Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/2/10.1118/1.4903299
1.
1.B. M. Keller, D. L. Nathan, Y. Wang, Y. Zheng, J. C. Gee, E. F. Conant, and D. Kontos, “Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation,” Med. Phys. 39, 49034917 (2012).
http://dx.doi.org/10.1118/1.4736530
2.
2.M. J. Yaffe, “Mammographic density Measurement of mammographic density,” Breast Cancer Res. 10, 209218 (2008).
http://dx.doi.org/10.1186/bcr2102
3.
3.J. J. Heine, K. Cao, and J. A. Thomas, “Effective radiation attenuation calibration for breast density: Compression thickness influences and correction,” Biomed. Eng. Online 9, 7398 (2010).
http://dx.doi.org/10.1186/1475-925X-9-73
4.
4.J. J. Heine and J. A. Thomas, “Effective x-ray attenuation coefficient measurements from two full field digital mammography systems for data calibration applications,” Biomed. Eng. Online 7, 1324 (2008).
http://dx.doi.org/10.1186/1475-925X-7-13
5.
5.R. Highnam and M. Brady, Mammographic Image Analysis (Kluwer Academic, Boston, MA, 1999).
6.
6.R. Highnam, X. Pan, R. Warren, M. Jeffreys, G. D. Smith, and M. Brady, “Breast composition measurements using retrospective standard mammogram form (SMF),” Phys. Med. Biol. 51, 26952713 (2006).
http://dx.doi.org/10.1088/0031-9155/51/11/001
7.
7.J. Kaufhold, J. A. Thomas, J. W. Eberhard, C. E. Galbo, and D. E. Trotter, “A calibration approach to glandular tissue composition estimation in digital mammography,” Med. Phys. 29, 18671880 (2002).
http://dx.doi.org/10.1118/1.1493215
8.
8.S. Malkov, J. Wang, K. Kerlikowske, S. R. Cummings, and J. A. Shepherd, “Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume,” Med. Phys. 36, 55255536 (2009).
http://dx.doi.org/10.1118/1.3253972
9.
9.O. Pawluczyk, B. J. Augustine, M. J. Yaffe, D. Rico, J. Yang, G. E. Mawdsley, and N. F. Boyd, “A volumetric method for estimation of breast density on digitized screen-film mammograms,” Med. Phys. 30, 352364 (2003).
http://dx.doi.org/10.1118/1.1539038
10.
10.S. van Engeland, P. R. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer, “Volumetric breast density estimation from full-field digital mammograms,” IEEE Trans. Med. Imaging 25, 273282 (2006).
http://dx.doi.org/10.1109/TMI.2005.862741
11.
11.S. Ciatto, D. Bernardi, M. Calabrese, M. Durando, M. A. Gentilini, G. Mariscotti, F. Monetti, E. Moriconi, B. Pesce, A. Roselli, C. Stevanin, M. Tapparelli, and N. Houssami, “A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification,” Breast 21, 503506 (2012).
http://dx.doi.org/10.1016/j.breast.2012.01.005
12.
12.R. Highnam, N. Sauber, S. Destounis, J. Harvey, and D. Mcdonald, in Presented at the 11th International Workshop of Digital Mammography, Philadelphia, PA (2012) (unpublished).
13.
13.J. J. Heine, K. Cao, D. E. Rollison, G. Tiffenberg, and J. A. Thomas, “A quantitative description of the percentage of breast density measurement using full-field digital mammography,” Acad. Radiol. 18, 556564 (2011).
http://dx.doi.org/10.1016/j.acra.2010.12.015
14.
14.E. E. Fowler, B. Lu, and J. J. Heine, “A comparison of calibration data from full field digital mammography units for breast density measurements,” Biomed. Eng. Online 12, 114135 (2013).
http://dx.doi.org/10.1186/1475-925X-12-114
15.
15.J. J. Heine and M. Behera, “Effective x-ray attenuation measurements with full field digital mammography,” Med. Phys. 33, 43504366 (2006).
http://dx.doi.org/10.1118/1.2356648
16.
16.D. M. Hawkins and D. H. Olwell, Cumulative Sum Charts and Charting for Quality Improvement (Springer-Verlag, New York, NY, 1997).
17.
17.J. J. Heine, K. Cao, and C. Beam, “Cumulative sum quality control for calibrated breast density measurements,” Med. Phys. 36, 53805390 (2009).
http://dx.doi.org/10.1118/1.3250842
18.
18.E. S. Page, “Continuous inspection schemes,” Biometrika 41, 100115 (1954).
http://dx.doi.org/10.1093/biomet/41.1-2.100
19.
19.E. S. Page, “Cumulative sum schemes using gauging,” Technometrics 4, 97109 (1962).
http://dx.doi.org/10.1080/00401706.1962.10489990
20.
20.E. S. Page, “Controlling the standard deviation by Cusums and warning lines,” Technometrics 5, 307315 (1963).
http://dx.doi.org/10.1080/00401706.1963.10490100
21.
21.A. Bartlett and B. Parry, “Cusum analysis of trends in operative selection and conversion rates for laparoscopic cholecystectomy,” Aust. N. Z. J. Surg. 71, 453456 (2001).
http://dx.doi.org/10.1046/j.1440-1622.2001.02163.x
22.
22.F. Claerhout, J. P. Roovers, P. Lewi, J. Verguts, D. De Ridder, and J. Deprest, “Implementation of laparoscopic sacrocolpopexy—A single centre’s experience,” Int. Urogynecol. J. Pelvic Floor Dysfunct. 20, 11191125 (2009).
http://dx.doi.org/10.1007/s00192-009-0914-x
23.
23.M. R. de Leval, K. François, C. Bull, W. Brawn, and D. Spiegelhalter, “Analysis of a cluster of surgical failures: Application to a series of neonatal arterial switch operations,” J. Thorac. Cardiovasc. Surg. 107, 914924 (1994).
24.
24.G. R. de Oliveira Filho, “The construction of learning curves for basic skills in anesthetic procedures: An application for the cumulative sum method,” Anesth. Analgesia. 95, 411416 (2002).
http://dx.doi.org/10.1213/00000539-200208000-00033
25.
25.G. L. Grunkemeier, Y. X. Wu, and A. P. Furnary, “Cumulative sum techniques for assessing surgical results,” Ann. Thorac. Surg. 76, 663667 (2003).
http://dx.doi.org/10.1016/S0003-4975(03)00873-7
26.
26.D. M. Holzhey, J. Seeburger, M. Misfeld, M. A. Borger, and F. W. Mohr, “Learning minimally invasive mitral valve surgery: A cumulative sum sequential probability analysis of 3895 operations from a single high-volume center,” Circulation 128, 483491 (2013).
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001402
27.
27.R. J. Novick, S. A. Fox, L. W. Stitt, B. B. Kiaii, S. A. Swinamer, R. Rayman, T. R. Wenske, and W. D. Boyd, “Assessing the learning curve in off-pump coronary artery surgery via CUSUM failure analysis,” Ann. Thorac. Surg. 73, S358S362 (2002).
http://dx.doi.org/10.1016/S0003-4975(01)03399-9
28.
28.P. Rozenberg, R. Porcher, L. J. Salomon, F. Boirot, C. Morin, and Y. Ville, “Comparison of the learning curves of digital examination and transabdominal sonography for the determination of fetal head position during labor,” Ultrasound Obstet. Gynecol. 31, 332337 (2008).
http://dx.doi.org/10.1002/uog.5267
29.
29.S. E. Smith, V. R. Tallentire, J. Spiller, S. M. Wood, and H. S. Cameron, “The educational value of using cumulative sum charts,” Anaesthesia 67, 734740 (2012).
http://dx.doi.org/10.1111/j.1365-2044.2012.07100.x
30.
30.P. P. Tekkis, V. W. Fazio, I. C. Lavery, F. H. Remzi, A. J. Senagore, J. S. Wu, S. A. Strong, J. D. Poloneicki, T. L. Hull, and J. M. Church, “Evaluation of the learning curve in ileal pouch-anal anastomosis surgery,” Ann. Surg. 241, 262268 (2005).
http://dx.doi.org/10.1097/01.sla.0000152018.99541.f1
31.
31.L. Sun, K. Wilder, and M. S. Mcpeek, “Enhanced pedigree error detection,” Hum. Hered. 54, 99110 (2002).
http://dx.doi.org/10.1159/000067666
32.
32.J. Sabria, C. Barcelo-Vidal, M. Arigita, J. M. Jimenez, B. Puerto, and A. Borrell, “The CUSUM test applied in prospective nuchal translucency quality review,” Ultrasound Obstet. Gynecol. 37, 582587 (2011).
http://dx.doi.org/10.1002/uog.8860
33.
33.B. J. Cowling, I. O. Wong, L. M. Ho, S. Riley, and G. M. Leung, “Methods for monitoring influenza surveillance data,” Int. J. Epidemiol. 35, 13141321 (2006).
http://dx.doi.org/10.1093/ije/dyl162
34.
34.M. Hohle, M. Paul, and L. Held, “Statistical approaches to the monitoring and surveillance of infectious diseases for veterinary public health,” Prev. Vet. Med. 91, 210 (2009).
http://dx.doi.org/10.1016/j.prevetmed.2009.05.017
35.
35.J. Menotti, R. Porcher, P. Ribaud, C. Lacroix, V. Jolivet, S. Hamane, and F. Derouin, “Monitoring of nosocomial invasive aspergillosis and early evidence of an outbreak using cumulative sum tests (CUSUM),” Clin. Microbiol. Infect. 16, 13681374 (2010).
http://dx.doi.org/10.1111/j.1469-0691.2010.03150.x
36.
36.P. A. Rogerson and I. Yamada, “Approaches to syndromic surveillance when data consist of small regional counts,” MMWR Morb Mortal Wkly Rep 53(suppl), 7985 (2004).
37.
37.P. A. Rogerson and I. Yamada, “Monitoring change in spatial patterns of disease: Comparing univariate and multivariate cumulative sum approaches,” Stat. Med. 23, 21952214 (2004).
http://dx.doi.org/10.1002/sim.1806
38.
38.B. Barratt, R. Atkinson, H. Ross Anderson, S. Beevers, F. Kelly, I. Mudway, and P. Wilkinson, “Investigation into the use of the CUSUM technique in identifying changes in mean air pollution levels following introduction of a traffic management scheme,” Atmos. Environ. 41, 17841791 (2007).
http://dx.doi.org/10.1016/j.atmosenv.2006.09.052
39.
39.A. Schuh, J. A. Camelio, and W. H. Woodall, “Control charts for accident frequency: A motivation for real-time occupational safety monitoring,” Int. J. Inj. Contr. Saf. Promot. 21, 154162 (2014).
http://dx.doi.org/10.1080/17457300.2013.792285
40.
40.T. O. Lim, A. Soraya, L. M. Ding, and Z. Morad, “Assessing doctors’ competence: Application of CUSUM technique in monitoring doctors’ performance,” Int. J. Qual. Health Care 14, 251258 (2002).
http://dx.doi.org/10.1093/oxfordjournals.intqhc.a002616
41.
41.N. M. Ung and L. Wee, “Cumulative sum method in nonzero fixed action level setup correction strategy: An application of statistical process control for targeted prostate radiotherapy,” Med. Phys. 39, 27462753 (2012).
http://dx.doi.org/10.1118/1.4705349
42.
42.B. Ren, C. Ruth, T. Wu, Y. Zhang, A. Smith, L. Niklason, C. Williams, E. Ingal, B. Polischuk, and Z. Jing, presented at the Medical Imaging 2010: Physics of Medical Imaging, San Diego, CA (2010) (unpublished).
http://dx.doi.org/10.1117/12.844555
43.
43.A. Smith, “Fundamentals of breast tomosynthesis,” in a series of research overviews on advanced technologies in women’s healthcare, 2008.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/2/10.1118/1.4903299
Loading
/content/aapm/journal/medphys/42/2/10.1118/1.4903299
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/2/10.1118/1.4903299
2015-01-12
2016-09-30

Abstract

The authors are developing a system for calibrated breast density measurements using full field digital mammography (FFDM). Breast tissue equivalent (BTE) phantom images are used to establish baseline (BL) calibration curves at time zero. For a given FFDM unit, the full BL dataset is comprised of approximately 160 phantom images, acquired prior to calibrating prospective patient mammograms. BL curves are monitored serially to ensure they produce accurate calibration and require updating when calibration accuracy degrades beyond an acceptable tolerance, rather than acquiring full BL datasets repeatedly. BL updating is a special case of generalizing calibration datasets across FFDM units, referred to as cross-calibration. Serial monitoring, BL updating, and cross-calibration techniques were developed and evaluated.

BL curves were established for three Hologic Selenia FFDM units at time zero. In addition, one set of serial phantom images, comprised of equal proportions of adipose and fibroglandular BTE materials (50/50 compositions) of a fixed height, was acquired biweekly and monitored with the cumulative sum (Cusum) technique. These 50/50 composition images were used to update the BL curves when the calibration accuracy degraded beyond a preset tolerance of ±4 standardized units. A second set of serial images, comprised of a wide-range of BTE compositions, was acquired biweekly to evaluate serial monitoring, BL updating, and cross-calibration techniques.

Calibration accuracy can degrade serially and is a function of acquisition technique and phantom height. The authors demonstrated that all heights could be monitored simultaneously while acquiring images of a 50/50 phantom with a fixed height for each acquisition technique biweekly, translating into approximately 16 image acquisitions biweekly per FFDM unit. The same serial images are sufficient for serial monitoring, BL updating, and cross-calibration. Serial calibration accuracy was maintained within ±4 standardized unit variation from the ideal when applying BL updating. BL updating is a special case of cross-calibration; the BL dataset of unit 1 can be converted to the BL dataset for another similar unit (i.e., unit 2) at any given time point using the 16 serial monitoring 50/50 phantom images of unit 2 (or vice versa) acquired near this time point while maintaining the ±4 standardized unit tolerance.

A methodology for monitoring and maintaining serial calibration accuracy for breast density measurements was evaluated. Calibration datasets for a given unit can be translated forward in time with minimal phantom imaging effort. Similarly, cross-calibration is a method for generalizing calibration datasets across similar units without additional phantom imaging. This methodology will require further evaluation with mammograms for complete validation.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/2/1.4903299.html;jsessionid=ojpcKCn3cIQTaVCM1kmmBVjS.x-aip-live-06?itemId=/content/aapm/journal/medphys/42/2/10.1118/1.4903299&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/2/10.1118/1.4903299&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/2/10.1118/1.4903299'
Right1,Right2,Right3,