Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. M. Ter-Pogossian, M. E. Phelps, E. J. Hoffman, and N. A. Mullani, “A positron-emission transaxial tomograph for nuclear imaging (PET),” Radiology 11, 8998 (1975).
2.T. Beyer, D. W. Townsend, T. Brun, P. E. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” J. Nucl. Med. 41, 13691379 (2000), see
3.D. W. Townsend, “Combined PET/CT: The historical perspective,” Semin. Ultrasound CT MR 29, 232235 (2008).
4.M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Röcken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14, 459465 (2008).
5.T. E. Yankeelov, T. E. Peterson, R. G. Abramson, D. Garcia-Izquierdo, L. R. Arlinghaus, X. Li, N. C. Atuegwu, C. Catana, H. C. Manning, Z. A. Fayad, and J. C. Gore, “Simultaneous PET-MRI in oncology: A solution looking for a problem?,” Magn. Reson. Imaging 30, 13421356 (2012).
6.C. Elith, S. E. Dempsey, N. Findlay, and H. M. Warren-Forward, “An introduction to the intensity-modulated radiation therapy (IMRT) techniques, tomotherapy, and VMAT,” J. Med. Imaging Radiat. Sci. 42, 3743 (2011).
7.M. Durante and J. S. Loeffler, “Charged particles in radiation oncology,” Nat. Rev. Clin. Oncol. 7, 3743 (2010).
8.A. R. Smith, “Vision 20/20: Proton therapy,” Med. Phys. 36, 556568 (2009).
9.A. Nassalski, M. Kapusta, T. Batsch, D. Wolski, D. Möckel, W. Enghardt, and M. Moszyński, “Comparative study of scintillators for PET/CT detectors,” IEEE Trans. Nucl. Sci. 54, 310 (2007).
10.D. R. Schaart, S. Seifert, R. Vinke, H. T. van Dam, P. Dendooven, H. Löhner, and F. J. Beekman, “LaBr(3): Ce and SiPMs for time-of-flight PET: Achieving 100 ps coincidence resolving time,” Phys. Med. Biol. 55, N179N189 (2010).
11.A. M. Alessio, C. W. Stearns, S. Tong, S. G. Ross, S. Kohlmyer, A. Ganin, and P. E. Kinahan, “Application and evaluation of a measured spatially variant system model for PET image reconstruction,” IEEE Trans. Med. Imaging 29(3), 938949 (2010).
12.E. Yoshida, Y. Hirano, H. Tashima, N. Inadama, F. Nishikido, T. Moriya, T. Omura, M. Watanabe, H. Murayama, and T. Yamaya, “Impact of laser-processed X’tal cube detectors on PET imaging in a one-pair prototype system,” IEEE Trans. Nucl. Sci. 5, 31723180 (2013).
13.Y. Gu, J. L. Matteson, R. T. Skelton, A. C. Deal, E. A. Stephan, F. Duttweiler, T. M. Gasaway, and C. S. Levin, “Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET,” Phys. Med. Biol. 56, 15631584 (2011).
14.T. Shiga, Y. Morimoto, N. Kubo, N. Katoh, C. Katoh, W. Takeuchi, R. Usui, K. Hirata, S. Kojima, K. Umegaki, H. Shirato, and N. Tamaki, “A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity,” J. Nucl. Med. 50, 148155 (2009).
15.H. Herzog, “PET/MRI: Challenges, solutions and perspectives,” Z. Med. Phys. 22, 281298 (2012).
16.H. F. Wehrl, A. W. Sauter, M. R. Divine, and B. J. Pichler, “Combined PET/MR: A technology becomes mature,” J. Nucl. Med. 56, 165168 (2015).
17.J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, J. Overweg, K. J. Brown, E. M. Kerkhof, R. W. van der Put, B. Hårdemark, M. van Vulpen, and U. A. van der Heide, “MRI/linac integration,” Radiother. Oncol. 86, 2529 (2008).
18.B. W. Raaymakers, A. J. Raaijmakers, and J. J. Lagendijk, “Feasibility of MRI guided proton therapy: Magnetic field dose effects,” Phys. Med. Biol. 53, 56155622 (2008).
19.D. Thorwarth, S. Leibfarth, and D. Mönnich, “Potential role of PET/MRI in radiotherapy treatment planning,” Clin. Transl. Imaging 1, 4551 (2013).
20.US Food and Drug Administration, Review of F-18 Fluoro-2-Deoxyglucose (F-18 FDG) Positron Emission Tomography in the Evaluation of Malignancy, available at
21.J. Li and Y. Xiao, “Application of FDG-PET/CT in radiation oncology,” Front. Oncol. 3(80), 16 (2013).
22.R. Haubner, “PET radiopharmaceuticals in radiation treatment planning—Synthesis biological characteristics,” Radiother. Oncol. 96, 280287 (2010).
23.A. R. Jalilian, “The application of unconventional PET tracers in nuclear medicine,” Iran. J. Nucl. Med. 17, 111 (2009), see
24.C. Lang, D. Habs, K. Parodi, and P. G. Thirolf, “Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences,” J. Instrum. 9, P01008 (2014).
25.B. Lelandais, S. Ruan, T. Denoeux, P. Vera, and I. Gardin, “Fusion of multi-tracer PET images for dose painting,” Med. Image Anal. 18(7), 12471259 (2014).
26.A. Dimitrakopoulou-Strauss, L. Pan, and L. G. Strauss, “Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients,” Cancer Imaging 28, 283289 (2012).
27.A. Van Baardwijk, G. Bosmans, L. Boersma, J. Buijsen, S. Wanders, M. Hochstenbag, R. J. van Suylen, A. Dekker, C. Dehing-Oberije, R. Houben, S. M. Bentzen, M. van Kroonenburgh, P. Lambin, and D. De Ruysscher, “PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes,” Int. J. Radiat. Oncol., Biol., Phys. 68, 771778 (2007).
28.V. Gregoire and A. Chiti, “PET in radiotherapy planning: Particularly exquisite test or pending and experimental tool?,” Radiother. Oncol. 96, 275276 (2010).
29.R. Boellaard, R. Delgado-Bolton, W. J. G. Oyen, F. Giammarile, K. Tatsch, W. Eschner, F. J. Verzijlbergen, S. F. Barrington, L. C. Pike, W. A. Weber, S. Stroobants, D. Delbeke, K. J. Donohoe, S. Holbrook, M. M. Graham, G. Testanera, O. S. Hoekstra, J. Zijlstra, E. Visser, C. J. Hoekstra, J. Pruim, A. Willemsen, B. Arends, J. Kotzerke, A. Bockisch, T. Beyer, A. Chiti, and B. J. Krause, “FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0,” Eur. J. Nucl. Med. Mol. Imaging 42, 328354 (2015).
30.B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D. J. Mollura, “A review on segmentation of positron emission tomography images,” Comput. Biol. Med. 50, 7696 (2014).
31.S. David, D. Visvikis, C. Roux, and M. Hatt, “Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment,” Phys. Med. Biol. 56, 57715788 (2011).
32.T. Xia, A. M. Alessio, and P. E. Kinahan, “Dual energy CT for attenuation correction with PET/CT,” Med. Phys. 41, 012501 (11pp.) (2014).
33.M. Defrise, A. Rezaei, and J. Nuyts, “Time-of-flight PET data determine the attenuation sinogram up to a constant,” Phys. Med. Biol. 57, 885899 (2012).
34.V. Grégoire, K. Haustermans, X. Geets, S. Roels, and M. Lonneux, “PET-based treatment planning in radiotherapy: A new standard?,” J. Nucl. Med. 48, 68S77S (2007), see
35.R. J. Steenbakkers, J. C. Duppen, I. Fitton, K. E. Deurloo, L. J. Zijp, E. F. Comans, A. L. Uitterhoeve, P. T. Rodrigus, G. W. Kramer, J. Bussink, K. De Jaeger, J. S. Belderbos, P. J. Nowak, M. Van Herk, and C. R. Rasch, “Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis,” Int. J. Radiat. Oncol., Biol., Phys. 64, 435448 (2006).
36.C. M. Anderson, W. Sun, J. M. Buatti, J. E. Maley, B. Policeni, S. L. Mott, and J. E. Bayouth, “Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR images of head and neck cancer,” Jacobs J. Radiat. Oncol. 1, 006012 (2014), see
37.K. Parodi and C. Thieke, “Imaging instrumentation and techniques for precision radiotherapy,” in Handbook of Particle Detection and Imaging (Springer-Verlag, Berlin, Heidelberg, 2012), p. 1153 ISBN: 978-3-642-13270-4.
38.C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks, S. Leibel, and J. A. Koutcher, “Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality,” Int. J. Radiat. Oncol., Biol., Phys. 47, 551556 (2000).
39.D. Thorwarth, X. Geets, and M. Paiusco, “Physical radiotherapy treatment planning based on functional PET/CT data,” Radiother. Oncol. 96, 317324 (2010).
40.D. Thorwarth and M. Alber, “Implementation of hypoxia imaging into treatment planning and delivery,” Radiother. Oncol. 97, 172175 (2010).
41.A. Brahme, “Recent advances in light ion radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 58, 603616 (2004).
42.N. Bassler, O. Jäkel, C. S. Søndergaard, and J. B. Petersen, “Dose- and LET-painting with particle therapy,” Acta Oncol. 49, 11701176 (2010).
43.E. Scifoni, W. Tinganelli, W. K. Weyrather, M. Durante, A. Maier, and M. Krämer, “Including oxygen enhancement ratio in ion beam treatment planning: Model implementation and experimental verification,” Phys. Med. Biol. 58, 38713895 (2013).
44.T. Haberer, J. Debus, H. Eickhoff, O. Jäkel, D. Schulz-Ertner, and U. Weber, “The Heidelberg ion therapy center,” Radiother. Oncol. 73, S186S190 (2004).
45.W. T. Chu, B. A. Ludewigt, and T. R. Renner, “Instrumentation for treatment of cancer using proton and light-ion beams,” Rev. Sci. Instrum. 64, 20552122 (1993).
46.Y. Iseki, H. Mizuno, Y. Futami, T. Tomitani, T. Kanai, M. Kanazawa, A. Kitagawa, T. Murakami, T. Nishio, M. Suda, E. Urakabe, A. Yunoki, and H. Sakai, “Positron camera for range verification of heavy-ion radiotherapy,” Nucl. Instrum. Methods Phys. Res., Sect. A 515, 840849 (2003).
47.T. Yamaya, E. Yoshida, T. Inaniwa, S. Sato, Y. Nakajima, H. Wakizaka, D. Kokuryo, A. Tsuji, T. Mitsuhashi, H. Kawai, H. Tashima, F. Nishikido, N. Inadama, H. Murayama, H. Haneishi, M. Suga, and S. Kinouchi, “Development of a small prototype for a proof-of-concept of OpenPET imaging,” Phys. Med. Biol. 56, 11231137 (2011).
48.H. Tashima, T. Yamaya, E. Yoshida, S. Kinouchi, M. Watanabe, and E. Tanaka, “A single-ring OpenPET enabling PET imaging during radiotherapy,” Phys. Med. Biol. 57, 47054718 (2012).
49.E. Yoshida, T. Shinaji, H. Tashima, H. Haneishi, and T. Yamaya, “Performance evaluation of a transformable axial-shift type single-ring OpenPET,” Conference Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013.
50.W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi, J. Pawelke, and F. Pönisch, “Charged hadron tumour therapy monitoring by means of PET,” Nucl. Instrum. Methods Phys. Res., Sect. A 525, 284288 (2004).
51.K. Parodi, W. Enghardt, and T. Haberer, “In-beam PET measurements of β+-radioactivity induced by proton beams,” Phys. Med. Biol. 47, 2136 (2002).
52.F. Fiedler, P. Crespo, K. Parodi, M. Sellesk, and W. Enghardt, “The feasibility of in-beam PET for therapeutic beams of 3He,” IEEE Trans. Nucl. Sci. 53, 22522259 (2006).
53.M. Priegnitz, D. Möckel, K. Parodi, F. Sommerer, F. Fiedler, and W. Enghardt, “In-beam PET measurement of 7Li3+ irradiation induced β+-activity,” Phys. Med. Biol. 53, 44434453 (2008).
54.F. Sommerer, F. Cerutti, K. Parodi, A. Ferrari, W. Enghardt, and H. Aiginger, “In-beam PET monitoring of mono-energetic (16)O and (12)C beams: Experiments and FLUKA simulations for homogeneous targets,” Phys. Med. Biol. 54, 39793996 (2009).
55.K. Parodi, N. Saito, N. Chaudhri, C. Richter, M. Durante, W. Enghardt, E. Rietzel, and C. Bert, “4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy,” Med. Phys. 36, 42304243 (2009).
56.T. Nishio, A. Miyatake, T. Ogino, K. Nakagawa, N. Saijo, and H. Esumi, “The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 76, 277286 (2010).
57.K. Parodi, “PET monitoring of hadrontherapy,” Nucl. Med. Rev. 15(Suppl. C), C37C42 (2012).
58.J. Bauer, D. Unholtz, F. Sommerer, C. Kurz, T. Haberer, K. Herfarth, T. Welzel, S. E. Combs, J. Debus, and K. Parodi, “Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment,” Radiother. Oncol. 107, 218226 (2013).
59.S. Janek strååt, B. Andreassen, C. Jonsson, M. E. Noz, G. Q. Maguire, Jr., P. Näfstadius, I. Näslund, F. Schoenahl, and A. Brahme, “Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy,” Phys. Med. Biol. 58, 55415553 (2013).
60.X. Zhu, S. España, J. Daartz, N. Liebsch, J. Ouyang, H. Paganetti, T. R. Bortfeld, and G. El Fakhri, “Monitoring proton radiation therapy with in-room PET imaging,” Phys. Med. Biol. 56, 40414057 (2011).
61.P. Crespo, G. Shakirin, F. Fiedler, W. Enghardt, and A. Wagner, “Direct time-of-flight for quantitative, real-time in-beam PET: A concept and feasibility study,” Phys. Med. Biol. 52, 67956811 (2007).
62.G. Sportelli, N. Belcari, N. Camarlinghi, G. A. Cirrone, G. Cuttone, S. Ferretti, A. Kraan, J. E. Ortuño, F. Romano, A. Santos, K. Straub, A. Tramontana, A. D. Guerra, and V. Rosso, “First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system,” Phys. Med. Biol. 59, 4360 (2014).
63.Y. Shao, X. Sun, K. Lou, X. R. Zhu, D. Mirkovic, F. Poenisch, and D. Grosshans, “In-beam PET imaging for on-line adaptive proton therapy: An initial phantom study,” Phys. Med. Biol. 59, 33733388 (2014).
64.U. Amaldi, G. Borghi, M. Bucciantonio, R. Kieffer, F. Sauli, and D. Watts, “Development of TOF-PET detectors based on the multi-gap resistive plate chamber,” Nucl. Instrum. Methods Phys. Res., Sect. A 778, 8591 (2015).
65.Q. Fan, A. Nanduri, S. Mazin, and L. Zhu, “Emission guided radiation therapy for lung and prostate cancers: A feasibility study on a digital patient,” Med. Phys. 39, 71407152 (2012).
66.Y. Hirano, Y. Nakajima, F. Nishikido, T. Shinaji, M. Nitta, E. Yoshida, K. Parodi, and T. Yamaya, “In-beam image based β+ activity measurement in 12C and 11C irradiations using a small OpenPET prototype,” Abstract of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, 2014.
67.M. Lazzeroni and A. Brahme, “Production of clinically useful positron emitter beams during carbon ion deceleration,” Phys. Med. Biol. 56, 15851600 (2011).
68.T. Shirai, T. Furukawa, K. Mizushima, K. Noda, and S. Shibuya, “Cooling stacking experiments at HIMAC,” in Proceedings of the Conference COOL09, Lanzhou, China (2009), pp. 154156, see
69.C. Cornell, “Radioactive beam facilities in Europe: Current status and future development,” in 17th International Conference on Cyclotrons and their Applications, Tokyo, Japan, October 2004 (2005), pp. 15, see
70.F. Fiedler, D. Kunath, M. Priegnitz, and W. Enghardt, “Online irradiation control by means of PET,” in Ion Beam Therapy Fundamentals, Technology, Clinical Applications, edited by U. Linz (Springer-Verlag, Berlin, 2012), pp. 527543.
71.D. Möckel, H. Müller, J. Pawelke, M. Sommer, E. Will, and W. Enghardt, “Quantification of β + activity generated by hard photons by means of PET,” Phys. Med. Biol. 52, 25152530 (2007).
72.T. Kluge, D. Möckel, J. Pawelke, and W. Enghardt, “First in-beam PET measurement of β + radioactivity induced by hard photon beams,” Phys. Med. Biol. 52, N467N473 (2007).
73.S. Janek, R. Svensson, C. Jonsson, and A. Brahme, “Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy,” Phys. Med. Biol. 51, 57695783 (2006).
74.H. Mizuno, T. Tomitani, M. Kanazawa, A. Kitagawa, J. Pawelke, Y. Iseki, E. Urakabe, M. Suda, A. Kawano, R. Iritani, S. Matsushita, T. Inaniwa, T. Nishio, S. Furukawa, K. Ando, Y. K. Nakamura, T. Kanai, and K. Ishii, “Washout measurement of radioisotope implanted by radioactive beams in the rabbit,” Phys. Med. Biol. 48, 22692281 (2003).
75.Y. Hirano, S. Kinouchi, Y. Ikoma, E. Yoshida, H. Wakizaka, H. Ito, and T. Yamaya, “Compartmental analysis of washout effect in rat brain: In-beam OpenPET measurement using a (11)C beam,” Phys. Med. Biol. 58, 82818294 (2013).
76.S. Helmbrecht, W. Enghardt, K. Parodi, B. Didinger, J. Debus, D. Kunath, M. Priegnitz, and F. Fiedler, “Analysis of metabolic washout of positron emitters produced during carbon ion head and neck radiotherapy,” Med. Phys. 40, 091918(5pp.) (2013).
77.C. Ammar, K. Frey, J. Bauer, C. Melzig, S. Chiblak, M. Hildebrandt, D. Unholtz, C. Kurz, S. Brons, J. Debus, A. Abdollahi, and K. Parodi, “Comparing the biological washout of β(+)-activity induced in mice brain after (12)C-ion and proton irradiation,” Phys. Med. Biol. 59, 72297244 (2014).
78.K. Parodi, H. Paganetti, H. Shih, S. Michaud, J. S. Loeffler, T. F. DeLaney, N. J. Liebsch, J. E. Munzenrider, A. J. Fischman, A. Knopf, and T. Bortfeld, “Patient study of in-vivo verification of beam delivery and range using positron emission tomography and computed tomography imaging after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 920934 (2007).
79.T. Freeman, “Will protons gradually replace photons?” Medicalphysicsweb, August 22, 2012, available at
80.G. Landry, R. Nijhuis, G. Dedes, J. Handrack, C. Thieke, G. Janssens, J. Orban de Xivry, M. Reiner, F. Kamp, J. J. Wilkens, C. Paganelli, M. Riboldi, G. Baroni, U. Ganswindt, C. Belka, and K. Parodi, “Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation,” Med. Phys. 42, 13541366 (2015).
81.H. Paganetti, “Range uncertainties in proton therapy and the role of Monte Carlo simulations,” Phys. Med. Biol. 57, R99R118 (2012).
82.Y. Nakajima, T. Kohno, T. Inaniwa, S. Sato, E. Yoshida, T. Yamaya, Y. Tsuruta, and L. Sihver, “Approach to 3D dose verification by utilizing autoactivation,” Nucl. Instrum. Methods Phys. Res., Sect. A 648(Suppl. 1), S119S121 (2011).
83.S. Remmele, J. Hesser, H. Paganetti, and T. Bortfeld, “A deconvolution approach for PET-based dose reconstruction in proton radiotherapy,” Phys. Med. Biol. 56, 76017619 (2011).
84.S. Vynckier, S. Derreumaux, F. Richard, A. Bol, C. Michel, and A. Wambersie, “Is it possible to verify directly a proton-treatment plan using positron emission tomography?,” Radiother. Oncol. 26, 275277 (1993).
85.Y. Hishikawa, K. Kagawa, M. Murakami, H. Sakai, T. Akagi, and M. Abe, “Usefulness of positron-emission tomographic images after proton therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 13881391 (2002).
86.H. D. Maccabbee, U. Madhvanath, and M. R. Raju, “Tissue activation studies with alpha-particle beams,” Phys. Med. Biol. 14, 213224 (1969).
87.A. Chatterjee and J. Llacer, “Applications of radioactive beams in diagnostic studies,” in Proceedings of 1st International Conference on Radioactive Nuclear Beams, California, 16-18 October 1989 (World Scientific Publishing Company Incorporated 1989), pp. 403413, see
88.A. C. Knopf, K. Parodi, H. Paganetti, T. Bortfeld, J. Daartz, M. Engelsman, N. Liebsch, and H. Shih, “Accuracy of proton beam range verification using post-treatment positron emission tomography/computed tomography as function of treatment site,” Int. J. Radiat. Oncol., Biol., Phys. 79, 297304 (2011).
89.W. Enghardt, K. Parodi, P. Crespo, F. Fiedler, J. Pawelke, and F. Pönisch, “Dose quantification from in-beam positron emission tomography,” Radiother. Oncol. 73(Suppl. 2), S96S98 (2004).
90.J. Bert, H. Perez-Ponce, Z. Bitar, S. Jan, Y. Boursier, D. Vintache, A. Bonissent, C. Morel, D. Brasse, and D. Visvikis, “Geant4-based Monte Carlo simulations on GPU for medical applications,” Phys. Med. Biol. 58, 55935611 (2013).
91.C. Robert, G. Dedes, G. Battistoni, T. T. Böhlen, I. Buvat, F. Cerutti, M. P. W. Chin, A. Ferrari, P. Gueth, C. Kurz, L. Lestand, A. Mairani, G. Montarou, R. Nicolini, P. G. Ortega, K. Parodi, Y. Prezado, P. R. Sala, D. Sarrut, and E. Testa, “Distributions of secondary particles in proton and carbon-ion therapy: A comparison between GATE/Geant4 and FLUKA Monte Carlo codes,” Phys. Med. Biol. 58, 28792899 (2013).
92.J. Bauer, D. Unholtz, C. Kurz, and K. Parodi, “An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams,” Phys. Med. Biol. 58, 51935213 (2013).
93.A. Miyatake, T. Nishio, and T. Ogino, “Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing 12C, 16O, and 40Ca nuclei in preparation of clinical application,” Med. Phys. 38, 58185829 (2011).
94.M. Priegnitz, F. Fiedler, D. Kunath, K. Laube, and W. Enghardt, “An experiment-based approach for predicting positron emitter distributions produced during therapeutic ion irradiation,” IEEE Trans. Nucl. Sci. 59, 7787 (2012).
95.K. Frey, J. Bauer, D. Unholtz, C. Kurz, M. Krämer, T. Bortfeld, and K. Parodi, “TPSPET—A TPS-based approach for in vivo dose verification with PET in proton therapy,” Phys. Med. Biol. 59, 121 (2014).
96.G. Landry, K. Parodi, J. E. Wildberger, and F. Verhaegen, “Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications,” Phys. Med. Biol. 58, 50295048 (2013).
97.J. Bauer, D. Unholtz, F. Sommerer, C. Kurz, T. Haberer, J. Debus, and K. Parodi, “Experimental validation of simulated positron emitter yields and refined tissue classification for improved Monte Carlo modeling towards offline PET/CT-based verification of proton therapy,” Book of Abstract of the Third European Workshop on Monte Carlo Treatment Planning of the European Workgroup on MCTP, Sevilla, Spain, May 15–18, 2012.
98.S. Helmbrecht, A. Santiago, W. Enghardt, P. Kuess, and F. Fiedler, “On the feasibility of automatic detection of range deviations from in-beam PET data,” Phys. Med. Biol. 57, 13871397 (2012).
99.P. Kuess, W. Birkfellner, W. Enghardt, S. Helmbrecht, F. Fiedler, and D. Georg, “Using statistical measures for automated comparison of in-beam PET data,” Med. Phys. 39, 58745881 (2012).
100.P. Kuess, S. Helmbrecht, F. Fiedler, W. Birkfellner, W. Enghardt, J. Hopfgartner, and D. Georg, “Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study,” Med. Phys. 40, 121718 (9pp.) (2013).
101.K. Frey, D. Unholtz, J. Bauer, J. Debus, C. H. Min, T. Bortfeld, H. Paganetti, and K. Parodi, “Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy,” Phys. Med. Biol. 59, 59035919 (2014).
102.S. P. Nischwitz, J. Bauer, T. Welzel, H. Rief, O. Jäkel, T. Haberer, K. Frey, J. Debus, K. Parodi, S. E. Combs, and S. Rieken, “Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma,” Radiother. Oncol. 115, 179185 (2015).
103.K. Stützer, C. Bert, W. Enghardt, S. Helmbrecht, K. Parodi, M. Priegnitz, N. Saito, and F. Fiedler, “Experimental verification of a 4D reconstruction algorithm used for in-beam PET measurements in particle therapy,” Phys. Med. Biol. 58, 50855111 (2013).
104.C. Kurz, J. Bauer, D. Unholtz, S. E. Combs, J. Debus, D. Richter, R. Kaderka, C. Bert, K. Sützer, C. Gianoli, G. Baroni, and K. Parodi, “Current status of 4D offline PET-based treatment verification at the Heidelberg ion-beam therapy center,” in IEEE Conference Record of NSS-MIC, Seoul, South Korea (IEEE, 2013), pp. 13.
105.C. Kurz, “4D offine PET-based treatment verification in ion beam therapy: Experimental and clinical evaluation,” Ph.D. thesis, Ludwig Maximilian University, Munich,2014.
106.H. Tashima, E. Yoshida, T. Shinaji, Y. Hirano, S. Kinouchi, F. Nishikido, M. Suga, H. Haneishi, H. Ito, and T. Yamaya, “Simulation study of real-time tumor tracking by OpenPET using the 4D XCAT phantom with a realistic 18F-FDG distribution,” in IEEE Conference Record of NSS-MIC, Anaheim, USA (IEEE, 2012), pp. 26032605.
107.F. Fiedler, M. Sellesk, P. Crespo, R. Jülich, K. Parodi, J. Pawelke, F. Pönisch, and W. Enghardt, “In-beam PET measurements of biological half-lives of 12C irradiation induced beta+-activity,” Acta Oncol. 47, 10771086 (2008).
108.K. Grogg, N. M. Alpert, X. Zhu, C. H. Min, M. Testa, B. Winey, M. D. Normandin, H. A. Shih, H. Paganetti, T. Bortfeld, and G. El Fakhri, “Mapping 15O production rate for proton therapy verification,” Int. J. Radiat. Oncol., Biol., Phys. 92, 453459 (2015).
109.R. L. Maughan, P. J. Chuba, A. T. Porter, E. Ben-Josef, and D. R. Lucas, “The elemental composition of tumors: Kerma data for neutrons,” Med. Phys. 24, 12411244 (1997).
110.C. H. Min, C. H. Kim, M. Y. Youn, and J. W. Kim, “Prompt gamma measurements for locating the dose fall-off region in the proton therapy,” Appl. Phys. Lett. 89, 183517 (2006).
111.I. Perali, A. Celani, L. Bombelli, C. Fiorini, F. Camera, E. Clementel, S. Henrotin, G. Janssens, D. Prieels, F. Roellinghoff, J. Smeets, F. Stichelbaut, and F. Vander Stappen, “Prompt gamma imaging of proton pencil beams at clinical dose rate,” Phys. Med. Biol. 59, 58495871 (2014).
112.J. C. Polf, S. Avery, D. S. Mackin, and S. Beddar, “Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: Feasibility studies for range verification,” Phys. Med. Biol. 60, 70857099 (2015).
113.P. Henriquet, E. Testa, M. Chevallier, D. Dauvergne, G. Dedes, N. Freud, J. Krimmer, J. M. Létang, C. Ray, M. H. Richard, and F. Sauli, “Interaction vertex imaging (IVI) for carbon ion therapy monitoring: A feasibility study,” Phys. Med. Biol. 57, 46554669 (2012).
114.C. Agodi, G. Battistoni, F. Bellini, G. A. Cirrone, F. Collamati, G. Cuttone, E. De Lucia, M. De Napoli, A. D. Domenico, R. Faccini, F. Ferroni, S. Fiore, P. Gauzzi, E. Iarocci, M. Marafini, I. Mattei, S. Muraro, A. Paoloni, V. Patera, L. Piersanti, F. Romano, A. Sarti, A. Sciubba, E. Vitale, and C. Voena, “Charged particle’s flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam,” Phys. Med. Biol. 57, 56675678 (2012).
115.K. Gwosch, B. Hartmann, J. Jakubek, C. Granja, P. Soukup, O. Jäkel, and M. Martišíková, “Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions,” Phys. Med. Biol. 58, 37553773 (2013).
116.A. Knopf and A. Lomax, “In vivo proton range verification: A review,” Phys. Med. Biol. 58, R131R160 (2013).
117.M. Marafini, A. Attili, G. Battistoni, N. Belcari, M. Bisogni, N. Camarlinghi, F. Cappucci, M. Cecchetti, P. Cerello, F. Ciciriello, G. Cirrone, S. Coli, F. Corsi, G. Cuttone, E. De Lucia, S. Ferretti, R. Faccini, E. Fiorina, P. Frallicciardi, G. Giraudo, E. Kostara, A. Kraan, F. Licciulli, B. Liu, N. Marino, C. Marzocca, G. Matarrese, C. Morone, M. Morrocchi, S. Muraro, V. Patera, F. Pennazio, C. Peroni, L. Piersanti, M. Piliero, G. Pirrone, A. Rivetti, F. Romano, V. Rosso, P. Sala, A. Sarti, A. Sciubba, G. Sportelli, C. Voena, R. Wheadon, and A. Del Guerra, “The INSIDE project: Innovative solutions for in-beam dosimetry in hadrontherapy,” Acta Phys. Pol., A 127, 14651467 (2015).

Data & Media loading...


Article metrics loading...



Positron emission tomography(PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beamdelivery approaches integrating the PETimaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PETimaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved verification of motion compensated beamdelivery. This paper provides an overview of the different areas of application of PET in radiationoncology and discusses the most promising perspectives in the years to come for radiation therapy planning, delivery, and monitoring.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd