2015).
http://dx.doi.org/10.1007/s00330-014-3422-4
217.
217.M. G. Kallenberg and N. Karssemeijer, “Compression paddle tilt correction in full-field digital mammograms,” Phys. Med. Biol. 57(3), 703715 (2012).
http://dx.doi.org/10.1088/0031-9155/57/3/703
218.
218.M. G. Kallenberg, C. H. van Gils, M. Lokate, G. J. den Heeten, and N. Karssemeijer, “Effect of compression paddle tilt correction on volumetric breast density estimation,” Phys. Med. Biol. 57(16), 51555168 (2012).
http://dx.doi.org/10.1088/0031-9155/57/16/5155
219.
219.N. Geeraert, R. Klausz, L. Cockmartin, S. Muller, H. Bosmans, and I. Bloch, “Comparison of volumetric breast density estimations from mammography and thorax CT,” Phys. Med. Biol. 59(15), 43914409 (2014).
http://dx.doi.org/10.1088/0031-9155/59/15/4391
220.
220.M. Kallenberg, C. H. van Gils, R. M. Mann, and N. Karssemeijer, “Association between automated, volumetric measures of breast density and diagnostic outcome of mammography screening examinations,” in Scientific Assembly and Annual Meeting of Radiological Society of North America, 2012. Retrieved April 10, 2015, from http://archive.rsna.org/2012/12027520.html.
221.
221.A. Tagliafico, G. Tagliafico, D. Astengo, F. Cavagnetto, R. Rosasco, G. Rescinito, F. Monetti, and M. Calabrese, “Mammographic density estimation: One-to-one comparison of digital mammography and digital breast tomosynthesis using fully automated software,” Eur. Radiol. 22(6), 12651270 (2012).
http://dx.doi.org/10.1007/s00330-012-2380-y
222.
222.E. U. Ekpo and M. F. McEntee, “Measurement of breast density with digital breast tomosynthesis—A systematic review,” Br. J. Radiol. 87(1043), 20140460 (2014).
http://dx.doi.org/10.1259/bjr.20140460
223.
223.C. Tromans, R. Highnam, O. Morrish, R. Black, L. Tucker, and F. Gilbert, “Volumetric breast density estimation on conventional mammography versus digital breast tomosynthesis,” in European Congress of Radiology, 2014. Retrieved April 20, 2015, from http://dx.doi.org/10.1594/ecr2014/C-0363.
224.
224.P. R. Bakic, A. K. Carton, D. Kontos, C. Zhang, A. B. Troxel, and A. D. Maidment, “Breast percent density: Estimation on digital mammograms and central tomosynthesis projections,” Radiology 252(1), 4049 (2009).
http://dx.doi.org/10.1148/radiol.2521081621
225.
225.M. Lokate, P. H. Peeters, L. M. Peelen, G. Haars, W. B. Veldhuis, and C. H. van Gils, “Mammographic density and breast cancer risk: The role of the fat surrounding the fibroglandular tissue,” Breast Cancer Res. 13(5), R103 (2011).
http://dx.doi.org/10.1186/bcr3044
226.
226.P. Iyengar, T. P. Combs, S. J. Shah, V. Gouon-Evans, J. W. Pollard, C. Albanese, L. Flanagan, M. P. Tenniswood, C. Guha, M. P. Lisanti, R. G. Pestell, and P. E. Scherer, “Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization,” Oncogene 22(41), 64086423 (2003).
http://dx.doi.org/10.1038/sj.onc.1206737
227.
227.B. Ren, A. Smith, and J. Marshall, “Investigation of practical scoring methods for breast density,” in Digital Mammography, edited by J. Martí, A. Oliver, J. Freixenet, and R. Martí (Springer, Berlin, Heidelberg, 2010), Vol. 6136, pp. 651658.
228.
228.D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol. 35(9), 12111219 (1990).
http://dx.doi.org/10.1088/0031-9155/35/9/002
229.
229.V. Patel, R. Highnam, C. Tromans, R. Pizzutiello, and S. Destounis, “Patient specific average glandular dose in mammography,” in 55th American Association of Physicists in Medicine Annual Meeting & Exhibition, 2013. Retrieved April 22, 2015, from http://www.aapm.org/meetings/2013AM/PRAbs.asp?mid=77&aid=22148.
230.
230.C. Tromans, A. Chan, and R. Highnam, “Comparing personalized mean glandular dose estimates between x-ray systems over time in mammography,” in European Congress of Radiology, 2014. Retrieved April 20, 2015, from http://dx.doi.org/10.1594/ecr2014/C-0360.
231.
231.M. J. Yaffe, J. M. Boone, N. Packard, O. Alonzo-Proulx, S. Y. Huang, C. L. Peressotti, A. Al-Mayah, and K. Brock, “The myth of the 50-50 breast,” Med. Phys. 36(12), 54375443 (2009).
http://dx.doi.org/10.1118/1.3250863
232.
232.K. H. Ng, C. H. Yip, and N. A. Taib, “Standardisation of clinical breast-density measurement,” Lancet Oncol. 13(4), 334336 (2012).
http://dx.doi.org/10.1016/S1470-2045(12)70093-1
233.
233.N. Jamal, K. H. Ng, D. McLean, L. M. Looi, and F. Moosa, “Mammographic breast glandularity in Malaysian women: Data derived from radiography,” AJR, Am. J. Roentgenol. 182(3), 713717 (2004).
http://dx.doi.org/10.2214/ajr.182.3.1820713
234.
234.J. T. Jansen, W. J. Veldkamp, M. A. Thijssen, S. van Woudenberg, and J. Zoetelief, “Method for determination of the mean fraction of glandular tissue in individual female breasts using mammography,” Phys. Med. Biol. 50(24), 59535967 (2005).
http://dx.doi.org/10.1088/0031-9155/50/24/013
235.
235.J. Wanders, K. Holland, W. Veldhuis, R. Mann, P. Peeters, C. van Gils, and N. Karssemeijer, “Effect of volumetric mammographic density on performance of a breast cancer screening program using full-field digital mammography,” in European Congress of Radiology. Retrieved April 22, 2015, from http://m.myesr.org/ecr2015/index.php?p=recorddetail&rid=e55f68cc3e1563149f0def0a03f439ca.
236.
236.D. S. Al Mousa, C. Mello-Thoms, E. A. Ryan, W. B. Lee, M. W. Pietrzyk, W. M. Reed, R. Heard, A. Poulos, J. Tan, Y. Li, and P. C. Brennan, “Mammographic density and cancer detection: Does digital imaging challenge our current understanding?,” Acad. Radiol. 21(11), 13771385 (2014).
http://dx.doi.org/10.1016/j.acra.2014.06.004
237.
237.D. S. Al Mousa, P. C. Brennan, E. A. Ryan, W. B. Lee, J. Tan, and C. Mello-Thoms, “How mammographic breast density affects radiologists’ visual search patterns,” Acad. Radiol. 21(11), 13861393 (2014).
http://dx.doi.org/10.1016/j.acra.2014.06.013
238.
238.A. D. Laidevant, S. Malkov, C. I. Flowers, K. Kerlikowske, and J. A. Shepherd, “Compositional breast imaging using a dual-energy mammography protocol,” Med. Phys. 37(1), 164174 (2010).
http://dx.doi.org/10.1118/1.3259715
239.
239.H. Ding, B. Zhao, P. Baturin, F. Behroozi, and S. Molloi, “Breast tissue decomposition with spectral distortion correction: A postmortem study,” Med. Phys. 41(10), 101901 (9pp.) (2014).
http://dx.doi.org/10.1118/1.4894724
240.
240.M. H. Gail, L. A. Brinton, D. P. Byar, D. K. Corle, S. B. Green, C. Schairer, and J. J. Mulvihill, “Projecting individualized probabilities of developing breast cancer for white females who are being examined annually,” J. Natl. Cancer Inst. 81(24), 18791886 (1989).
http://dx.doi.org/10.1093/jnci/81.24.1879
241.
241.J. A. Tice, S. R. Cummings, R. Smith-Bindman, L. Ichikawa, W. E. Barlow, and K. Kerlikowske, “Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model,” Ann. Intern. Med. 148(5), 337347 (2008).
http://dx.doi.org/10.7326/0003-4819-148-5-200803040-00004
242.
242.J. Tyrer, S. W. Duffy, and J. Cuzick, “A breast cancer prediction model incorporating familial and personal risk factors,” Stat. Med. 23(7), 11111130 (2004).
http://dx.doi.org/10.1002/sim.1668
243.
243.M. H. Gail, “Twenty-five years of breast cancer risk models and their applications,” J. Natl. Cancer Inst. 107(5), djv042 (2015).
http://dx.doi.org/10.1093/jnci/djv042
244.
244.National Cancer Institute, Breast Cancer Risk Prediction Models, 2014. Retrieved September 08, 2015, from http://epi.grants.cancer.gov/cancer_risk_prediction/breast.html.
245.
245.J. Chen, D. Pee, R. Ayyagari, B. Graubard, C. Schairer, C. Byrne, J. Benichou, and M. H. Gail, “Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density,” J. Natl. Cancer Inst. 98(17), 12151226 (2006).
http://dx.doi.org/10.1093/jnci/djj332
246.
246.S. Micallef, D. Micallef, P. Schembri-Wismayer, M. P. Brincat, and J. Calleja-Agius, “Chemoprevention of breast cancer among women at elevated risk as defined by Gail score,” Minerva Ginecol. 67(4), 335352 (2015).
247.
247.M. H. Gail and R. M. Pfeiffer, “On criteria for evaluating models of absolute risk,” Biostatistics 6(2), 227239 (2005).
http://dx.doi.org/10.1093/biostatistics/kxi005
248.
248.J. A. Tice, D. L. Miglioretti, C. S. Li, C. M. Vachon, C. C. Gard, and K. Kerlikowske, “Breast density and benign breast disease: Risk assessment to identify women at high risk of breast cancer,” J. Clin. Oncol. 33, 31373143 (2015).
http://dx.doi.org/10.1200/jco.2015.60.8869
249.
249.J. Warwick, H. Birke, J. Stone, R. M. Warren, E. Pinney, A. R. Brentnall, S. W. Duffy, A. Howell, and J. Cuzick, “Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: Findings from the placebo arm of the international breast cancer intervention study I,” Breast Cancer Res. 16(5), 451 (2014).
http://dx.doi.org/10.1186/s13058-014-0451-5
250.
250.J. Novotny, L. Pecen, L. Petruzelka, A. Svobodnik, L. Dusek, J. Danes, and M. Skovajsova, “Breast cancer risk assessment in the Czech female population–an adjustment of the original Gail model,” Breast Cancer Res. Treat. 95(1), 2935 (2006).
http://dx.doi.org/10.1007/s10549-005-9027-5
251.
251.C. Beard and V. Beard, “Re-examining current breast cancer screening: An analysis of the 2009 U.S. preventative services task force guidelines for breast cancer screening,” Women Health (2015), see http://www.tandfonline.com/doi/full/10.1080/03630242.2015.1088115.
http://dx.doi.org/10.1080/03630242.2015.1088115
252.
252.P. Conner, G. Svane, E. Azavedo, G. Soderqvist, K. Carlstrom, T. Graser, F. Walter, and B. von Schoultz, “Mammographic breast density, hormones, and growth factors during continuous combined hormone therapy,” Fertil. Steril. 81(6), 16171623 (2004).
http://dx.doi.org/10.1016/j.fertnstert.2004.02.096
253.
253.R. Warren, “Hormones and mammographic breast density,” Maturitas 49(1), 6778 (2004).
http://dx.doi.org/10.1016/j.maturitas.2004.06.013
254.
254.L. J. Martin and N. F. Boyd, “Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: Hypotheses based on epidemiological evidence,” Breast Cancer Res. 10(1), 201 (2008).
http://dx.doi.org/10.1186/bcr1831
255.
255.X. Lin, N. Sauber, and R. Highnam, “Assessing breast density changes over time,” in European Congress of Radiology, 2013. Retrieved September 10, 2015, from http://dx.doi.org/10.1594/ecr2013/C-1770.
256.
256.J. S. Drukteinis, B. P. Mooney, C. I. Flowers, and R. A. Gatenby, “Beyond mammography: New frontiers in breast cancer screening,” Am. J. Med. 126(6), 472479 (2013).
http://dx.doi.org/10.1016/j.amjmed.2012.11.025
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/12/10.1118/1.4935141
Loading
/content/aapm/journal/medphys/42/12/10.1118/1.4935141
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/12/10.1118/1.4935141
2015-11-18
2016-07-30

Abstract

Breast density is a strong predictor of the failure of mammography screening to detect breast cancer and is a strong predictor of the risk of developing breast cancer. The many imaging options that are now available for imaging dense breasts show great promise, but there is still the question of determining which women are “dense” and what imaging modality is suitable for individual women. To date, mammographic breast density has been classified according to the Breast Imaging-Reporting and Data System (BI-RADS) categories from visual assessment, but this is known to be very subjective. Despite many research reports, the authors believe there has been a lack of physics-led and evidence-based arguments about what breast density actually is, how it should be measured, and how it should be used. In this paper, the authors attempt to start correcting this situation by reviewing the history of breast density research and the debates generated by the advocacy movement. The authors review the development of breast density estimation from pattern analysis to area-based analysis, and the current automated volumetric breast density (VBD) analysis. This is followed by a discussion on seeking the ground truth of VBD and mapping volumetric methods to BI-RADS density categories. The authors expect great improvement in VBD measurements that will satisfy the needs of radiologists, epidemiologists, surgeons, and physicists. The authors believe that they are now witnessing a paradigm shift toward personalized breast screening, which is going to see many more cancers being detected early, with the use of automated density measurement tools as an important component.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/12/1.4935141.html;jsessionid=E0-bh1_1COaPooDPEu4Fg-O5.x-aip-live-02?itemId=/content/aapm/journal/medphys/42/12/10.1118/1.4935141&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/12/10.1118/1.4935141&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/12/10.1118/1.4935141'
Right1,Right2,Right3,